

Marine Debris Management, policy and regulation: Tackling a transboundary problem with multiple approaches

Britta Denise Hardesty

OCEANS AND ATMOSPHERE www.csiro.us

CSIRO Marine Debris Research Program

FOCUS

12+ years of work; 65+ pubs/reports www.csiro.au/marine-debris

Engagement

- 8,000+ citizen scientists from Schools, Educators, Volunteers and Industry Leaders
- Content for schools, linked to national curriculum
- Engagement w/ government and industry on effective, affordable solutions

Trans-boundary problems need integrated responses

What do we know about plastic impacts?

- Economic (tourism & fisheries)
- Navigation hazard
- Invasive species transport
- Wildlife entanglement & ingestion
- Chemical/toxicological impacts
- Well-being/community

Where does plastic pollution come from?

5 |

3 Main Questions

- 1) What is the relationship between **debris** in the marine environment and debris from nearby sites?
- 2) Are there **identifiable sources** and **pathways** through which debris reaches and moves to the coast?
- 3) What **investments** in facilities, policies, outreach, etc. will help reduce waste in the environment?

'If you measure it, you can manage it'

Understand it - Design for it

Participate in it - Influence it

Use it - Circularize it (reuse)

To large part of the American Street Constitute State Sec.

What drives debris loads?

Urbanization

- Distance to public transport, nearest road
- Regional and local population
- Regional and local road density by type

Land use

Reserves, Agriculture, Housing, Water, etc.

Socio-economics

- Economic advantage/disadvantage
- Education and employment levels
- Economic resources

Approach: Statistically robust sampling for INLAND, COASTAL, RIVER, AT-SEA sites

Global Plastic Leakage Project

Goal: estimate loads on land, drivers of leakage, and plume from unmanaged (plastic) waste

Peru

- **Philippines**
- **South Africa**
- Sri Lanka
- Thailand
- **United States**

- Chile
- Ghana
- Kenya
- **Seychelles**
- Mauritius
- Nigeria
- Australia

Country Partners

China

- Bangladesh **Taiwan**
 - India **Vietnam**
- Korea
- Brazil
- Malaysia

Indonesia

Pakistan

Global Plastics Leakage Project

Objectives

- 1. Validate estimates of pollution
- 2. Identify hotspots for loss
- 3. Investigate drivers
- 4. Global baseline (+national/regional)
- 5. Measure successes/change

Opportunities for success:

- Target sites with high debris load sites (hotspots)
- Employ incentives, enforcement, education in areas of socioeconomic disadvantage
- Social context is key for low-cost debris/litter reduction
- Cost-benefit analysis and optimisation of investments (e.g. litter traps in waterways)
- Extend analysis for national picture to evaluate how well policies work

What do we do?

Where do we do it?

What to measure? WHY?

Springboard for policy development (& evaluation), national monitoring and a global baseline

Partnerships

15 I

The trap part of the bady of the contract the No.

Thank you

CSIRO Oceans and
Atmosphere
Britta Denise Hardesty
Principal Research Scientist
t +61 3 6232 5276

e denise.hardesty@csiro.au

OCEANS AND ATMOSPHERE

www.csiro.us

Nago pi disabbang ti di saad tadadad.