出國報告(出國類別:會議)

第 13 屆 Aeromonas 及 Plesiomonas 國際 研討會

服務機關:成大醫院

姓名職稱:教授兼主治醫師

派赴國家:波蘭

出國期間:2023.6.17-2023.6.26

報告日期: 2023.8.11

摘要

此次第 13 屆產氣單胞菌(Aeromonas)及臨單胞菌(Plesiomonas)國際研討會於波蘭樂斯拉夫 Wroclaw 舉辦,會議日期為 2023 年 6 月 21 日至 23 日。筆者陳柏齡醫師 6 月 17 日提早由桃園國際機場出發,直飛德國法蘭克福,再經由該地轉飛波蘭樂斯拉夫,6 月 18 日抵達該地。

台南地區為產氣單胞菌盛行區域,本院在相關微生物學及致病機轉研究頗具名聲,因此主辦單位邀請筆者陳柏齡醫師參加並發表專題演講,會議舉辦地點為位於該市的 Hirszfeld 研究所(Hirszfeld Institute of Immunology and Experimental Therapy),講題為:達卡產氣單胞菌感染回顧:臨床感染及致病機轉(Review of Aeromonas dhakensis infection: clinical infections and pathogenesis),是針對該菌種細菌感染完整的回顧,與會者皆給予演講者非常正面的回響。在三天的研討會過程中,與來自世界各國的微生物專機切磋討論,並尋求近一步跨國合作的機會,會議結束後隔日(6月24日),主辦單位安排與會者參觀鄰近該市的 KSIAZ 古堡,藉由親身遊覽,了解波蘭的歷史與體驗當地的風土民情。筆者於6月25日經由波蘭飛抵法蘭克福,經由該地於6月26日返回台灣。

目次

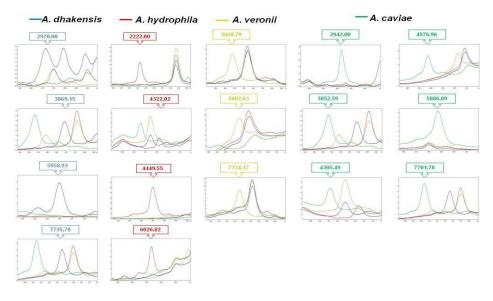
一、目的	P.1
二、過程	P.2
三、心 得	P.14
四、建 議	P.15

一、目的

產氣單胞菌(Aeromonas)及臨單胞菌(Plesiomonas)國際研討會,是每三年舉辦一次的國際研討會,歐洲和美洲國家依慣例輪流主辦,此次於波蘭樂斯拉夫 Wroclaw 舉辦,會議日期為 2023 年 6 月 21 日至 23 日。此一國際研討會聚集了研究世界上研究此兩種細菌的專家,互相分享最新的研究成果,並增加彼此交流合作的機會。筆者藉由參與此次會議,近一步提升成大醫院及台灣在相關領域的能見度,並促進將來國際相關研究者的交流和合作機會。

台南地區為產氣單胞菌盛行區域,臨床感染報告案例及分離菌株數目全球最多,成大醫院在相關微生物學及致病機轉研究頗具名聲,產器單胞菌是筆者的研究主題之一,在十年間發表了數十篇關於產氣單胞菌的微生物以及臨床感染論文,為此一領域的專家,因此獲邀擔任研討會的 keynote speaker。發表一小時的專題演講,講題為:達卡產氣單胞菌感染回顧:臨床感染及致病機轉(Review of *Aeromonas dhakensis* infection: clinical infections and pathogenesis)。

二、過程


這次會議的主辦者 Marta Kaszowska 教授很早即邀請筆者與會並發表演說,其實此次會議應該是在 2020 年就該舉行,但因新冠肺炎全球疫情而耽擱,主辦單位於 2022 年底便與筆者約定,參加 2023 年 6 月的第 13 屆會議,並擔任會議最後一天的 keynote speaker。

筆者於 6 月 17 日由桃園國際機場出發,直飛德國法蘭克福,再經由該地轉飛波蘭樂斯拉夫,6 月 18 日抵達該地。會議期間住宿地點為 CAMPANILE WROCLAW CENTRUM 旅館。會議中筆者擔任第二天會議 Section III 的座長,並於第三天擔任會議的 keynote speaker,講題為達卡產氣單胞菌感染回顧:臨床感染及致病機轉(Review of *Aeromonas dhakensis* infection: clinical infections and pathogenesis),演講內容摘要如下:

產氣單胞菌目前已知有 36 種菌種(species),達卡產氣單胞菌(Aeromonas dhakensis) 於 1993 年的孟加拉達卡市首次從腹瀉的小朋友分離出來,2003年正式被確認為一全新的菌種。Aeromonas 全世界各大洲皆有分布,主要分布在熱帶及亞熱帶地區,東南亞尤其常見,澳洲也有不少的案例報告。達卡產氣單胞菌具有鞭毛結構,因此可以在環境中自由移動,適合的生長溫度為攝氏 28 至 42 度。

目前市面上的商用細菌鑑定系統,可以正確鑑定 Aeromonas 屬(genus),但無法正確鑑定 Aeromonas 菌種(species),基質輔助雷射脱附游離 Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-TOF MS)質譜儀理論上可以準確的鑑定產氣單胞菌菌種,但前提是須內建可供辨識的資料庫,但目前很多廠商的鑑別資料庫並無完整的資料可供辨識。分子生物鑑定法可以準確的鑑定產氣單胞菌菌種,例如全基因定序法 (whole genome sequencing),或是多重連接探針擴增技術(multiple ligation-dependent probe amplification, MLPA)。

我們過去的研究發現(下圖),以質譜儀分析四種主要產氣單胞菌種(A. dhakensis、A. hydrophila、A. cavaie以及 A. veronii),可以發現它們的頻譜皆不相同,一般生化反應不易區分的 A. dhakensis 和 A. hydrophila,可以利用質譜儀鑑別,因此若將相關資料鍵入資料庫中,質譜儀可以準確地鑑定臨床重要產氣單胞菌種。

P. L. Chen, T. F. Lee, C. J. Wu, S. H. Teng, L. J. Teng, W. C. Ko, et al. J Clin Microbiol 2014 Vol. 52 Issue 7 Pages 2625-8.

若以分子鑑定方法作為基準,分析文獻上發表的菌種,達卡產氣單胞菌排行第三位,佔 所有分離菌株的 21.5%。

Species	Faeces	Wound	Blood	Respiratory Tract ^b	Urine	Peritoneal Dialysate	Bilis	Ascitic	Abscess	Other ^c Fluid	Total
A. caviae	446	43	147	11	12	11	11	2	3	4	690 (37.26)
A. veronii	231	49	125	12	1	1	6	7	1	2	435 (23.49)
A. dhakensis d	111	133	111	4	6	11	11	2	1	9	399 (21.54)
A. hydrophila	69	96	45	9	5	8	3	1	2	4	242 (13.07)
A. media	32	3	6		1						42 (2.27)
A. trota	2	2					1			1	6 (0.27)
A. taiwanensis	2	3	1			1					7 (0.32)
A. salmonicida	1	2							1		4 (0.21)
A. jandaei	3	2	1		1					1	8 (0.43)
A. sanarellii	1	4									5 (0.27)
A. allosaccharophila	2		1								3 (0.16)
A. tecta	2										2 (0.11)
A. diversa		2									2 (0.11)
A. schubertii		1	1								2 (0.11)
A. bestiarum	1	1	1	1							4 (0.21)
A. popoffii					1						1 (0.05)
A. intestinalis e	1										1 (0.05)
A. enterica e	1										1 (0.05)
Total	905	341	439	37	27	32	32	12	8	20	1852

A. Fernandez-Bravo and M. J. Figueras. Microorganisms 2020, 17;8(1):129.

台灣南部是達卡產氣單胞菌重要的流行地區,根據我們之前的調查顯示,產氣單胞菌株可以從市面販售的海鮮和臨床檢體分離出來,顯示台南居民可能有從污染的水產品感染的風險。而且以線蟲和細胞測試臨床和水產品的分離菌株,兩者的毒力相當,暗示居民若經由食物接觸到產氣單胞菌,可能會造成臨床感染。

目前文獻上有多種可以測試產氣單胞菌毒性的動物實驗模式,包括小鼠、鯰魚、 毛足鬥魚、斑馬魚、黏菌以及線蟲。此外多種細胞也可用來測試產氣單胞菌的毒性, 文獻中提及的細胞羅列如下表:

HEp-2, Vero	Adhesion and cytotoxicity	A. hydrophila. A. salmonicida, A. veronii,
		A. bestiarum, A. schuberti, A. eucrenophila,
		A. encheleia, A. jandaei, A. sobria, A. caviae,
		A. trota, A. media
НЕр-2, СНО	Cell-contact cytotoxicity	A. hydrophila, A. caviae, A. veronii
C2C12	Cytotoxicity	A. hydrophila, A. dhakensis
НЕр-2	Adhesion, biofilm formation,	A. hydrophila
HEp-2, Caco-	Adhesion, invasion, and	A. hydrophila, A. caviae
2, T-84	cytotoxicity	
RAW 264.7	Role of mixed infections in	A. hydrophila
	Necrotizing fasciitis	
Caco-2	Adhesion and cytopathic effect	A. hydrophila, A. dhakensis, A. bestiarum,
		A. piscicola, A. salmonicida
HepG2, WLR-	Cytotoxicity effect of	A. hydrophila
68	metalloprotease	
Caco-2	Adhesion, invasion, and	A. salmonicida
	cytotoxicity	
J744.1	Role of metallochaperone HypA	A. hydrophila
THP-1	Cell damage, immune response	A. dhakensis, A. caviae, A. veronii, A. A. media, A. jandae, A. piscicola
RAW264.7	Role of mixed infections in	A. hydrophila

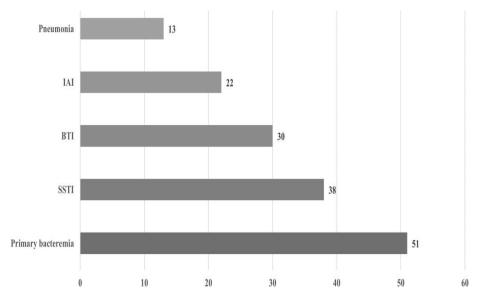
Cell line

Study

Adapted from ref. of Fernandez-Bravo et al. Microorganisms 2020, 8, 129. Fernandez-Bravo et al. Front. Immunol. 13:875689.

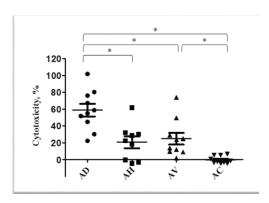
Necrotizing fasciitis

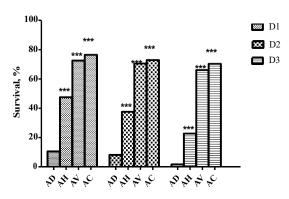
台南地區是全世界文獻上報告,產氣單胞菌感染密度最高的區域,以菌血症為例,台南地區的盛行率為每年每百萬人口 76 人感染,美國加州為 0.58 人,英格蘭和威爾斯地區為 1.5 人,法國地區為 0.66 人,澳洲地區則為 5.1 人。台灣產氣單胞菌臨


床感染在文獻報告的數目最多,包括敗血症、腹膜炎、尿道感染、膽道感染、軟組織 感染和肺炎,相關文獻和作者整理如下表:

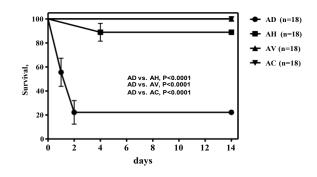
_	Year	Area	Infection site	Case no.	Author/ Reference
	1995	Tainan	Blood	59	Ko WC et al. Clin Infect Dis. 1995;20:1298-304.
	2000	Tainan	Blood	104	Ko WC et al. J Infect. 2000 ;40:267-73.
	2007	Tainan	Blood	116	Wu CJ et al. J Infect. 2007 ;54:151-8.
	2009	Tainan	spontaneous bacterial peritonitis	31	Wu CJ et al. J Formos Med Assoc. 2009;108:293-300.
	2011	Taipei, Dalin, Hualien	Blood	154	Chuang et al. J Korean Med Sci. 2011;26:1415-20.
	2012	Tainan	GU infection	19	Chao CM et al. J Infect. 2012;65:573-5.
	2013	Tainan	Skin and soft- tissue infections	129	Chao CM et al. Eur J Clin Microbiol Infect Dis. 2012 8;32:543-7.
	2013	Tainan	Biliary tract infection	91	Chao CM et al. Eur J Clin Microbiol Infect Dis. 2013;32:245-51.
	2013	Tainan	Pneumonia	84	Chao CM et al. Eur J Clin Microbiol Infect Dis. 2013;32:1069-75.
	2014	Tainan	Blood	91	Tang HJ et al. PLoS One. 2014 10;9:e91642.

下圖是本院一位病人,在感染了登革熱後,併發達卡產器單胞菌壞死性筋膜炎和敗血症而死亡,病人死亡前出現典型的出血性水泡(A),電腦斷層顯示肌肉已經開始壞死(B)。

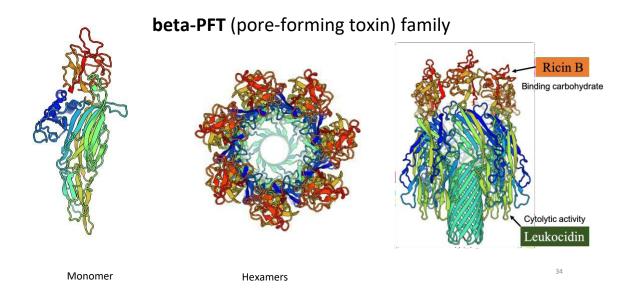

雖然我們已知產氣單胞菌可以造成臨床嚴重的感染,但它的致病機轉還不是很清楚,它的毒性可能是多原因的,包括它會產生多種毒素、可以適應各種不同的環境壓力、對於多種抗生素具有抗藥性,此外,免疫功能不佳病人一旦感染死亡率很高也是原因之一。成大研究團隊之前分析 151 位產氣單胞菌菌血症病人,達卡產氣單胞菌感染者48 位,人數最多,而且死亡率 25.5%最高,其中 30 位病人有肝硬化,比例高達62.5%,由於達卡產氣單胞菌抗藥性高,因此只有 70.8% 感染者初期接受合適的經驗性抗生素治療。成大團隊接續分析 2016-2018 年產氣單胞菌感染者,發現比例最高者為維隆產氣單胞菌(A. veronii),佔所有感染者比例為 31.1%,其次為豚產氣單胞菌(A. caviae),比例為 24.8%,親水產氣單胞菌(A. hydrophila)比例為 23.0%,達卡產氣單胞菌佔 16.7%。感染部位以菌血症比例最高,其次為軟組織感染(SSTI),以及膽道感染(BTI)。


Chen YW et al., Front Cell Infect Microbiol. 2021 Oct 19;11:749269

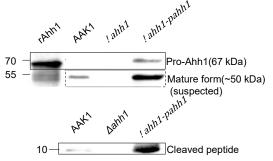
中國的研究也發現,達卡產氣單胞菌是最常見造成產氣單菌敗血症的菌種,在安徽省一家醫院所做的分析顯示,達卡產氣單胞菌所佔比例最高,達 44.8%,而且卡產氣單胞菌敗血症是所有達卡產氣單胞菌菌種造成敗血症,預後最差的,尤其是病人有肝硬化或未接受適當經驗性抗生素治療者。東北亞國家日本及南韓,也有相似的發現。


達卡產氣單胞菌帶有多重的毒力因子,例如第二型分泌系統(T2SS)分泌的毒素 Act 和 Aerolysin,第三型分泌系統(T3SS)所分泌的毒素 AexU,第六型分泌系統(T6SS) 所分泌的毒素 Vgr、Hcp、VasH 以及 VasK。成大研究團隊過去利用小鼠肌纖維母細胞 C2C12(上圖)、線蟲感染模式(中圖)以及小鼠肌肉感染模式(下圖),皆證明達卡產氣單胞菌的毒性比其他三種產氣單胞菌種強。

Chen PL et al. PLoS ONE 2014, 9:e111213.


Chen PL et al. PLoS ONE 2014, 9:e111213.

Chen PL et al. PLoS ONE 2014, 9:e111213.

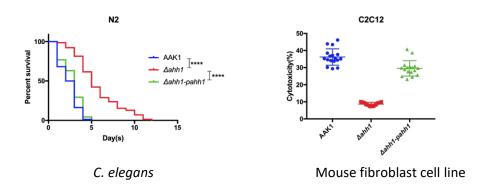

我們最有興趣的是達卡產氣單胞菌分泌的穿孔毒素(pore-forming toxin)Ahh1, Ahh1 毒素會由接觸到細胞表面後,單體(monomer)會形成七聚體(hexamers), Ricin-B 是和細胞表面上的受體接合位置, Leukocidin 則是具有細胞毒性, 會在細胞膜穿孔。下圖是利用 Swiss model 電腦預測軟體的 Ahh1 結構。

Structure of Ahh1 predicted by Swiss model https://swissmodel.expasy.org

根據預測,Ahhl 穿孔毒素大小為 67kDa,在 N 端切割後形成 50kDa 大小的成熟毒素,我們所做的西方墨點實驗證實未被切割前的 Ahhl 毒素為 67kDa,被切割後的成熟 Ahhl 毒素為 50kDa。

Western blot of mature and cleaved Ahh1

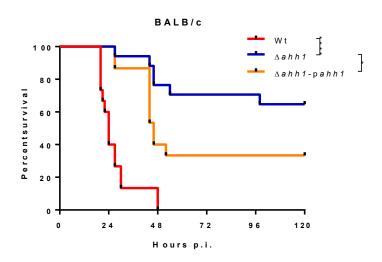
Predicted cleavage site of Ahh1



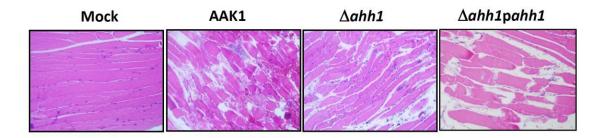
RONN (regional order neural network, detecting natively disordered region in proteins) analysis

Unpublished data

我們利用線蟲及小鼠 C2C12 纖維母細胞進行菌株毒性試驗,結果顯示 ahh1 突變株的毒性減弱,減毒株回補 ahh1 表現質體後毒性回復。


Ahh1 is crucial for the virulence of A. dhakensis

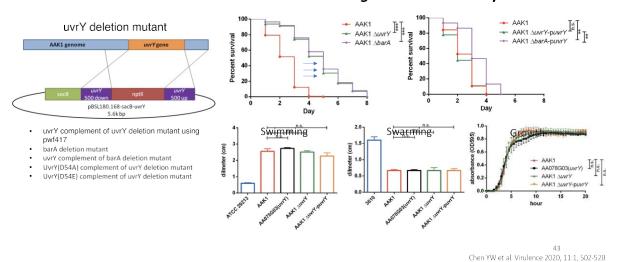
38 Unpublished data


利用小鼠肌肉感染模式測試菌株毒性,所得結果也與線蟲和細胞結果相符。感染 ahhl 突變株的老鼠,存活率明顯高於野生株(wild type),組織切片也顯示,ahhl 突變 株所造成的發炎細胞浸潤輕微,與野生株和 ahhl 質體回補株相比,感染 ahhl 突變株 的老鼠肌肉組織變形和斷裂情形同樣較輕微。

Aeromonas dhakensis intramuscular infection mice model

Unpublished data

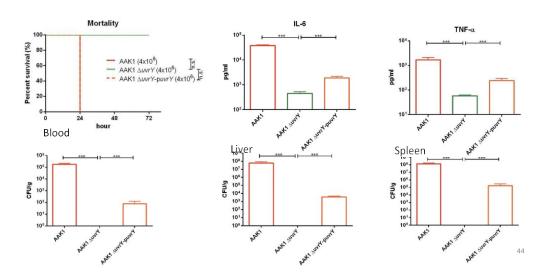
Histological findings of intramuscular infection in the mice model



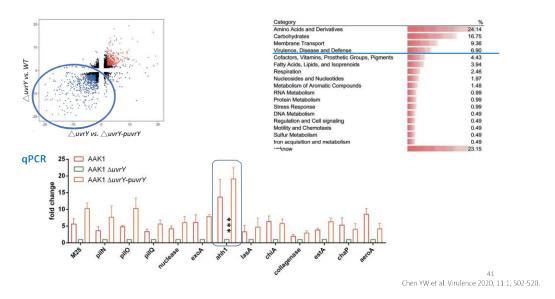
40 Unpublished data

此外,成大研究團隊也利用線蟲感染模式作為篩選工具,篩選達卡產氣單胞菌跳 耀子(Transposon)突變株,篩選出減毒的 uvrY 突變株。並近一步證實 uvrY 和 BarA 突變 株對於線蟲的毒性減弱,uvrY-BarA 是雙分子調控系統(two-component system),uvrY 會被 BarA 磷酸化而激化,uvrY 回補至 BarA 突變株後,毒性並沒有明顯的回復,暗示 BarA 可能調控產氣單胞菌的其他毒力因子,而且 uvrY 突變株並沒有因而減少本身游動(swimming)、泳動(swarming)以及生長的能力。

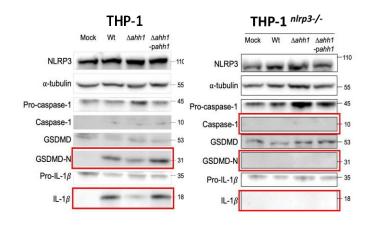
BarA-UvrY two-component system affects virulence of A. dhakensis


C. elegans survival assay

我們利用小鼠測試 uvrY 突變減毒株,得到一致的結果,uvrY 突變減毒株並沒有造成感染小鼠的死亡,與原始株和毒性回復株相比,不只死亡率相差大,感染後的發炎指數在減毒株感染的小鼠也明顯下降,證實 uvrY 控制了達卡產氣單胞菌毒性的表現。

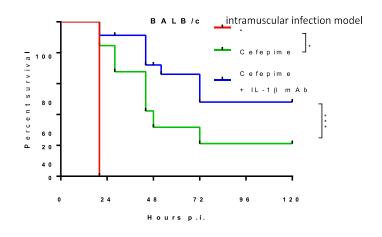

Chen YW et al. Virulence 2020, 11:1, 502-520.

UvrY is required for *A. dhakensis* virulence in a mouse intraperitoneal infection model


我們也利用 transcriptome 分析,證實 uvrY 調控了不少的毒力因子,而其中之一就是 Ahh1 穿孔毒素。Ahh1 訊息 RNA 在 uvrY 突變株的表現明顯下降。

Virulence factors regulated by UvrY in A. dhakensis

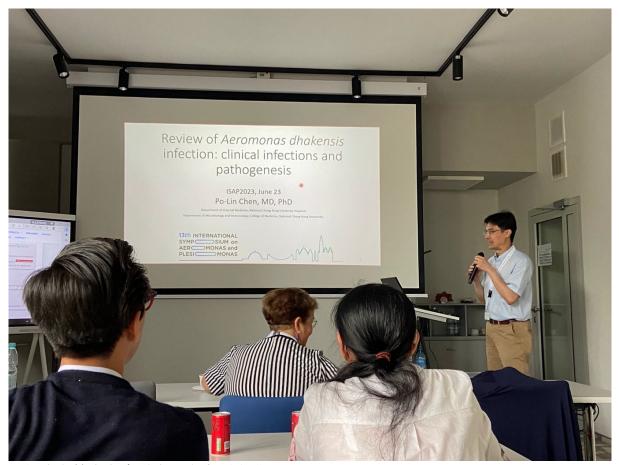
在此次特別演講中,我們也特別報告了近期的研究成果,聚焦在 Ahh1 毒素感染引起細胞反應的過程,達卡產氣單胞菌感染人類單核球細胞 THP-1 後,會引起 NLRP3 inflammasome(發炎體)的活化,引起下游 GSDMD 和 IL-1 β 的活化,進而引起細胞的死亡,但是 Ahh1 突變減毒株,NLRP3 inflammasome 活化及細胞死亡的程度會大幅下降。同樣地,THP-1 細胞的 NLRP3 突變株,受到達卡產氣單胞菌感染後,GSDMD 和 IL-1 β 的活化程度也會降低。


Ahh1 causes cell damage mediated by activating NLRP3 inflammasome

Unpublished data

若我們使用 IL-1 β 抗體合併抗生素 cefepime 治療達卡產氣單胞菌軟組織感染的小鼠,結果顯示,與單純使用抗生素治療,抗生素合併 IL-1 β 抗體療法可以提升小鼠感染後的存活率。

Combination treatment of antibiotic and IL-1β antibody prolong the mice survival


Unpublished data

最後,在特別演講中提到產氣單胞菌的抗藥性,將近三成的親水產氣單胞菌、維 隆產氣單胞菌和達卡產氣單胞菌對於 carbapenems 類藥物具有抗藥性,而且這三種菌 種,幾乎都攜帶了 carbapenem 抗藥性基因 cphA ,這不得讓我們慎重考慮,以 carbapenem 作為治療產氣單胞菌是否合適,若是嚴重的產氣單胞菌感染,不建議以 carbapenem 類藥物作為經驗性治療藥物,應該考慮其他的藥物,例如第四代頭孢菌素 cefepime、tigecycline 或是 fluoroquinolones。

三、心得

此次在波蘭舉行的產氣單胞菌(Aeromonas)及臨單胞菌(Plesiomonas)國際研討會,因為 COVID-19 疫情耽擱,睽違六年再度舉辦,和世界各國微生物學家再度聚首,會議中也新認識了許多投入此一研究領域的年輕科學家,世界上此一領域的微生物學家人數不多,但都很友善,並且樂於合作,我們將尋求合適的時機,開啟雙邊合作的機會。根據我的預測,由於全球暖化,各地溫度逐漸攀高,產氣單胞菌及臨單胞菌適合生長在溫度高的區域,相信將來不只在熱帶地區,溫帶地區的發生率也將逐漸升高,威脅當地民眾的健康,是一個值得重視的議題。

此次會議的舉行地點:Hirszfeld研究所 (Hirszfeld Institute of Immunology and Experimental Therapy),是隸屬於波蘭科學院的獨立研究機構,位於波蘭第四大城樂斯拉夫,該市舊城區保留了傳統歐洲接到的樣貌,路面電車交通方便,費用便宜,筆者開會之虞,也利用餘暇參訪了該市舊城區,當地民眾友善,治安良好,人民素質高,交通井然有序,市區處處可見綠地,雖然現代化,但不會有壓迫感,是一個適合旅遊的城市。

照片中為筆者在會議中發表專題演講

四、建議

此次會議期間,各國的專家都希望將來能在亞洲地區的台灣舉辦會議,由於成大是世界研究產氣單胞菌重要機構之一,若能舉辦國際學術研討會將別具意義,並能增加成大在世界上的能見度,吸引更多的研究者前來交流。不過因為筆者身兼臨床、行政及研究業務,籌畫下屆會議分身乏術,因此予以婉拒,因此三年後會議將在美國威斯康辛舉辦,但研究產氣單胞菌最資深的西班牙 Figruas 教授,仍然希望將來台灣的學者能負責舉辦此一研討會,筆者也會多方徵詢意見,尋求各界的支持,將來時機成熟之際,能夠在台灣舉辦產氣單胞菌(Aeromonas)及臨單胞菌(Plesiomonas)國際研討會。