MARINE DEBRIS TRAJECTORY SIMULATION "Case Study in Bali" #### I GEDE HENDRAWAN* *Faculty of Marine Sciences and Fisheries Universitas Udayana foot.com APEC Capacity building on Global Marine debris monitoring and Modelling, Kuta 20TH February 2020 Fig. 1. Global map with each country shaded according to the estimated mass of mismanaged plastic waste [millions of metric tons (MT)] generated in 2010 by populations living within 50 km of the coast. We considered 192 countries. Countries not included in the study are shaded white: 80% comes from land with and estimated 8 Million metric tons of plastic dumped into the ocean each year ## Yearly plastic leakage into the marine environment based on worldwide plastic pollution data SYNTHETIC RUBBER FOR TYRES (2016) TEXTILE #### Asia: Largest Contributor for Marine Plastics Marine Ecosystem with Plastic #### HOW DOES THE PLASTIC TRANSPORT IN THE OCEAN? Satellite **Model Simulation** #### WHY SHOULD USE NUMERICAL MODEL? - # They simulate flows in realistic ocean basins with a realistic sea floor. - # They include the influence of viscosity and non-linear dynamics. - # They can calculate possible future flows in the ocean. - # Perhaps, most important, they interpolate between sparse observations of the ocean produced by ships, drifters, and satellites. #### STEP IN CREATING A SIMULATION Definition of The Problem: These need to be stated as precisely as possible, preferably in quantitative terms. - # Why the plastic memenuhi sebuah kawasan perairan? - # what the amount of plastics are? - # What kind of plastics are pollute? - # From where does the plastics coming from? - # How the plastics transported into the certain area? - # What the mechanism were driven? ## Review of Theory: The amount of plastic in the area may be influences by various factors, notably: - # The source of plastic - # The Ocean mechanism: wind, tide, density current, etc. - # Global and local driven - # kind of plastic material Could we simplify it? Formulation of equation: need to be expressed in some mathematical or statistical format: # Hydrodynamic Eq: Momentum Eq, Continuity Eq, # Lagrangian Eq #### CASE STUDY IN BALI #### Preliminary Study of Plastic Transport WASTE CHARACERISTCS IN BALI PROVINCE (2019) #### Sampah Plastik di lingkungan #### Plastic Litter in the environment 3 9 Ton plastik per km² 20 7 Ton plastik per km² Ton plastik per km² ## Marine Debris Distribution in Bali (METODE CSIRO) - Food wrappers (PF.6) are the most common item, followed by plastic sheeting and carry bags - Hard plastic items is less common than elsewhere, eg H10 – hard unknown fragments are usually very common - Fishing items do not appear in top 10 most common fragments #### III.F II0.F 31.F 30.F F1.F F0.F M4.F M9.F G3.F R4.F D4.F C4.F T4.F P4.F P9.F Z3.F Z8.F O2.F O7.F | P6.F | S3.F | S1.F | S2.F | S6.F | H4.F | H2.F | D1.F | H1.F | S5.F | |------|------|------|------|------|------|------|------|------|------| | 715 | 602 | 276 | 170 | 128 | 103 | 96 | 95 | 83 | 67 | #### Frequency by item type - Whole Items - Some items are very common (S3-sheeting, S6 – unknown soft plastic) - Food related items common (H4 bottle tops, S5 straws, D1 – foam food container, S1 – thin film carry bag). - Glass is relatively rare #### Item Category | S3.W | S6.W | S5.W | H4.W | S2.W | D1.W | S1.W | BP1.W | H2.W | R1.W | |------|------|------|------|------|------|------|-------|------|------| | 314 | 262 | 218 | 132 | 100 | 81 | 77 | 69 | 66 | 56 | ### 3D Lagrangian Particle Tracking Finite Volume Coastal Ocean Model (FVCOM) $$\frac{dx}{dt} = v(x(t), t)$$ (III.9) Ordinary Differential Equations (ODE) - x particle position at time t. - v(x(t),t) velocity on 3-D (x,y,z) from hydrodynamic model #### Modules of FVCOM #### **Data Input Model** #### METHODS # JAVA N E S 1:1,000,000 114*00°E 115'00°E **Grid Model** - Unstructural triangular grid - Spatial resolution of 500 up to 1000 m. - Time step 10 second - Uniform layer with 20 sigma layer ## Wind Rose (blowing to) #### Transport Mechanism Using Numerical Model (Case: Wind + Tide) #### MODEL VALIDATION #### Barotropic Model Tide #### Particle Transport #### Depth Average current #### Barotropic Model Tide+ Wind #### Particle Transport #### Depth Average current #### Baroclinic Model Tide #### Particle Transport #### Depth Average current #### Baroclinic Model Tide + Wind #### Particle Transport in Nusa Penida MPA and its Adjacent Area #### **MODEL VALIDATION** #### Training and Survey on Marine Debris