

MOBIDRIFT, an operational drift tool

- ☐ A tool for operationnal drift simulations at ocean surface
- ☐ Global ocean coverage
- ☐ 6-months archive, real-time and forecast data
- Multi-objects

MOBIDRIFT, an operational drift tool

Oil Spill

□ Polluter Identification

Sargassum Algae

■ Early Detection by satellite

Sargassum Algae

☐ Daily drift forecast

Marine Debris drift

Marine debris displacement Speed =

Wind_drag_coeff x Wind speed

OceanCurrent_drag_coeff x OceanCurrent speed

TidalCurrent_drag_coeff x TidalCurrent speed

Marine Debris drift

Marine debris displacement Speed =

3% Wind_drag_coeff x Wind speed

100% OceanCurrent_drag_coeff x OceanCurrent speed

TidalCurrent_drag_coeff x TidalCurrent speed 100%

MOBIDRIFT inputs

Global Tidal Currents MANAGEMENT TEB CURRENT MONAGEMENT TEB CURRENT TEB CURRENT TEB CURRENT MONAGEMENT TEB CURRENT TEB

- ☐ tidal current FES2014
- ☐ Global model 1/16°
- ☐ Hourly

Global Ocean Currents -1

0.2

0.0

e CLS

☐ No tides

☐ Hourly fields

Global Ocean Currents -2 HYCOM Surface currents 20200201 - Daily mean 0.9 0.8 0.7 0.6 0.5 % 0.4 0.3 10°S 0.2 HYCOM Surface currents 20200201 - Daily mean 130°E ☐ Global 1/12° model (8km) 0.5 % ☐ No tides ☐ Daily fields

Global Winds -1

- ☐ 6-hourly

Global Winds -2

ECMWF

Deterministic vs Probabilistic Drift

- ☐ 1 drifting particle affected by
 - Winds
 - Currents

Deterministic vs Probabilistic Drift

- ☐ 1 drifting particle affected by
 - Winds
 - Currents

- ☐ Ensemble of drifting particles affected by:
 - Winds + disturbance

Deterministic vs Probabilistic Drift

- 1 drifting particle affected by
 Winds
 Currents
 1 final position
- ☐ Ensemble of drifting particles affected by:
 - Winds + disturbance
 - Currents + disturbance

possibly with a shift in initial points

Drift Study Workplan

☐ Selection of Indonesian rivers for the marge-T drifters release campaigns (on-going)

Selection of rivers as sources

The 16 most polluted rivers after theOceanCleanUp estimation

Selection of rivers as sources

Selection of rivers as sources

Selection of rivers as sources

5-6 rivers
to be first studied
for their impact
into Indonesian seas

- ☐ Selection of Indonesian rivers for the marge-T drifters release campaigns (on-going)
- ☐ For each selected river, run a **set of probabilistic** drift simulations considering (starting)

Set-up of probabilistic drift

February 19

CMEMS currents + tides 100% NCEP winds 3% Single initial position

with disturbance winds/currents (probabilistic)

Initial position

- Initial positionDeterministic partic
- Probabilistic particles
 Simulated trajectory

- ☐ Selection of Indonesian rivers for the marge-T drifters release campaigns (on-going)
- ☐ For each selected river, run a **set of probabilistic** drift simulations considering (starting)
 - ✓ Different starting dates / seasons / climatology
 - ✓ Different drift durations

Drift Study Workplan

- ☐ Selection of Indonesian rivers for the marge-T drifters release campaigns (on-going)
- ☐ For each selected river, run a **set of probabilistic** drift simulations considering (starting)
 - ✓ Different starting dates / seasons / climatology
 - ✓ Different drift durations
 - ✓ Different wind/current forcing

- ☐ Selection of Indonesian rivers for the marge-T drifters release campaigns (on-going)
- ☐ For each selected river, run a **set of probabilistic** drift simulations considering (starting)
 - ✓ Different starting dates / seasons / climatology
 - ✓ Different drift durations
 - ✓ Different wind/current forcing
 - ✓ Different marine debris shapes (wind/current drag coefficient)

Test on wind drag coeff

NCEP winds 3%

No disturbance winds/currents
25 positions around each river

CMEMS currents + tides 100%

February 19

NCEP winds 10%

- ☐ Selection of Indonesian rivers for the marge-T drifters release campaigns (on-going)
- ☐ For each selected river, run a set of probabilistic drift simulations considering (starting)
 - ✓ Different **starting dates** / seasons / climatology
 - ✓ Different drift durations
 - ✓ Different wind/current forcing
 - ✓ Different marine debris shapes (wind/current drag coefficient)
- ☐ Summarize the results : indicators of accumulation hotspots and pathways

Drift Study Workplan

- ☐ Selection of Indonesian rivers for the marge-T drifters release campaigns (on-going)
- ☐ For each selected river, run a set of probabilistic drift simulations considering (starting)
 - ✓ Different **starting dates /** seasons / climatology
 - ✓ Different drift durations
 - ✓ Different wind/current forcing
 - ✓ Different marine debris shapes (wind/current drag coefficient)
- ☐ Summarize the results : indicators of accumulation hotspots and pathways
- ☐ Comparison with hotspots and pathways observed in 2020 with marge-T drifters

