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1. Reproduction 161(5):489-498

First insights on seminal extracellular vesicles in chickens of contrasted fertility
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2. 25éme Journée Thésards de I’Unité PRC

New advances in chicken sperm cryopreservation-the issue of glycerol
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3. World’s Poultry Science Journal 78(1):139-160

Chicken semen cryopreservation: importance of cryoprotectants
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4. Les 14émes Journées de la Recherche Avicole et Palmipédes a Foie Gras
Elimination du glycérol de la semence décongelée de coq par centrifugation dans un gel

colloidal synthétique
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6. 26éme Journée Thésards de I’Unité PRC

Exploring how glycerol impacts fertility capacity of chicken sperm
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7. 19th International Congress on Animal Reproduction

Impact of glycerol on sperm fertilizing capacity in chicken
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8. 26th World’s Poultry Congress19th
Application of colloidal centrifugation to remove glycerol from chicken frozen-thawed

semen
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9. Avian Research Symposium 2023

Impacts of glycerol on sperm fertilizing ability in chickens
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First insights on seminal extracellular vesicles in chickens of

contrasted fertility
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Abstract

Makmbfuhhtymanvequmdandmrehuhpod-gomdx ion disruption, invol inal pk

constituents. Among them,

are involy ‘mhyudu\guwﬂhspennmmwuls.ﬂowcver,mbwdgh

existence of seminal extracellular vesicles is still debated. The aim of the present work was first to clarify the putative m of
extracellular vesicles in the seminal plasma of chickens, secondly to characterize their size and protein markers in ani i
dlﬁeml fertility, and finally to make preimlnary evaluations of their interactions with sperm. We successfully solated cxtn:ellulx

from seminal pl of males sh

g the highest differences in semen quality and fertility Iﬂ using ultracentrifugation

protocol (pool of 3 qacdllulmﬁer, naﬂmninw Size characterization performed by electron microscopy revealed a high
proportion of small extracellular vesicles {(probably exosomes) in chicken seminal plasma. Smaller extracellular vesicles appeared
more abundant in fertile than in subfertile roosters, with a mean diameter of 65.12 and 77.18 nm, respectively. Different protein
markers of extracellular vesicles were found by western blotting (n= 6/condition). Among them, HSPSOA was significantly more
abundant in fertile than in subfertile males. In co-incubation experiments (n= 3/condition), extracellular vesicles enriched seminal
fractions of fertile males showed a higher capacity to be incorporated into fertile than into subfertile sperm. Spenn viability and

motility were impacted by the presence of ulnceldar vesicles from fertile males. In conclusion, we successfully
with diffe

presence of extracellular vesicles in chick I pl.

trated the

capacity according to male fertility status.
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Introduction

Seminal plasma, the fluid part of semen, is a highly
complex fluid originating from secretions of the male
tract. It interacts actively with sperm, and plays a key
role in sperm maturation and fertilizing ability (Maxwell
et al. 2007, Rodriguez-Martinez et al. 2011, Druart & de
Graaf 2018). The composition and functions of seminal
plasma differ greatly between species. For example, due
to the lack of specific secretion glands such as prostate
or seminal vesicles in the male tract, the seminal plasma
of birds is very different from the mammalian seminal
plasma, and consequently, the post-gonadic maturation
process also (reviewed Blesbois & Brillard 2007,
Bleshois 2012, Santiago-Moreno & Blesbois 2020). The
various investigations performed in mammals revealed
that extracellular vesicles (EVs) present in seminal plasma
are involved in the post-gonadic sperm maturation
(Ronquist & Brody 1985, Sahlén et al. 2002, Saez et al.
2003, Sullivan et al. 2005, Frenette et al. 2010).
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| size, protein kers and putative incor ti

P

EVs are membrane vesicles involved in the transfer
of proteins, lipids and nucleic acids between two
cells, as signaling vehicles to maintain the normal cell
homeostasis or respond to pathological events (Van Niel
et al. 2018). There are two main categories of EVs defined
from their size and biogenesis process: the exasomes
(30-150 nm mean diameter) produced from endosomal
system and the microvesicles (50-500 nm mean
diameter) derived from the plasma membrane {(Raposo &
Stoorvogel 2013, Van Niel et al. 2018). However, mainly
due to the overlapping range of size and the similar
morphology, the definition of the proportion of sub-
species of EVs remains a true challenge from the current
available protocols of isolation (Van Niel et al. 2018).
EVs formation involves specific proteins to regulate their
biogenesis (e.g. programmed cell death 6-interacting
protein — PDCD6IP), to maintain protein folding and
membrane fusion (chaperones including Heat Shock
Protein 90 kDa alpha - HSP90A, Valosin-containing
protein-VCP), to regulate EVs-fusion with the target cells
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{annexins like ANXAS) (Buschow et al. 2010, Théry et al.
2018, Van Niel et al. 2018, Munuce et al. 2019).

Seminal EVs are secreted by different part of the
mammalian male reproductive tract. They are generally
named after the production localization, such as
epididymosomes if secreted by the epididymis (Frenette
et al. 2002, Saez et al. 2003, Frenette et al. 2010, Chen
et al. 2016), or prostasomes if produced by the prostate
(Renneberg et al. 1997, Sahlén er al. 2002, Sullivan
et al. 2005, Burden et al. 2006, Ronquist 2012). Seminal
EVs have multiple impacts on sperm biology including
sperm maturation (Sullivan et al. 2005) especially by
modifying sperm muotility (Fabiani et al. 1994, Arienti
et al. 2004), plasma m ane integrity (Du et al. 2016),
and capacity to acrosome reaction (Murdica et al. 2019).
They are also involved in the embryonic development
(Conine et al. 2018) and may be sufficient to transfer a
paternal phenotype to offspring (Chan et al. 2020).

Due to their importance in sperm biology, numerous
authors suggest that the EVs may be markers of in/
subfertility in mammals (Gabrielsen & Lipshultz 2019,
Vickram et al. 2020). Despite no difference of shape
or size, Murdica et al. (2019) revealed a difference
of action of EVs on sperm biology (motility and
acrosome reaction) depending on the patient fertility
status. Furthermore, recent proteomic investigations
revealed a list of more than 90 Fto'eins differentially
abundant between EVs isolated from seminal plasma
of normozoospermic and asthenozoospermic patients
(Lin et al. 2019). Collectively, these data suggest that
EVs contents modulate sperm fertilizing ability. Despite
the presence of EVs protein markers in rooster seminal
plasma (Labas et al. 2015, Borziak et al. 2016, Li et ai.
2020), the presence of EVs could not be described
(Alvarez-Rodriguez et al. 2020). Consequently, the
EVs existence in the seminal plasma of roosters is still
debating and their potential link to the animal fertility
status remains unexplored.

In this context, the first aim of the present study was to
isolate rooster seminal plasma EVs. Then, we evaluated
size and protein markers according to the fertility
ability of lze animals. Finally, we also investigated the
interaction of enriched fractions of seminal EVs with
sperm activity.

Material and methods

Animals

All experiments were carned out in accordance with the
legislation governing the ethical treatment of birds and were
approved by the French Ministry of Higher Education, Research
and Innovation, and the Val-de-Loire Animal Ethics Commitiee
(authorization no. DAP: APAFISF4026-2016021015509521),
On the 40 adult T44 roosters (Gallus gallus domesticus, Sasso,
Francel, 39 were semen donors. 80 ISA Brown adult hens
were used for fertility tests. All roosters were breeding into
individual cages and the hens reared in cages of four animals,
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housed at the INRAE experimental unit UE-PEAT INRAE Poultry
Experimental Facility (2018, htps:/dol.org/10.15454/1.5572
326250867292E12). All the animals were 35-40 weeks old.
They were maintained under a lighting regimen 14 h light:10
h darkness cycle, controlled temperature at 21°C, feeding with
a standard diet and water ad lbitum.

Semen collection

Semen from each rooster was collected individually twice a
week (2-3 days between two collections) in 200 pl of a specific
collection extender according to experiment (see subsequently),
by dorso-abdominal massage as previously described {Burrows
& Quann 1937). Care was taken to avoid any contamination
with transparent fluid and other cloacal products.

On the 40 tested animals, only oane was infertile (absence of
ejaculate) and was not used in this investigation.

In vitro semen evaluation and fertility test

Semen of the 39 males was collected in Bedtsville poultry semen
extender (BPSE) (Sexton 1977). Sperm volume was defined by
wesghing (mgl and sperm concentraticn was determined by
light absorption using a photometer (Accucell photometer,
IMV Technologies, L'Aigle, France) at a wavelength of 540
nm (Brillard & McDaniel 1985). Sperm viability (%) was
determined with SYBR-14/Propidium iodide fluorescent dyes
(Molecular Probes™ LIVE'DEAD™ SYBR-14/propidium iodide
fluorescent dyes, L7011, Invitrogen, France), and revealed by
flow cytometry (EasyCyte Guava, IMV Technologies, France)
(Thélie er al. 2019} The proportion of live and dead spern was
assessed on a total of 5000 sperm per sample. Mass motility
(movement of sperm group) was defined on a motility scale
previously described (Blesbois et al. 2008): zero as a total
lack of movement and nine as the presence of representing
whirlwinds covering 30-60% of the observed area. Objective
measurements of percentage of motile sperm (%) were
evaluated by the computer-assisted sperm analysis {CASA)
systern with an HTM-IVOS (Hamilton-Thorn Motility Analyzer,
IVOS, IMV Technologies), as previously described (Nguyen
et @l. 2014). The percentage of motile sperm was retained as
the most robust parameter for further analyses.

A dose of 100 x 10* spermiernale was used for intravaginal
inserninations of 8 hens per male (females Laying rate higher than
95%1). The eggs were collected daily and put into incubation.
The fertility rate (number fentile egge/number incubated
eas X 100) was estimated after B days of incubation by candling
the eggs laid between days 2 and 8 after a single insemination.
The highly fertile group (F) was defined by fenility > 90% and
the subiertile group (SF) by fertility <45%. The experimental
candidates selected for the EVs enriched fractions were selected
according to their fertility level (F > 90%, SF < 459%) and also
percentage of motile sperm (F > 50%, SF < 30%) and mass
motility (F = 6.5, §F < 3) differentials.

Seminal extracellular vesicles isolation

For this specific preparation, semen was collected individually
(with a minimum interval of 3 days between collects)
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in PBS (Sigma) added with protease inhibitor EDTA-free
(04693159001, Roche Diagnostics). The first seminal plasma
fraction (clarification) was obtained individually from total
semen centrifugation at 959 g (Centrifuge 5417R, Eppendori,
France) for 10 min at 4°C. The supernatant, clarified seminal
plasma, was collected and stored in ice. Sperm pellet was
gently resuspended with 500 pl PBS with protease inhibitor and
centrifuged as performed before. Supernatant were collected
and added to clarified seminal plasma. Pellet was resuspended
a second time in 500 pl PBS with protease inhibitor and placed
on agitation 500 rpm (Thermomixer compact, Eppendorf,
France), 10 min at 37°C. A third centrifugation was performed
as described before and the supemnatant was pooled with the
previous supernatant fractions. The total volume of seminal
plasma was centrifuged at 15,294 g for 15 min at 4°C_ The
supernatant was collected containing seminal plasma without
cellular debris and stored at =20°C for further EVs isolation.

EVs isolation was carried out oa resulting purified seminal
plasma (pool of three collections per animal per replicate). EVs
isolation was performed by two successive ultracentnfugations
at 100,000 g for 90 min at 4°C (Beckman model L8-M with
SW.55-Te rotor, adjusted k-factor: 163, using the formula
k=12.533 x 10'") x In{rmax/rmin¥rpmy’, werse rimin) =60.8mm
and rimax)=108.5mm at 30,000 rpm), with a washing step
with PBS with protease inhibitor (Théry et af. 2006, Deoyle
& Wang 2019). The pellet obtained (EVs-ensiched) from the
second ultracentrifugation was suspended in 50 pL of PBS
with protease inhibitor for transmission electron micrescopy
observations and western blotling experiments or in 50 pl
Lake 7.1 (Lake & Ravie 1981) with protease inhibitor for EVs
co-incubation tests with sperm.

Western blotting analysis

Western blolting experiments were performed for EVs protein
markers (Buschow et al. 2010, Théry er al 2018, Van Nigl
et al. 2018, Munuce et al. 2019) on individual samples of EVs
suspension (6 F and 6 SF roosters). In each sample was added
100 pl lysis buffer {150 mM NaCl 10 mM Tris HCIL, T mM
EGTA, 1 mM EDTA, 200 mM sodium fluoride, 4 mM sodium
pyrophosphate, 2 mM sodium orthovanadate, 1 % Triton X-100
and 0,5 % NP40) with protease inhibitor EDTA-free, sonicated
and centrifuged at 12,000 g during 10 min at 4°C. Supernatant
was collected and protein concentration was determined by the
DC™ Protein Assay kit (5000112, BioRad, USA} according to
the manufacturer’s instructions. Samples were diluted in protein
loading buffer (928-40004, LFCOR Biosciences, USA) added
10% (wiv) 2-Mercaptoethanol (M-7522, Sigma-Aldrich) and
heated a195°C for 5 min. From diluted samples, 20 pg of proteins
were loaded on 10% SDS-PAGE, before being transferred to
nitrecellulose membranes (10-600001, Amersham Protran 0.2
pm NC, GE Healthcare Life Science), in triplicate. Full-length
protein loaded on gel were measured from images obtained
from membranes stained with Revert™ 700 Total Protein
Stam (926-11011, LILCOR Biosciences, USA) according to
the manufacturer’s instructions, using Odyssey Clx Imaging
System (LI-COR Buosciences, USA) and quantified using Image
Studio™ Lite Software (LICOR Biosciences, USA). Membranes
were washed with TBST (IBS, N14581, Interchim Life Sciences,
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France; 0.1 % (w\) Tween-20, P3516, Sigma, Germany),
incubated 1 h in the blocking solution {5 % (wiV) non-fat dry
milk in TBST) at room temperature, and then incubated with the
primary antibody overnight a1 4°C in the blocking solution under
agitation. The primary antibodies used were against: ANXAS
(36 kDa, 1:1000, rabbit, CS8-PAD63B4ADRBE, Cusabio), and
HS#PI0A (90 kDa, 1:1000, mouse, ab59459, Abcam), VCP (90
kDa, 1:1000, mouse, ab11433, Abcam) and POCDBIP (96 kDa,
1:500, rabbit, HPADT1905, Sigma). After washing, membranes
were incubated at room temperature for 2 h with IRDye
BDDCW goat anti-rabbat (926-32211, LICOR Biosciences,
USA) or IRDye 800CW goat anti-mouse (926-32210, LI-COR
Biosciences, USA) diluted 1:2000 in the Odyssey blocking
buifer (927-50000, LI-COR Biosciences, USA) 1:1 (v} in TBS.
The image of protein band signals was captured using Odyssey
Clx Imaging Systemn and quantified using Image Studic™
Lite Software and refative concentration was calculated using
full-length protein quantification on membrane stained with
Revent™ 700 to band signal normalization.

Characterization by transmission electron microscopy
From EVs-enriched suspension, 10 plL aliquot was thawed
in ice during 1 h with the same volume of Trump's fixative
solution (4% formaldehyde, 1% glutaraldehyde in PBS). The
3 pL aliquot was placed on a Formvar carbon-coated grid
for 5 min. Samples were washed with distilled water (three
times, 10 ), then for negative contrast stained with 2% wranyl
acetate (three times, 10 s} and air dried at room temperature.
The efectron-micrographs were obtained using TEM HITACHI
HT 7700 Elexience at 80 kV (with a charge-coupled device
camera AMT) and JEM 1011 (JEOL, Japan) equipped with a
Gatan digital camera driven by Digital Micrograph software
(Gatan, Pleasanton, LSA) at 100 kV. From each sample (3 F
and 3 5F), all extracellular vesicles were measured from the
10 field photos using Image] software version 1.51n (htp//
imagej.nih.gov/ij, NIH).

Co-incubation of sperm with extracellular vesicles
Individual semen from 3 F and 3 SF roosters was collected
in tube containing 200 pl Lake 7.1 added with protease
inhibitor EDTA-free. Seminal plasma was removed by
centrifugation at 600 g (2-16PK, Sigmaj, 10 min at 20°C
and sperm concentration was determined as previously
described. Diluted at 100 x 10%mL, sperm were incubated
with 10 or 50 pg of EVs-enriched suspension pooled
from 3 F animals, or without EVs, a1t 37°C, in water bath.
Co-incubations EVs-sperm were proceeded for motility
and viability measurements, as previously described, alter
short periods of co-incubation (5, 10 and 15 min) since
the sperm quality decreases very rapidly for longer time at
this temperature (Lemoine el &f. 2008). Experiments were
performed in triplicate.

Extracellular vesicles incorporation by rooster sperm
To evaluate the EVs incorporation by sperm, lipophilic green

fluorescence dye PKH67 (MINIS7, Sigma) was used to stain
the EVs as previously described (Saadeldin et of. 2014). EVs-
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enriched fraction of 3 F or 3 SF roosters (10 pl EVs-enriched
fraction/animal; 30 pL final solution) was stained with PKH67
according to the manufacturer’s instructions. Same volume
of PBS was stained in parallel and used as negative control.
Stained EVS were stored at =20°C, protected from light until
co-incubation with sperm.

Semen from the 3 F and 3 SF roosters were prepared
as described above in Lake 7.1. The F and SF sperm were
co-incubated with stained EVs (10 pg of total protein) oniginating
from F or from SF animals, in 1 mL Lake 7.1, protected from
light, at 37°C in water bath during 1 h. One microliter of each
incubation was applied in glass pre-treated with poly-1-lysine
(VWE International, Germany) and coverslips were applied with
Fluoreshield mounting medium with DAPI (Sigmal. Individual
sperm cells were analyzed wsing a confocal laser-scanning
microscope (LSM700, Zeiss) equipped of excitation wavelengths
488 to 555 nm. All experiments were perdormed in triplicate.

Statistical analysis

All statsstical analyses were performed with R soltware version
3.6.3 (R Core Team 2017} using the following packages: nlme
(version 3.1-147} (Pinheiro & Bates 2013), Ismeans (version
2.30-0) (Lenth 2016) and multcomg (version 1.4-13) (Piepho
2004). Statistical testing was perdormed on datasets at a
statistical significance of 5%.

In vitro semen quality

The Student’s t-test was used for comparison of each parameter
of in vitre semen evaluation among different groups. P < 0.05
was considered statistically significant.

TEM analysis

Size was determined for 3724 EVs from 3 F roosters and
1660 oblained from 3 SF animals. EVs was classified in three
categories: < 70 nm, between 70 and 100 nm, > 70 nm and
their distribution in F and SF groups was analyzed by chi? test.

Protein abundance

Relative abundances of proteins present in EVs and obtained
by western blotting on & F and & SF roosters were analyzed by
Wilcoxon-Mann-Whitney test.

PKH67 relative intensity

Three animals of each fertility groups were used to investigate
PKH67 relative intensity in sperm. First, the impact of the
fertility group of EVs and the fertility group of sperm was
investigated with a linear model (ANOVA test).

Post-hoc  analyses with Tukey's multiple comparisons
adjustment were performed depending to the significant terms,
Then, the presence and onigin of EVs was focused in only F
sperm with a linear model (ANOVA test) Posthoc analyses
were performed with Tukey's multiple comparisons adjustment.

Viability and motility in co-incubation experiments

Based on the data collected from 3 F and 3 SF roostess, the
impact of EVs, time and their interaction on sperm viability
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and matility was estimated following a mixed linear model for
modeling heteroscedasticity and correlated erroes. Each fertility
group and each EVs quantity was analyzed separately. Post-
hoc analyses with Tukey's multiple comparisons adjustment
were performed depending to the significant terms.

Results

Fertility test

The individual fertility rates of the 39 males producing
ejaculates ranked from 20 to 96%. Seven representative
roosters were used in this work to constitute F samples
with an average fertility rate of 95.07 & 0.90%, means
% motile sperm 57.4 + 4.88%, and mass motility
6.79 + 0.22. The 6 representative selected SF animals
had an average fertility rate of 33.69 + 2.81% and a
mean % motile sperm 23.88% + 7.05, and mass motility
3.61 + 0.80. All these parameters were significantly
different between groups {P< 0.002). Among all the
animals analyzed, 7 F and 6 SF, there was no significant
differences in the mean sperm concentration.

Extracellular vesicles characterization by TEM

Among the animals analyzed, three animals from
each group (F and SF} were selected regarding the
maost representative differences in fertility and semen
tests: fertility status (P< 0.0001; F: 97.44 & 0.51%,; SF:
30.45 + 3.38%), means % motile sperm (P< 0.001;
F: 66.83 + 2.37%; SF: 1438 + 5.60%), mass motility
(P< 0.001; F: 6,94 + 0.24; SF: 233 + 0.19) and
concentration (P< 0.01; F: 3.01 x 10" sperm/mL + 0.18;
SF: 1.88 x 10" spermVmL + 0.13). From these animals,
EVs-enriched samples were observed by transmission
electron-microscopy. EVs presented the characteristic
morphology of nanometric extracellular rounded
and chapped vesicles in F and SF animals. Size
characterization revealed EVs of 25444 nm in F roosters
and of 17-348 nm in SF animals {Fig. 1A and B} with
a mean diameter of 65.12 nm for F roosters and 77.18
nm for SF animals (Fig. 1B). EVs size differential analysis
showed distinct distribution between groups (Fig. 1C).
Seminal plasma EVs of diameter less or equal to 70 nm
were more abundant in F than in SF roosters {Fig. 1C). By
contrast, EVs sized 70-100 nm or above 100 nm were
more abundant in SF than in F seminal plasma (Fig. 1C).

Extracellular vesicle protein markers

The measurement of relative signal intensity indicated
EV's with significant intense signal of HSP90A (P < 0.001)
in F animals in comparison with SF roosters (Fig. 2A
and B). There were no significant intensity differences
between F and SF for the EV's markers ANXAS, PDCD6IP
and VCP.
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Figure 1 Charactenization by transmission electron-microscapy (TEM}
of extracellular vesicles (EVs) solated from fertile (F) and subfertile
ISF} seminal plasma (three animals per condttion). (A} EVs sizes
20-70 nm (black arrawd, 71 < 100 nem (white arrow), and > 100 nm
Iwhite arrow-head) were ohserved in seminal plasma from F and SF
roosters. (B) Rep! e graphic of EVs size distribution in
experimental groups (F in blue and SF in red). Dotted lines indicate
the mean size of charactenzed EVs in each expenmental group (F
and SF). {C) Freguency analysis of the Vs size (<70 nm, 70 < 100
nm, and > 100 nm) analyzed by chi® test.

Extracellular vesicles incorporation by sperm

In vitro experiments were performed by EVs-sperm
co-incubation assays on 3 F and 3 SF animals regarding the
most representative differences in fertility and semen tests,
as described above. EVs incorporation into sperm cells
were observed predominantly in the head of the sperm
and a faint signal in the intermediate piece. On the head of
the sperm, intense droplets signals could be observed. No
signal was observed on the sperm tail (Fig. 3A).

Co-incubation experiments revealed significant
impacts of the sperm origin, of the EVs-enriched fraction
origin and a significant interaction between these two
variables on the PKH67 stainiri‘{;ig. 1B, 3 roosters per
fertility status, in triplicate). Indeed, the highest PKH67
staining was observed in F sperm co-incubated with EVs
isolated from F animals (P < 0.001). Furthermore, PKH67
staining was lower in sperm of SF compared to sperm of
F rooters, when cultured with EVs from F chickens. No
significant impact of the EVs origin on PKH67 staining
was revealed in SF sperm, presenting lower staining than
F sperm.

In order to better understand the EVs incorporation
in F sperm, we performed a new statistical analysis
of the experimental data obtained from the previous
experiment, focusing on conditions containing F sperm
and including a new condition of F sperm in absence
of EVs (Fig. 3C). A significant impact of EVs presence
was observed, supported by a higher PKH67 staining in
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experimental conditions with EVs when compared to
F sperm alone (P< 0.001), confirming that the PKH67
staining was linked to the presence of EVs. As revealed
by previous statistical model, the PKH67 staining of F
sperm was higher with EVs from F animals than in all
other conditions (P< 0.001).

Sperm viability and motility in presence of

extracellular vesicles

The presence of 10 pg of EVs-enriched fraction had no
impact on the viability of F or SF sperm. The dose of 50 pg
significantly increased the viability of F sperm after 15
min of co-incubation (P < 0.001) (Fig. 4).

On F sperm, there were significant impacts of the
experiment duration and of the interaction between the
experiment duration and the EVs presence, with higher
F sperm viability at 15 min in presence of EVs when
compared to without EVs (P< 0.001). Concerning the
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Figure 2 Western blotting results of ANXAS, HSPI0W, PDCD6IP and
VCP protein abundances in extracellular vesicles [EVS) isolated of
seminal plasena from fertile (F) arsd subfertile (SF) roosters (six animals
per condition, in triplicatel, (Al Signal images obeained by Western
bloting using specific antibodies, (8) Boxplots of the relative signal
inensity of prosein EVs markers immunodetected from F (gray bar)
ond SF iwhite bar animals, Protein relative abundance intensity
Imean of intensities of Western blotting quantifications pesformed
fram six animals per group) as arbitrary units normalized on the total
quantity of peoteins loaded. Intemal black line in the bars indicates
the median of the intensities of the experimental group and (*}
indicates the statistical difference bety the groups (P < 0.001).
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B ANOVA g
Fvalue 0001

SF sperm, only a significant impact of the experiment
duration was observed with the 50 pg dose (P < 0.008), as
revealed by a general increase of the SF sperm viability.

A difference of proportion of motile sperm was
observed between F and SF sperm with a higher motility
observed in F sperm (Fig. 5). For a given time, the
supplementation with 10 pg of EVs-enriched fraction
isolated from F animals did not significantly affect
the proportion of matile sperm, but the dose of 50 pg
induced a significant reduction of the percentage of F
motile sperm after 15 min of incubation (P < 0.001). This
effect was not observed with SF sperm. The duration of
the experiment significantly affected the proportion of
motile sperm with a decrease for F sperm (P< 0.001),
and more complicated time-EVs interactions effect in
SF sperm.

.

A
'

Figure 3 Incorporation in roaster spesm of
extracellular vesicles (EVs) marked with
PKH67 Iipup"lil& Slain (three roosterns per
fertility status, in triplicatel. (A} Sperm head
(5H) and intermediate piece (P} stained after 1
¢ h co-incubation with 10 pg EVs isolated from
S fertile [F) animals and PKH67-stained (PKH67,
greent on F sperm, Spem nucleus were
stained with DAPI (blue). Merging image were
resultant from PKH67 and DAPI signal images
Merge). Arrow indicates dropped
concentration of green signal, (B)
Representative graphic of EVs PKH67-stained
from F and subfertile (SF) animals incorporated

o W't

~
-

b by F and SF spermn, after 1 b co-incubation, (C)
? Detail of incorporation intensities in F sperm
¢ incubated with lisolated from F or SF animals)
. i o without EVs (No EVs). PKHG7 emission
intensities quantification was nomalized by
DAPI signals, Significant difference in pairwise
ew “en

post hoc analysis between conditions were
expressed by different letters (P < 0.05). Scale
bare (10 pm)

The 10 pg dose showed a significant effect of
interaction between experiment duration and EVs
presence in F sperm supported by higher matility in F
sperm with EVs at 5 min (P< 0.001) when compared to
the samples without EVs at the same time, whereas the
higher maotility was observed in samples without EVs at
15 min.

Discussion

During the last two decades, seminal EVs have been
largely studied in mammals (Sullivan et al. 2005), at the
difference of other animal classes such as birds. In the
present study, we were able to demonstrate, for the first
time, the presence of EVs in the rooster seminal fluid.
We could also report a difference of seminal EVs size
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between the most contrasted F and SF roosters. These
EVs expressed classical EV's protein markers and among
the tested ones, HSP90A content was significantly
higher in F roosters when compared to SF animals. Our
incorporation experiments also revealed a difference
of EVs fusion to sperm depending on fertility status.
This incorporation could be involved in the observed
modulation of sperm matility in presence of EVs.

Despite the presence of EVs protein markers in
seminal plasma (Labas et al. 2015, Borziak et al. 2016,
Li et al. 2020), Alvarez-Rodrigues et al. (2020) presented
EVs as potentially very rare in this fluid in chickens. It
seems clear that the observation of EVs is not easy to
reveal in chickens due to specific features of the species
(high sperm metabolic rate, rapid degradation after
semen collection, high sensitivity of the membranes
to physical disruption) (Lemoine et al. 2008, Blesbois
2012, Nguyen et al. 2014). Thus, in order to succeed
in the observation of seminal EVs in roosters, we built
a protocol of extraction including immediate use of
antiproteases, successive centrifugations and successive
accelerations adapted to rooster semen, in order to
preserve the EVs structures.

With this approach, we successfully isolated and
observed round shaped EVSs in rooster seminal plasma of
F and SF animals. These EVs are predominantly smaller
than 100 nm of diameter, suggesting a large proportion
of small EVs (such as exasomes) in the chicken seminal
EVs population (Van Niel et al. 2018) as observed in
mammalian species such as boars (Alvarez-Rodriguez
et al. 2019, Barranco et al. 2019) and humans (Aalberts
etal. 2012). However, recent evidence su, thatsize
definition of EVs was not enough to define the different
EVs subpopulations (such as exosomes or microvesicles)
(Van Niel et al. 2018). The EVs classification also relies
on the cellular compartmentinvolved in their biogenesis,
that is, inner cell part for exosomes and cellular plasma
membrane for microvesicles (Van Niel et al. 2018).

hetps:drep ososcientifica com

(P<0.05)

Consequently, further analyses will be necessary to
precisely evaluate the different EVs subpopulations,
especially by identifying their biogenesis cellular
location.

Furthermore, our data revealed a difference of
chicken seminal EVs size distribution according to the
individual fertility status, with smaller EVs in F animals.
No EVs size difference has been observed between
seminal plasma EVs from patients with normospermia
when compared to individuals with asthenozoospermia
(Murdica et al. 2019). Our data suggest a modification of
the EVs production or subtypes according to the sperm
fertility ability.

In order to &r::ise seminal EVs, we investigated the
presence of classical EVs markers, including ANXAS,
HSP90A, PDCD6IP and VCP (Bobrie et al. 2012, Thé
et al. 2018, Almihana & Bauersachs 2019, Riou et al.
2020). All of them were present in the EVs-enriched
fractions. One of these investigated proteins, HSP90A
is reported as expressed in the sperm cells of various
species (Yue et al. 1999) including chickens (Soler et al.
2016). HSP90A expression is crucial for the male fertile
since its depletion in Drosophila is associated to male
sterility, relative to a motility reduction (Yue et al. 1999).
Consequently, we can hypothesize that chicken EVs are
involved in the presence or maintenance of HSP90A in
the sperm. Moreover, HSP90A was present in higher
amount in the EVs of F males when compared to SF
animals. Since HSP90A content was previously reported
to be higher in the sperm cells of subfertile males (Soler
et al. 2016), by opposite to seminal EVs, this suggest
complex mechanisms of exchanges and integration of
EVs information by the sperm.

Even if EVs isolated from F and SF males were
efficient to incorporate F sperm, this efficiency was
higher concerning EVs-enriched fraction extracted from
F roosters. This EVs incorporation was predominantly
observed in rooster sperm head as already observed
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in mammals {Arienti et al. 1997, 2004, Du et al. 2016,
Zhou et al. 2019). This suggests a difference of the EV
cell-targeting signal according to the male fertility status.
Furthermore, no differential EVs incorporation has been
revealed in SF sperm. Consequently, since the EVs
isolated from the F sperm could merge with F sperm,
the little incorporation of EVs into SF sperm suggests a
perturbation of the fusion mechanisms. On one hand,
due to the putative role of EVs in exchanges between
the sperm and their extracellular environment, this may
suggest a reduction of these exchanges in case of SF
sperm and thus a perturbation of the sperm maturation
process. On the other hand, we can hypothesize that
F animals contain a predominant subtype of EVs,
with different protein content and greater capacity for
incorporation, as suggested for the impact of female
physiological status on endometrial EVs incorporation
into spermatozoa (Murdica et al. 2020), helping them to
keep high fertilization capacity.

laees hypotheses arceagonstiy;tent with the absence of
EVs impact on sperm motility and viability of SF animals,
by opposite to F sperm. Thus, the EVs presence could
not reestablish a normal percentage of motile sperm in
SF animals. However, the absence of EVs impact on SF
sm motility and viability do not conclude of the total
absence of EVs impact on SF biology. Other effects need
to be further explored such as the impact on acrosome
reaction (Murdica et al. 2019, 2020).

Interestingly, in addition to the dose-dependent
response of F sperm to EVs (observed only with 50 pg
EVs-enriched fraction), the sperm viability of F males
increased after 15 min of incubation while motility
decreased. At 37°C, incubation of bird sperm is still a
delicate operation since the rooster sperm are extremely
active at this temperature and may lose very fast their
fertilizing capacity. In this condition, it seems that the
dose of 50 pg EVs isolated from F individuals may be
helpful to maintain the sperm viability. The role of EVs
in the regulation of sperm function before fertilization
has been reviewed Barkalina et al. (2015} and
Machtinger et al. (2016). Particularly, modification of
the sperm motility in the presence of EVs was already
reported in humans (Murdica et al. 2019), porcines
{Alcantara-Neto et al. 2020) and boars (Du et al. 2016).
In chickens, we can ize that the observed
decrease of motility could contribute to the maintenance
of viability by lowering a too intense metabolic activity
of rooster sperm, allowing longer storage or increased
survival capacity. However, since, we used successive
and differential (ultra)centrifugation approach to reveal
seminal EVs, our study of EVs-sperm co-incubation
must be confirmed by further different approaches in
the future. Indeed, EVs may be isolated by different
methaods. All of them show specific advantages and limits
that may affect their content and functionalities (Doyle
& Wang 2019, Jeon et al. 2020). Thus, complementary

Repvoducnon (20215 161 485-495

approaches based on other EVs separation technics will
be necessary to confirm our functional hypothesis.

In conclusion, we successfully demonstrated the
presence of EVs in rooster seminal plasma, with a
differential size distribution, protein compositions and
efficient incorporation to sperm. These results share
new information helpful for further comprehension of
the mechanisms involved in sperm fertilizing capacities
and for the exploration of new phenotypic tools of
reproduction capacity of males.
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INTRODUCTION

Currently, glycerol is the most used
cryaprotectant for chicken sperm
cryopreservation’. 11% glycerol 1s the standard
concentration far freezing chicken sperm but
needs o be removed befare insemination to
avoid the contraceptive effect. The
mechanisms underlying this contraceptive
effectremains unclear, Here we explore how
alycerol impacts on sperm motility at 41°C to
mimic the temperature in the female tract,
Furthemmore, we also try (o develop a new
strateqy based on Percoll™ single layer
centrifugation {SLC to remove glycerol prior to
insernination in order to facilitate the

LZoz uIinr Z1 39 gL — 21107 2p [eA JYHNI DHd 9HUN,| 3P SpIeSDY ] SSWINO[ 5uw3ST

application of cryopreserved chicken sperm,

METHODES

Chicken semen was di ated with glyeal-

_ace PCd uenttofing concentration of G,

2,64 1% glycecl resoectvely, Lilulec

sermen veas i"CLbated at £1°C and assessed

sperrr motility with the cormputer-assisted
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tated by a non-invasive sampling and collection of large amounts of ~ contraception
sperm. In chickens, various freezing protocols and cryoprotectants
(CPAs) have been developed to freeze sperm, but each lab still
debates and competes to disclose the most suitable freezing con-
ditions. Many key points, such as semen donor selection, collection
tips, diluent compositions, CPA selection, pre-freezing manipula-
tion, semen packaging type, freezing and thawing rates, are all
impactful to the efficiency of chicken sperm cryopreservation.
Whereas glycerol is believed as the most efficient and the less
toxic CPA, it also presents an unwanted contraceptive effect after
insemination. Thus, one of the major developed strategies to con-
quer this issue is removing glycerol before insemination, but cur-
rent protocols remain not efficient to completely abolish glycerol
contraceptive effect. Novel methodologies will bring us a better
understanding of the cellular and molecular mechanisms involved
in sperm cryobiology to decipher the challenges of chicken sperm
cryopreservation.

Introduction

Conservation of animal genetic resources is an indispensable strategy to protect biodi-
versity, to restore endangered breeds or species, to assure animal population from
unpredictable epidemics or breeding accidents in animals (Boettcher et al. 2013; Mara
et al. 2013; Joost et al. 2015), including fish (Cabrita et al. 2010; Torres et al. 2016), birds
(Blesbois 2011; Rakha et al. 2016; Svoradova et al. 2018) and mammals (Moore and
Hasler 2017; Morrell and Mayer 2017). Conservation of genetic resources for the
restoration of genetic diversity can be achieved by different methods of storage of cells
able to show a reproductive potential, depending on the species. They mainly include the
cryopreservation of sperm, embryos (in mammals), gonadal tissues, and, in specific
species, primordial germ cells (chicken)(FAO guideline 2021 in press) or stem cells
(mouse) (Silva et al. 2015). Unlike mammalian species, it is not presently possible to
preserve avian oocytes or embryos due to the macrolecithal characteristics of the egg
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(Blesbois 2018), including the presence of a very big oocyte (3-4 cm of diameter in the
hen) with a very high amount of lipids (yolk) extremely difficult to cryopreserve (Long
2006, 2013; Nakamura 2016). Three germplasm types showing complementary
approaches are presently available for cryobanking in poultry: semen, primordial germ
cells (PGCs) and gonadal tissue (FAO guideline 2021 in press). Whereas all of these
methods show advantages and limits, sperm cryopreservation based on the collection of
large amounts of cells in the respect of animal welfare remains the most suitable approach
for long-term storage, long-distance genetic exchange and genetic resources manage-
ment (Ciftci and Aygiin 2018; Thélie et al. 2019; Cardoso et al. 2020). Chicken sperm
cryopreservation consists of a long in vitro journey for sperm cells including several
stages: collection, preparation, freezing and thawing before restoring sperm fertilising
capacity and oocyte fertilisation through artificial insemination (AI) process (Figure 1).
Whereas current procedures result from more than 60 years of progress, started with the
first experiments of semen cryopreservation in 1940s (Shafiner et al. 1941) resulting to
the first progeny 10 years later using glycerol as CPA (Polge 1951), no standardised
protocol has been developed for all chicken breeds/lines. In addition to the relative high
cost of sperm freezing and storage compared to maintain the rooster population, and the
noticeable decrease in fertility compared to fresh semen, sperm cryopreservation remains
in a confidential usage to the progress and commercial application in poultry industry
(Donoghue and Wishart 2000). Currently, glycerol is definitely the most broadly used
CPA for freezing chicken sperm. It can provide excellent protection for sperm to resist
the damages from frozen/thawed processes (Blesbois and Brillard 2007; Blesbois et al.
2007; Thélie et al. 2019). However, it needs a complex removal procedure before Al
Conversely, CPAs such as dimethyl acetamide (DMA), dimethyl sulphoxide (DMSO)
and dimethyl formamide (DMF) are not necessary to be removed prior to Al but give less
protection for chicken sperm to oppose the cryodamages.

Y| |®| @

Collection Preparation Freezing Thawing Fertilization
*Donor selection eDiluent *Semen *Thawing rate eFemale
*Daily *Cryoprotectant packaging *Cryoprotectant management
management Equilibration eFreezing rate removal *Method of
«Collection time *Feezing insemination
procedure method
*Manipulating
time

Figure 1. The different stages and influencing factors of chicken sperm cryopreservation.

31



WORLD’S POULTRY SCIENCE JOURNAL 141

In this review, we first expose the different main factors impacting chicken sperm
cryopreservation, with a special focus on CPAs as one of the major sources of success
influence. Subsequently, the issues relative to the historical and widely used CPA, the
glycerol, are discussed. Finally, we will present new inspirations for implementing frozen/
thawed chicken semen as a tool for practical reproductive strategy in animal husbandry.

Critical points of chicken semen cryopreservation
Initial semen quality

Male fertility

One of the major factors influencing male fertility is the genetic background. Thus,
different chicken breeds show different capacities for sperm cryopreservation (Blesbois
et al. 2007). Another very important point is the male age. Indeed, at the puberty, the
young males do not show rapidly an optimal sperm production and quality and then
show variations with the annual cycle of reproduction under photoperiodic control (De
Reviers et al. 1981). This quality increases after some weeks but usually decreases in
the second part of the sexual season. As an example, in commercial broiler breeder males
reared under daily photoperiod 14 h light:10 h dark and proper management, the optimal
age to collect semen for cryopreservation is usually between 30 and 40 weeks (unpub-
lished observations). The length and efficiency of the sexual seasons vary also a lot with
external factors including climate, photoperiod, food and water, consequently influen-
cing sperm production and quality (Tabatabaei et al. 2010; Shanmugam et al. 2014;
Rakha et al. 2017).

Chicken semen collection

Chicken semen is generally collected by a non-invasive method, the dorso-abdominal
massage (Burrows and Quinn 1937). This method usually involves two persons, one for
abdominal massage to make a gentle eversion of the cloacum and to access the opening
of the deferent duct and the ejaculation reflex (Mohan et al. 2018), and the other for the
semen flow into a container. There is a risk of contamination of semen with other
cloaca products (i.e. faeces, urates, transparent fluid, reviewed by Etches 1996), which is
deleterious to sperm conservation, that could be avoided by the well-training and
experienced skills of the collectors (Mohan et al. 2018). Another point to reduce the
possibility of contamination is temporarily restriction of feed and water (12 hr) before
semen collection (Yadav et al. 2019), that is why it is recommended to collect in the
morning. Furthermore, routinely collecting semen from donors (2-3 times a week)
increases semen quality (De Reviers 1973).

Fresh semen quality

It is necessary to scan fresh semen quality from males to select the candidates for semen
collection. In vitro quality tests, especially sperm motility (e.g. mass motility and percen-
tage of motile spermatozoa), sperm viability and sometimes membrane fluidity, have
been reported to explain 85% of the variation of fertility of cryopreserved sperm in
chickens (Blesbois et al. 2008).
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Key points of the cryopreservation process

After making sure the best animal conditions, the success of chicken sperm cryopreser-
vation depends on several biophysical and biochemical factors (Figure 1).

Manipulating time

Duration of operating chicken semen from collection to freezing highly impacts sperm
cryopreservation. Indeed, neat semen stored in vitro at an ambient temperature more
than 15 min gradually lose the fertility potential (Blesbois and Brillard 2007), due to
a combination of factors including very high metabolic, functional and also proteolytic
activities (Lemoine et al. 2009; Nguyen et al. 2014). Thus, the first recommendation is to
manage the shorter possible the time between semen collection and freezing (Vasicek
et al. 2015).

Diluents, CPAs and equilibration time

Semen diluents can supply continuous physicochemical stability to sperm during in vitro
storage (Blesbois and Brillard 2007). Iso-osmotic (330-450 milliosmoles) and closely
natural pH (6.8-7.4) are adjusted by mixing balanced salt/buffer solutions (Blesbois
2012). They usually contain energetic substrates and products expected to make easier
the freeze-thaw process (see after). Dilution rates are also important; the rates 1:3 to 1:5
are usually suggested (Sexton 1981; Seigneurin and Blesbois 1995; Santiago-Moreno et al.
2011). Dilution rates might lead to different sperm concentrations during freezing.
However, few studies discussed this issue in chicken sperm and showed no significant
differences in the fertility (Moghbeli et al. 2016b; Pérez-Marin et al. 2019).

There are two classes of CPAs: the intracellular and the extracellular ones. Intracellular
CPAs such as glycerol, dimethyl sulphoxide (DMSO), dimethyl acetamide (DMA),
methyl-acetamide (MA), ethylene glycol (EG), dimethyl formamide (DMF) and also
some monosaccharides, are amphipathic and low molecular weights components that
can diffuse through cell membrane to minimise cell damages by regulating the formation
of intracellular ice crystals, and have been used extensively for chicken sperm cryopre-
servation (Donoghue and Wishart 2000). Extracellular CPAs, e.g. polyvinylpyrrolidone
(PVP), polyethylene glycol (PEG), sucrose, trehalose (disaccharides) and raffinose (tri-
saccharide), generally form a shield surrounding cells, which can protect cells by redu-
cing extracellular ice crystals and making easier the dehydration of the freezing process
(Massip et al. 2004; Motta et al. 2014; Thananurak et al. 2019).

Sperm metabolism must be decreased for in vitro storage, which is practically achieved
by lowering semen temperature (Lake and Ravie 1982; Giesen and Sexton 1983). Notably,
semen temperature must be decreased gradually to prevent harmful cold shock effects
(Clarke et al. 1982; Wishart 1984). A 2-4°C equilibration is usually applied to semen to
add the CPAs with the lowest possible interaction with sperm metabolism before freezing
and to ensure an equilibration of CPAs and sperm (Blanco et al. 2000; Mphaphathi et al.
2016). The best equilibration time depends on the CPAs and on the experimental
conditions, varying from 1 min with DMA to 1-2 hours with DMSO (Sexton 1981;
Santiago-Moreno et al. 2011; Zaniboni et al. 2014).
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Semen packaging types

There are three most popular packaging: glass ampoules, plastic straws and pellets
(Table 1). Glass ampoule was the first type of container introduced for chicken semen
storage (Lake and Stewart 1978). Then, plastic straws and pellets (semen drops) were
developed (Sexton 1980; Tselutin et al. 1995). Plastic straws facilitate individual identi-
fication and storage and also are less harmful than glass ampoule if the burst happens
(Pickett and Berndtson 1974; Pickett et al. 1978; Mortimer 2004). Pellets are a rapid
freezing method, increasing freezing homogeneity compared to plastic straws or glass
ampules, and require less equipment (Brotherton 1990). Among these alternatives,
considering handling and storing capacity, biosecurity and precise identification of
individual animal, plastic straws might be the priority to use for the cryobanking
(Tselutin et al. 1999; Woelders et al. Hiemstra 2006; Blesbois 2007b, 2007a).

Whereas no impact of packaging was observed by Abouelezz et al. (2015b), Tselutin
et al. (1999) reported higher fertility with chicken semen frozen with 6% DMA in pellets
than with 6% DMA in straws. The fertility obtained from frozen/thawed semen with 6%
DMA in pellets was equivalent to 11% glycerol in straws, which suggested both were
optimal combinations of CPAs/packaging. However, the differences between studies
might be owing to other side effects (lab conditions, chicken breeds management)
confirming that a lot remains to investigate to precisely define the optimal CPA/packa-
ging combination.

Freezing rates

The first really efficient chicken sperm cryopreservation method using glycerol and slow
freezing rates, was reported by Lake and Stewart (1978). This method was further
improved and one of its adaptation (Seigneurin and Blesbois 1995) was validated for
retaining sperm fertilising capacity up to 18 years (Thélie et al. 2019). Freezing rates can
be conducted by a programmable freezer or by layering semen straws in different
distances of the vapour above the surface of liquid nitrogen. Certainly, the former

Table 1. Comparisons of different semen packaging types.

Glass ampoule Plastic straw Pellets
Packaging s
ypes i
| I
, !xl.14;¢1t"k
Ay
Advantages ® First introduced type ® less harmful when the @ Simple equipment
® Precise identification burst happens ® Efficient heat homogeneity
® High biosecurity
® Precise identification
® Efficient storage system
Disadvantages ® High risk of shattering ® Heat homogeneity less effi- ® Low biosecurity

Inefficient heat homogeneity cient than pellets ® |ndistinguishable
identification
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method is more precise to control the freezing rates. However, it is expensive and not
always available, especially in the field working. Different freezing rates affect post-thaw
sperm motility, viability and fertilising ability (Madeddu et al. 2016; Thélie et al. 2019).
Furthermore, optimal freezing rates depends on the CPAs/packaging combination
(Sexton 1979). For example, the use of glycerol/straws is conducted with quite low
semen freezing rate in the first part of the curve (i.e. 7°C/min up to —35°C), while the
use of DMA/pellets may allow a direct plunging in liquid nitrogen. In this last case, the
freezing rate depends on the size of the pellet but approximately 600°C/min (Woelders
et al. 2006). The semen freezing rates suggested for DMF/straws and EG/straws are,
respectively, =15 and —1°C/min (Thélie et al. 2019).

Thawing rates

Adjusting thawing rates moderate the water crystals growing and minimise damage to
sperm. Chicken semen thawed at 5°C or 60°C, respectively, with semen frozen with
glycerol or DMA could lead to desirable fertility (Tselutin et al. 1999). Chicken sperm
better respond to slow thawing, which depends on freezing rate (Bellagamba et al. 1993).
Nevertheless, keeping semen at low temperature (5°C) after thawing could be benefit to
chicken sperm quality since the infra-physiological temperature might reduce the sperm
metabolism (Lake and Ravie 1982; Giesen and Sexton 1983) and the reaction of lipid
peroxidation (Fujihara and Howarth JR 1978), and the physiological temperature would
be reached only at the time of insemination.

Critical points related to post thawing conditions

CPAs removal before Al — glycerol case

The glycerol shows an original effect possibly specific to chicken species, leading an
inevitable contraception. One important strategy against glycerol contraceptive effect is
to remove it before AI (Table 2). One suggested solution is the dialysis of frozen/thawed
fowl semen using Cellophane bags (Polge 1951) or CryoCell® container (Buss 1993).
However, this method is time-consuming and causes cell damages due to the imbalanced
rates between glycerol and water transport.

Another approach is stepwise dilutions followed by centrifugation (Clark and
Shaffener 1960; Lake and Stewart 1978). Although this method is time-consuming (but
much less that dialysis) and complex, it has become the most common operation to
reduce glycerol concentrations from chicken frozen/thawed semen (Seigneurin and
Blesbois 1995; Tselutin et al. 1999; Abouelezz et al. 2017; Thélie et al. 2019) (Figure 2).

Table 2. Comparisons of glycerol removal methods.

Removal methods Species Time Fertility References

Slow dialysis Chicken 2 hr 54% Polge (1951)

CryoCell® dialysis Chicken 1.5-2 hr 56% Buss (1993)

One-step dilutions + centrifugation Chicken 7 min 40% Clark and Shaffener (1960)
Stepwise dilutions + centrifugation Chicken  33-45 min 63% Lake and Stewart (1978)
Stepwise dilutions + centrifugation (simplified)  Chicken 27 min 76% Seigneurin and Blesbois (1995)
Accudenz centrifugation Chicken 25 min 37% Long and Kulkarni (2004)
Accudenz centrifugation Turkey 25 min 49% Long and Kulkarni (2004)
Percoll® centrifugation Turkey 30 min 19% Long and Kulkarni (2004)

35



WORLD'S POULTRY SCIENCE JOURNAL 145

The third method for glycerol removal implied colloidal centrifugation, based on
Accudenz or Percoll® solution to separate sperm from glycerolised semen (Long and
Kulkarni 2004). Purdy et al. (2009) compared the glycerol removal effects of stepwise
dilutions and Accudenz centrifugation and showed higher motility obtained with
Accudenz procedure but a higher number of recovered sperm with stepwise dilution
centrifugation, suggesting efliciency specificities of each procedure. Improvement of
concerning colloidal centrifugation is still considered and recently, Lin et al. (2020)
reported a new protocol for the selection of fresh motile chicken sperm based on
Percoll® single-layer centrifugation (SLC). Further investigation will be necessary to
confirm if this procedure would be suitable for chicken sperm cryopreserved with
glycerol.

Methods of Al for frozen/thawed chicken semen

Intravaginal insemination (IV) (the place of natural mating) is the most common AI
technique, developed by Quinn and Burrows (1936). Including welfare-concerned issue,
it involves applying gently pressure to the hen’s abdomen and everting the vaginal orifice
through the cloacum, then sperm deposit into female vagina (3-4 cm deep), allowing
normal selection of the best sperm for fertilisation and not disturb the lay. However, to
improve the fertility of frozen/thawed chicken semen, other AI methods have been
developed, including intrauterine (IU), intramagnal (IM), and intraperitoneal (IP) inse-
minations (Figure 3). With IU procedure, semen is directly deposed into female uterus by
a glass cannula (Allen and Bobr 1955). IM insemination surgically deposits semen into
the magnum part of the female oviduct (Bacon et al. 1986). With the IP technique, the
surgical sperm deposition is performed into peritoneal cavity near the infundibulum
(Brown et al. 1963). IU, IM and IP show deleterious effects on the laying rate (Allen and
Bobr 1955; Brown et al. Hobbs 1963; Long and Kulkarni 2004), and IV insemination is
also the cheaper technique.

Seigneurin and Blesbois
(1995)

ePost-thaw semen
containing 11% glycerol
oStepwise dilutions (1:19),

Lake and Stewart

(1978) diluted 6 times, each 2
ePost-thaw semen .?mt . £550 ¢ f
Clark and Shaffener containing 8.1% glycerol 15er:n|i'|nguge a gfor
(1960) eStepwise dilutions (1:6), oFertility: 76%
diluted 6 times, each 3-5
ePost-thaw semen min

containing 10% glycerol
*One-step dilutions (1:65)
eCentriguge at 1,200 R.C.F
for 7 min
sFertility: 27%

eCentriguge at 700 g for
15 min

eFertility: 63%

Figure 2. Progress of stepwise dilutions for chicken post-thaw semen.
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Figure 3. Methods of Al in chicken. Intravaginal (IV), intrauterine (IU), intramagnal (IM) and intraper-
itoneal (IP) insemination deposit sperm respectively in the vagina, uterus, magnum and peritoneal
cavity near the infundibulum.

The complex choice of cryopreservation medium

As previously described, intracellular CPAs are extensively used for chicken sperm
cryopreservation. Their length of entry in sperm is highly variable (one min for glycerol
(Lemma 2011) to nearly 3 times longer for DMSO in human sperm (Gilmore et al. 1997)
and depends also on sperm specificity. Each intracellular CPA can cause specific cyto-
toxicity (membrane breach, oxidative stress, osmotic shock and chilling injury) (Best
2015), leading no consensus to identify the most suitable CPA for chicken sperm
cryopreservation (Table 3).

Whereas Miranda et al. (2018) concluded that EG was the most suitable CPA to
conserve the motility of frozen/thawed sperm when compared to DMF, DMA and MA;
Thélie et al. (2019) showed higher fertilising ability of semen frozen/thawed with glycerol
when compared to DMF, DMA and EG that showed the lowest results. But Abouelezz
et al. (2017) showed contrasted effects of glycerol and DMA. The tremendous differences
between these results certainly results from complex interactions involving CPAs con-
centration, extenders, freeze-thaw procedures, animal characteristics and differences in
semen quality tests.

In addition to intracellular CPAs, the use of extracellular CPAs, alone or in combina-
tion with intracellular CPAs has been explored (Table 3). PVP is classically employed in
complement to glycerol (Lake and Stewart 1978; Seigneurin and Blesbois 1995). Egg yolk
or its purified components (e.g. egg low-density lipoprotein, LDL) have been used to
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cryopreserve successfully domestic chicken semen (Lake 1968; Shahverdi et al. 2015;
Junaedi et al. 2016), or the Red jungle fowl ancestor (Rakha et al. 2017, 2018). Moreover,
the addition of sucrose to DMF or of trehalose to DMA (Shahverdi et al. 2015; Junaedi
et al. 2016; Mosca et al. 2016; Thananurak et al. 2019) has been reported to increase post-
thaw chicken sperm quality and/or fertility capacities.

Other potential beneficial additives

Avian sperm membrane contains abundant polyunsaturated fatty acids (PUFAs)
(Blesbois et al. 1997; Blesbois and Hermier 2003; Cerolini et al. 2006; Partyka et al.
2012; Fattah et al. 2017), which can easily be peroxidised (lipid peroxidation — LPO) in
the presence of reactive oxygen species (ROS), leading to membrane, acrosome,
mitochondria and DNA disruption (O’Connell et al. 2002; Bollwein, Fuchs, and
Koess 2008). ROS are active during the frozen/thawed process, increasing the sperm
cryoinjuries (Isachenko et al. 2003). Antioxidants addition to freezing extenders is
a possible solution improving sperm quality after thawing (Salmani et al. 2013;
Zanganeh et al. 2013) (Table 4). Many antioxidants have been tested including
vitamins, polyphenols, carotenoids and amino acids (Blesbois et al. 1993;
Mangiagalli et al. 2007; Asmarawati 2010; Tabatabaei et al. 2011; Al-Daraji 2014;
Moghbeli et al. 2016a; Partyka et al. 2017; Thananurak et al. 2020) with variable
results.

Sperm membrane fluidity is a biophysical factor linked to the cholesterol/phospholi-
pid ratio of sperm membrane in addition to membrane PUFAs and others. Freezing is
a rigidifying process (Blesbois et al. 2005; Chuaychu-Noo et al. 2017) and modifying the
cholesterol/phospholipid ratio of sperm membrane through the addition of cyclodex-
trins — cyclic oligosaccharide able to remove or add cholesterol into sperm membranes -
may affect positively or negatively semen cryopreservation (Purdy and Graham 2004;
Mocé et al. 2010). Partyka et al. (2016; Partyka et al. 2018) used cyclodextrins to increase

Table 4. The effects of various beneficial additives on chicken frozen/thawed semen.

Additive Diluent Cryopreotectant Semen quality test References

Enhance anti-oxidative capacity

Vitamin E Beltsville  11% glycerol Motility Moghbeli et al. (2016a)
Viability
Membrane

L-carnitine EK 6% DMA Mitochondria Partyka et al. (2017)
Apoptosis
LPO
DNA fragmentation

Hypotaurine EK 6% DMA Mitochondria Partyka et al. (2017)
Apoptosis
LPO
DNA fragmentation

Serine BHSV 6% DMF Acrosome integrity Thananurak et al. (2020)
Mitochondria
Fertility

Adjust membrane fluidity

2-hydroxypropyl-p-cyclodextrin ~ EK 6% DMA Motility Partyka et al. (2018)
Mitochondria
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the frozen-thawed chicken sperm quality (Table 4). This is opposite to many observations
made on mammalian species (Purdy and Graham 2004) and illustrates well the complex-
ity of the parameters involved in membrane fluidity.

Specific role of glycerol on chicken sperm cryopreservation

Historically, 10-20% of glycerol was used to freeze chicken sperm (Polge et al. 1949),
but the presence of at least 2% glycerol in inseminated semen was associated with
contraceptive effect (Polge 1951), leading to the necessary of removing glycerol before
Al Nowadays, 11% glycerol associated to its removal before Al is certainly the most
used freezing conditions for chicken sperm cryopreservation (Blesbois and Brillard
2007; Blesbois et al. 2007; Abouelezz et al. 2015a; Thélie et al. 2019). However, despite
the development of efficient approach to obtain progeny from chicken sperm frozen
with glycerol, the mechanisms underlying the glycerol contraceptive effect are still
unclear, but several theories have been proposed, including direct effects on sperm and
on female reproductive tract (Figure 4).

Direct impacts of glycerol on sperm biology

Glycerol (4% and 8%) increased the respiration rate of sperm cells for at least 60 min but
reduced sperm motility for only 15 min when chicken sperm were incubated at physio-
logical temperature (41°C) (Sexton 1973), which was not observed with DMSO or EG
(Sexton 1974). Glycerol also impacts sperm penetration into the oocyte by reducing the
presence of trypsin-like enzyme (TLE) (Johnson et al. 1976) involved in sperm penetra-
tion of the vitelline membrane of the ovum during fertilisation (Howarth and Digby
1973). However, this reduction of TLE did not correspond to the severe reduction of
fertility that may involve other actors of the acrosome reaction pathway (Johnson et al.
1976). Indeed, 11% of glycerol in fresh chicken sperm diluents dramatically decreased the
ability of sperm to undergo acrosome reaction (Mocé et al. 2010). A modification of
sperm acrosome reaction capacity induced by glycerol may be one of the causes of the
reduction sperm penetration into ovum perivitelline layer. In all experiments, the
hatchability/fertility rate was not affected, indicating that glycerol seemingly impaired
partial functions for sperm fertilisation but did not disturb embryonic viability (Neville
et al. 1971; Sexton 1973). These observations do not exclude potential more discreet
effects on the development through potential epigenetic changes as we will see in the
paragraph IV.

Glycerol impacts on sperm progression in the female reproductive tract

In general, fowl sperm appear in the uterus within 30 min or in the infundibulum within
1 hr after IV insemination (Bakst et al. 1994). However, no sperm was found at the top of
oviduct when hens were inseminated by IV with semen containing 15-20% glycerol (Polge
1951), which presumed that glycerol may also impact the sperm evolution into the female
reproductive tract, as potentially partly resulting from decrease of sperm motility. However,
fertility was partly restored when 15% glycerolised fresh semen was inseminated IU (Allen
and Bobr 1955; Allen 1958), indicating the problem was not only due to sperm biology but
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also relative to female physiology especially in the lower oviduct part. These authors
suggested that the uterovaginal junction might be a barrier to limit glycerolised sperm
reaching the upper parts of the oviduct.

Chicken sperm incubated with glycerol and cells derived from female reproductive
tract resulted to higher sperm motility and viability, suggesting these cells were beneficial
for mitigating cytotoxicity from glycerol (Latorre et al. 1988). Spreen et al. (1990)
indicated the motility of glycerolised sperm significantly decreased in vaginal culture,
which was not observed in other reproductive organ-slice cultures, suggesting a specific
deleterious effect of glycerol during the sperm transit through vagina. Differential protein
secretion pattern was observed in vaginal-slice culture systems in presence or absence of
glycerol, but further investigations will be necessary to decipher the proteins associated to
the consequence of glycerol on vagina physiology (Delee et al. 1991).

Glycerol introduced 5 min before or after fresh semen IV insemination reduced the
fertility more in 5 ~ 7 days than in the first 4 days, which suggested that glycerol disturbs
sperm transport and/or storage, this is possibly due to an inflammatory response of hen’s
vagina which would block general sperm transport for a short time (Westfall and Howarth
JR 1977). Interestingly, the fertility was not affected when glycerol was inseminated 10 min
before semen, which indicated that the antifertility effect of glycerol only would last less than
10 min in the vagina.

Is glycerol the only CPA necessary to be removed before insemination?

Removing glycerol from post-thaw chicken sperm before Al is a necessity procedure. As
developed for glycerol, other CPAs may largely influence the sperm transit into female
reproductive tract (Harris JR 1968; Mitchell and Buckland 1976), and this point would be
questioned for the future. For instance, IU resulted in superior fertility than IV when the
DMSO was used (Mitchell and Buckland 1976). IP also led to higher fertility from
chicken semen cryopreserved with DMSO than with IV (Harris JR 1968). However, the
fertility obtained with these techniques remains lower than with glycerol stepwise dilu-
tions protocol (Brown et al. 1963; Seigneurin and Blesbois 1995; Tselutin et al. 1999;
Thélie et al. 2019). Unquestionably, for specific application, such as cryobank pro-
grammes when only few offsprings are needed to restore a genetic breed, these techniques
may be useful. But bypassing the IV procedure requires well-trained manipulator but also
induces much stress to hens which can easily lead to the dramatic drop in egg production
and possibility presents other problem such as infections (Allen and Bobr 1955).

New developments in chicken semen cryopreservation

Improvement in the use of CPAs and their removal after thawing is necessary for the
future development of chicken sperm cryopreservation, as well as increasing knowledge
in the biochemical mechanisms involved.

We pointed the importance of sperm membrane lipids in the success of freezing, in
membrane fluidity demand and biochemical actions (Blesbois et al. 1997; Blesbois et al.
1997; Douard et al. 2000; Blesbois et al. 2005), which could possibly be partly re-
established by the use of cyclodextrin transporters (Chuaychu-Noo et al. 2017; Partyka
et al. 2018) or other different transporters including lipoprotein complexes.
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More discreet mechanisms may be impacted by the cryopreservation procedure.
Recent development in omics methods leads to understand better semen molecular
actors involved in sperm fertilising ability, such as proteomic studies of chicken semen
particularly will be very useful to decipher and identify biomarkers of sperm freezing
capacities and fertility (Labas et al. 2015). Cheng et al. (2015) identified the change in
protein abundance in chicken sperm before and after frozen/thawed processes and
revealed that most impacted proteins were involved in energy metabolism, hydrolase
activity, signal transduction and sperm motility. Other changes have been observed on
sperm transcriptome especially on the genes related to proteins involved in stressful
conditions such as CIRBP, RHOA, HSP70 and HSP90 (Qi et al. 2020). Interestingly, the
addition of recombinant HSP90 protein into the extender improved sperm motility and
viability, confirming the interest of molecular investigation for the improvement of
sperm cryopreservation. Moreover, epigenetic modifications in mature sperm play an
important role for the embryo development (Cassuto et al. 2016), that may be impacted
by sperm cryopreservation as revealed for DNA methylation and histone modifications
(Flores et al. 2011; Zeng et al. 2014; Hezavehei et al. 2018). Sperm cryopreservation
associated with an elevation of ROS, led to significant reductions of DNA methylation,
H3K9 acetylation and H3K4 methylation compared to the fresh semen (Salehi et al.
2020). This information could be one clue for the constitution of freezing solutions,
including the CPAs, extenders and even antioxidants, which are able to avoid sperm
intracellular ROS alterations in epigenetic patterns.

Conclusion

Sperm cryopreservation is an important strategy to protect animal biodiversity, to
transmit superior genetic background and to prevent the animal population devastation
from epidemics. It is not yet adapted to commercial chicken industry mainly due to the
noticeable reduction of fertilising capacity of chicken sperm after freeze/thaw processes.
Glycerol is deemed as the most effective and universal cryoprotectant for chicken sperm,
but it can also lead contraception to hens if not removed properly before artificial
insemination. In contrast, other frequent cryoprotectants, such as DMA, DMSO, DMF,
do not require to be removed before insemination, but are less efficient to protect chicken
sperm from cryodamages. Therefore, looking for a novel and powerful sperm cryopre-
servation procedures based on efficient cryoprotectants adapted to most chicken breeds
and able to remove any contraceptive effects is mandatory to make chicken sperm
cryopreservation more acceptable in practical industry.

In the past half century, scientists made a lot of efforts to verify the best cryopre-
servation protocol for chicken sperm. Presently, freezing and storing chicken sperm
over a long period of time is no longer a fairy tale. Understanding the cellular and
molecular regulations involved in the cryopreservation process can be very useful to
optimise the use of frozen/thawed semen. Modern omics technology are very powerful
techniques that can dig out abundant and insightful information about the mechanisms
related to cryobiology, which may help us to find out the solutions to overcome the
obstacles.
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RESUME

La cryoconservation des spermatozoides est une méthode cruciale dans la conservation de la biodiversité des
especes et des races, mais aussi pour assurer la restauration des lignées lors de catastrophes sanitaires.
Actuellement, le glycérol est I’agent cryoprotecteur le plus utilisé pour la cryoconservation des spermatozoides
de coq, étant le plus efficace dans le maintien des fonctions du spermatozoide, mais il est associé a un taux de
réussite faible voir une totale stérilité lors de I’insémination. Par conséquent, nous cherchons a développer une
méthode simple d’élimination du glycérol par centrifugation dans un gel colloidal synthétique, le Percoll®.
Aprés collecte, la semence de cogs a été congelée en glycérol 11% en paillettes avec un congélateur
programmable. Lors de la décongélation, la semence a été déposée sur une solution de sucrose (200 mM) en
présence de Percoll® (Solution Sucrose-Percoll®, SSP) dans du PBS puis centrifugée 15 min. Afin de définir les
meilleures conditions, différentes concentrations de SSP (40, 50, 60 ou 70%) ainsi que deux températures (4 ou
20°C) ont été testées. La concentration de glycérol et la mobilité¢ individuelle des spermatozoides ont été
évaluées apres centrifugation respectivement par le kit Glycerol Assay et par Computer-Assisted Sperm Analysis
system (CASA). Nos données montrent que toutes les concentrations de SSP réduisent la présence de glycérol a
moins de 120 mM (soit une élimination de 94% du glycérol initial). La centrifugation a 20°C permet une bonne
sélection des spermatozoides mobiles et progressifs, en particulier pour SSP 40 et 70%. Notre nouvelle méthode
permet donc d’éliminer efficacement le glycérol des semences de coq cryopréservées tout en sélectionnant les
spermatozoides présentant une bonne mobilité. Comparée a la méthode conventionnelle de dilutions successives,
elle permet de gagner 44% de temps de traitement des échantillons lors de I’élimination du glycérol.

ABSTRACT

Sperm cryopreservation is a crucial method not only to conserve the biodiversity of species and breeds, but also
to restore animal populations during emergent epidemics. Currently, glycerol is the most widely used
cryoprotectant to freeze chicken sperm due to its effectiveness for maintaining sperm functions, but it is
associated with a reduction of fertility or a total infertility during insemination. Therefore, we tried to develop a
simple method to remove glycerol from frozen-thawed chicken semen with a centrifugation in a synthetic
colloidal gel, the Percoll®. After collecting, chicken semen was frozen in a diluent of 11% glycerol in straws
with a programmable freezer. Thawed semen was layered on the solution containing 200 mM sucrose and
Percoll® (Solution Sucrose-Percoll®, SSP) in PBS and centrifuged 15 min after. Different concentrations of SSP
(40, 50, 60 or 70%) combined with two different temperatures (4 or 20°C) were tested to determine the best
conditions of SSP centrifugation. Glycerol concentration and sperm individual motility were evaluated
respectively by Glycerol Assay kit and Computer-Assisted Sperm Analysis system (CASA). Our results showed
that all concentrations of SSP efficiently reduce glycerol concentration to less than 120 mM (equal to remove
94% of glycerol from thawed semen). Centrifugation at 20°C allowed an efficient selection for motile and
progressive sperm especially with SSP 40 and 70%. It indicated that our novel method can efficiently remove
glycerol from post-thaw chicken semen with a positive selection of motile sperm. Compared to the conventional
method of serial dilutions, it can save 44% of time of glycerol removal process.
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INTRODUCTION

La conservation des ressources génétiques est une
stratégie cruciale pour protéger la biodiversité,
restaurer des espéces ou races menacées et contrer les
épidémies ou les accidents de reproduction (Morrell
and Mayer, 2017; Svoradova et al., 2018). Trois types
cellulaires sont actuellement disponibles pour la
cryobanque chez les oiseaux : les spermatozoides, les
cellules germinales primordiales et le tissu gonadique.
Parmi toutes ces méthodes, la cryoconservation des
spermatozoides reste encore I'approche la plus
répandue car elle se base sur la collecte de grandes
quantités de cellules, le respect du bien-étre animal, et
la possibilité d’un stockage long ainsi que d'échanges
de ressources a longue distance (Ciftci and Aygiin
2018; Thélie et al., 2019; Cardoso et al., 2020).
Actuellement, le glycérol est le cryoprotecteur le plus
utilisé pour congeler les spermatozoides de coq
(Abouelezz et al., 2015 ; Lin et al., 2021). 1l fournit
une excellente protection des spermatozoides leur
permettant de résister aux impacts négatifs du
processus congélation/décongélation (Blesbois and
Brillard, 2007; Blesbois et al., 2007). Cependant, il
est associé a une baisse de la fertilité pouvant étre
totale et il doit donc étre éliminé avant I’insémination
(Seigneurin and Blesbois, 1995; Thélie et al., 2019).
Néanmoins jusqu'a présent, le processus d'élimination
du glycérol est compliqué et se base sur des
équipements particuliers (dont une chambre froide).
Par conséquent, nous cherchons a développer une
nouvelle méthode simple d’élimination du glycérol de
la semence de coq décongelée, se basant sur le
Percoll®, un gel classiquement utilis¢é pour
sélectionner les spermatozoides mobiles chez les
mammiféres mais également sur de la semence
fraiche de coq (Lin et al., 2020).

1. MATERIELS ET METHODES

1.1. Animaux

18 cogs adultes (entre 32 et 42 semaines d’age) de
lignée T44 (Gallus gallus domesticus, Sasso, France)
ont été utilisés comme donneurs de semence. Tous les
cogs ont été hébergés en cages individuelles a I’unité
expérimentale INRAe UE-PEAT (2018,
https://doi.org/10.15454/1.5572326250887292E12),
nourris avec un régime standard, de I'eau a volonté et
élevés a 20°C et sous un cycle lumineux de 14h de
lumiere et 10h d'obscurité par jour. Ce protocole
expérimental a été approuvé par le Ministére de
I’Education Supérieure, de la Recherche et de
I’Innovation (MESRI) et le comité d’éthique Val-de-
Loire (N° APAFIS #4026-2016021015509521).

1.2. Collecte, congélation et décongélation de la
semence

La semence de coq a été collecté régulierement deux
fois par semaine par la méthode de massage
abdominal (Burrows et Quinn, 1937). Trois groupes
de 6 animaux ont été formés de fagon aléatoire pour
regrouper les semences dans un volume de Lake PC
similaire a celui de collecte puis mélangés doucement
et refroidis a 4°C pendant 10 min. Un volume égal de
Lake PC contenant 22% de glycérol a été ajouté pour
atteindre une concentration finale de 11% de glycérol,
puis I’échantillon a été équilibré a 4°C avec une
agitation douce pendant 10 min. Par la suite, la
semence a été déposée dans des paillettes de 0,5 mL
(IMV Technologies, France). Toutes les paillettes ont
été  scellées, transférées dans un congélateur
programmable (MiniDigitcool, IMV Technologies,
France) et congelées a vitesse controlée de 4 a -35°C
a -7 °C/min puis de -35 a -140°C a -20 °C/min.
Finalement, les paillettes ont été plongées dans de
I'azote liquide pour une conservation d'au moins 14
jours et décongelées au bain-marie a 4°C pendant 3
min pour la suite des expériences.

1.3. Préparation de Solution Sucrose-Percoll® et
élimination du glycérol

La solution de Sucrose-Percoll® (SSP) a été préparée
en ajoutant du Percoll® (Sigma-Aldrich, USA)
isotonique et du sucrose 200 mM pour composer 40,
50, 60 ou 70% de SSP dans du PBS, puis 2 mL de
SSP ont été transférés dans un tube conique de 15 mL.
La semence décongelée (5 répliques) a été déposée
sur 2 mL de SSP et centrifugée 15 min a 800xg a 4 ou
20°C. Le culot de spermatozoides a été collecté et
remis en suspension avec le dilueur Lake 7.1. Les
témoins étaient la semence décongelée sans
élimination du glycérol.

1.4. Evaluation de la concentration de glycérol et
de la mobilité individuelle des spermatozoides

La concentration de glycérol a été mesurée selon les
instructions du kit Glycerol Assay (Sigma-Aldrich,
USA) sur 10 pL déchantillon. La mobilité
individuelle des spermatozoides a été mesurée au
Computer-Assisted Sperm Analysis system (CASA,
IVOS, IMV Technologies, France) sur 2 puL
d'¢chantillon a 30x10° cellules/mL. Quatre champs
d’observation ont été capturés pour chaque
échantillon. La trajectoire de chaque spermatozoide a
été enregistrée afin de calculer sa vitesse moyenne
(velocity average path, VAP). Les résultats de
mobilit¢ ont été exprimés en pourcentage de
spermatozoides mobiles et progressifs qui ont
présenté respectivement une VAP > 5 mm/s et VAP >
50 mm/s.

1.5. Analyses statistiques

Toutes les analyses statistiques sont réalisées avec le
logiciel R (version 1.4.1717) par ANOVA a deux
facteurs. Les résultats sont exprimés en moyennes et
écart-type. Une différence significative est révélée par
une p-valeur inférieure a 0,05%.
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2. RESULTATS ET DISCUSSION

2.1. Concentration de glycérol apreés centrifugation

Nos données révelent une réduction significative de la
concentration de glycérol aprés traitement de la
semence par une solution SSP (quelque soit la
concentration de Percoll)(Tableau 1). En effet, alors
que la concentration moyenne de glycérol de la
semence décongelée est de 1866,3 mM, apres
centrifugation dans SSP, elle est réduite a moins de
120 mM dans tous les traitements (Tableau 2). Ces
résultats révelent que notre nouvelle méthode
d'é¢limination du glycérol peut éliminer au moins
93,6% du glycérol de la semence décongelée. Des
expériences antérieures indiquent que 2% de glycérol
(soit environ 273.4 mM) est le seuil maximal pour
obtenir la capacité maximale de fécondation (Polge,
1951; Neville et al., 1971). Ainsi, notre méthode
permet d’obtenir une concentration de glycérol
compatible avec de bonnes conditions d’insémination.

2.2. Mobilit¢ des spermatozoides  apreés
centrifugation

La mobilité des spermatozoides décongelés est un
indicateur de leur capacité fécondante chez les poulets
(Bleshois et al., 2008). C’est pourquoi nous avons
choisi d’étudier ce critére comme prédicteur potentiel
de la fertilité. La concentration de SSP, la température
mais également I’interaction de ces deux facteurs ont
un impact significatif sur la mobilité des
spermatozoides (Tableau 1). La mobilité des
spermatozoides dans I’échantillon témoin diminue de
facon importante a 20°C mais pas a 4°C dans les 15
min suivant la décongélation (Tableau 2).
L’élimination du glycérol par notre protocole a 4°C
ne montre aucune différence significative de la
mobilité des spermatozoides. Cependant, le méme
protocole a 20°C améliore la mobilité des
spermatozoides, en particulier dans le traitement SSP
70% qui maintient le pourcentage de spermatozoides
mobiles et progressifs a respectivement de 25,1% et
15,2% plus élevés que le témoin. Cette observation est
en accord avec celle précédemment rapportée par Lin
et al., (2020) qui signalent que la centrifugation de
semence sur une solution de Percoll® est bénéfique
pour sélectionner les spermatozoides mobiles d’une
semence fraiche de cog. En outre, un protocole basé
sur un autre gel colloidal, le gel Accudenz (AD), est
déja utilisé pour éliminer le glycérol de la semence
décongelée de coq par centrifugation dans la solution
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AD discontinue (12% sur 30%) a 5°C (Purdy et al.,
2009). Cependant, nos données suggérent une
meilleure  mobilit¢  des  spermatozoides. La
comparaison des deux protocoles dans les mémes
conditions permettrait d’identifier la méthode plus
efficace.

De plus, les taux de mobilité observés a 20°C apres
centrifugation en SSP sont équivalents a ceux obtenus
a 4°C, suggérant que ce protocole peut facilement étre
développé a température ambiante.

2.3. Durée du protocole d’élimination du glycérol

Actuellement, la centrifugation avec dilutions en série
(CDS) est la méthode la plus courante pour réduire la
concentration de glycérol de la semence décongelée
de coq (Blesbois and Brillard, 2007). Toutefois, cette
méthode nécessite de travailler pendant de long temps
(Tableau 3). De plus, cette méthode ainsi que celle
précédemment présentée basée sur le gel AD
nécessite de travailler a 4°C, et donc la présence
d’une chambre froide, ce qui est difficile a mettre en
pratique dans les élevages. Au contraire, notre
nouvelle méthode d'élimination du glycérol n'a pas
besoin de la chambre froide et la centrifugation ne
prend que 15 min, ce qui permet gagner
respectivement 40% et 44,4% de temps par rapport a
la méthode d’AD et de CDS.

CONCLUSIONS

Nos données montrent I’efficacité d’une nouvelle
méthode d’élimination du glycérol de la semence
décongelée de coq basée sur le gel Percoll®. Cette
méthode permet d’éliminer efficacement le glycérol
de la semence décongelée tout en sélectionnant les
spermatozoides présentant une meilleure mobilité. Par
rapport a la méthode CDS conventionnelle ou celle
basée sur le gel AD, elle est plus économique, a la
fois en temps et en équipement car elle peut étre
employée a température ambiante et éviter donc la
nécessité d’une chambre froide. Actuellement, des
expériences sont en cours pour déterminer I’impact de
cette méthode sur la réussite de I’insémination
artificielle.
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Tableau 1. Effets de la température et la concentration de Solution Sucrose-Percoll® sur la concentration de
glycérol, le pourcentage des spermatozoides mobiles et progressifs

Statistique (p-valeur)

. . Température*
Température Concentration de SSP Concentration de SSP
Concentration de glycérol 0.633 <0,001 0.460
Spermatozoides mobiles <0,001 <0,001 <0,001
Spermatozoides progressifs <0,001 <0,001 0.002

SSP : Solution Sucrose-Percoll®. Une p-valeur inférieure a 0,05 est considérée comme significative.

Tableau 2. Effets sur la concentration de glycérol, le pourcentage des spermatozoides mobiles et progressifs de
la semence décongelée de coq aprés centrifugation dans Solution Sucrose-Percoll®

4°C 20°C
SSP  SSP SSP  SSP SSP  SSP  SSP  SSP
TEM  40%  50%  60%  70% TEM  40%  50%  60%  70%
Concentrationde 16651 808 791 850 1188 18475 744 768 1125 1119
glycérol (mM) 731* 105" 167° 17,9 12,9 805 203" 22,7° 195 215
Spermatozoides 440 461 431 425 464 254 425 399 401 505
mobiles (%) 3ygab 3y7ab 5,23b 4,63b 3Y66b 3'30 3’4ab 4y4a 3y7a 5,5b
Spermatozoides 283 316 285 276 306 165 264 241 249 317
progressifs (%) 20 31*  37% 350 29 37° 26® 35 25% 49

TEM : échantillon témoin ; SSP : Solution Sucrose-Percoll® ; Les valeurs sont exprimées en moyenne =+ écart-
type (n = 5) ; ® Des exposants différents indiquent des différences significatives (p-valeur<0,05).

Tableau 3. Comparaisons des méthodes d'élimination du glycérol entre la centrifugation par Sucrose-Percoll®
solution, Accudenz et avec dilutions en série

Solution Dilution Centrifugation
T (°C) Time (min) Force (g) T (°C) Time (min)
SPS Sucrose-Percol|l® - 0 800 40r20 15
AD Accudenz discontinu - 0 300 5 25
CDS Lake C 4 12 500 4 15

SSP : Solution Sucrose-Percoll® ; AD : Accudenz ; CDS : centrifugation avec dilutions en série.
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Nouvelles avancées dans la cryoconservation des spermatozoides de coq
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1INRAE, CNRS, IFCE, Université de Tours, PRC, 37380, Nouzilly, France; 2 Physiology Division, TLRI, COA, 71246, Tainan, Taiwan

@ Le glycérol offre une excellente
protection des spermatozoides lors
de la congélation

@ Mais la fertilité est faible, peut-étre a
cause de la présence du glycérol lors

de I'insémination artificielle
T

@ Diluer la semence avec
un cryoprotecteur et
congeler en paillettes

@ Stocker les paillettes dans
une bonbonne d’azote
liquide a - 196°C

)
Pour conserver différentes Gomment :
especes, races et lignées congeler les |
pour la biodiversité Pourquoi spermatozoides _:
| congeler les de coq?
_________ spermatozoides
de coq?

Ca marche
bien, mais .
apres?

@ La centrifugation Percoll® élimine
efficacement le glycérol

@ 40% ou 70% de Percoll® a 20°C sont
les meilleures conditions in vitro

@ Par centrifugation dans un gel
synthétique de Percoll®

@ Mettre la semence décongelée
sur le Percoll® - Centrifuger 15
minutes = Collecter le culot de
spermatozoides - inséminer

© Lancer des expériences
d’insémination des poules pour
confirmer notre hypothése

Video link: https://www.inrae.fr/actualites/videos-trois-doctorants-temoignent-leurs-travaux-recherche
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INTRODUCTION

(lycerol is an excellent cryoprotectant for
vertebrate sperm agamst cryodamages®. In
chicken, 11% glycerolis the standard
concentration for freezing sperm, but it needs to
be elimimated before msemmating hens to avoid
infertility?. This phenomenon has been discussed
since 1950s?, but the mechanisms mvolved m
negative glycerol effects are still unknown. Here
we hypothesized that glycerol disturb sperm
biology before (during freezing and thawing
processes) and after (in the female tract)
insemination. Thus, we firstly confimed the effect
of mcreasing glycerol concentrations on fertility.
Then we investigated how sperm biology was
mpacted by glycerol presence at 4 and 41°C
within 60 min (time necessary for

cryopreservation, thawing, msemination and
rogression in the female tract).

METHODS

1. Semen of 10 adult T44 roosters was coﬂected,\

pooled,and dinted with Lake PC diluent
combmed to 0,1, 2,6 and 11% glycerolat 47C.

2. For fertility test (n=2), 80 Eabrown hens were
nseminated immediately after dilution with
100x 106 pookd glycerolized sperm/female.

3. Torinvitrotests (n=5), sperm membrane
integrity, mitochondria activity, apoptosis, ROS
balance and ATP content were assessed at 0,30
and 60 min at 4 and 41°C with fluorescent
probes and ATP-lcferase reaction kit by flow
cytometry or iminometer.

4. Data of fertilty and in vitro sperm biob gy were
analyzed by Chi2 test and two-way ANOVA with

Rstudio and GraphPad softwares, respectively.
Significant difference was identified by different
letters (p<0.05).

percentage of fertile eggs

RESULT-1 Impacts of glycerol on fertility

a a b c c
100% 6
1
80%
4

60%
73 80

40%

20% I
0% B &
0% 1% 2% 6% 11%

glycerol concentration (%) ®fertile  infertile

Figure 1. Effects of glycerol on hen fertility. Red bars represent
the percentage of fertile eggs (%). The numbers on the bars
represent the eggs numbers.

L

U

2% glycerol in semen caused more than 50% loss of
fertility and 6% led to a complete infertility.

S—

CONCLUSIONS and PERSPECTIVES \

Glycerol canses distinguishable impacts on sperm
motility and biology at 41°C, which might probably alter
normal functions of sperm progression, selection and
storage in the female tract, resulting in decreased
fertility.

. ROS balance and ATP content are two majpr factors

regulating sperm motility. Qur future in vitro studies will
narrow down to verify their connections.

. Tarther in vivo and ex vivo experiments will be applied

to decipher the deleterious effects of glycerol during
vperm progression or storage in the female tract. /

Motility Membrane Apoptosis
Mitochondria ROS/ATP
41°C .m
g . 20 0 e 60 0 60 0 o
min || min min | min min || min

2.6, llrepresent glycerol 0, 1, 2, 6, 11%.
mild, medium and severe impacts.

ULT-2 Impacts of glycerol on sperm biolog

10 30
min min
Motility Membrane Apoptosis/ROS

Mitochondria/ATP

Figure 2. Effe cts of glycerol concentration on sperm biology. GO, 1
© @ represent

U

1 At 4°C,only 11% glycerol caused mild impacts on
sperm binlogy.

2. A ATC glycerol severely mmpatred sperm metility n
10-20 min.

3. Glycerol nduced sperm metabolism modfications
mainly occurred when concentration higher than 6%.

—
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RECOMBINANT PORCINE JUNO BEADS SUPPORT SPECIES-
SPECIFIC SPERM BINDING

G. Yarza-Munoz !, R. Romar?, M. Jiménez-Movilla !
'Department of Cell Biology and Histology, School of
Medicine, University of Murcia, Campus Mare Nostrum and
IMIB-Arrixaca, Murcia, Spain.
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BACKGROUND-AIM

Juno protein is localized on the egg's membrane and it
is essential in mammails fertilization due its binding to the
sperm receptor IZUMO1. Knock out for some of these two
proteins show absence of fertilization. So, we propose the
use of beads coated with recombinant JUNO protein to
bind those spermatozoa with the greatest capacity to
fertilise.

METHODS

We used two plasmid vectors pcDNA3.1 to cloning
the predicted sequence encoding JUNO gene with a
6-histidine tag added to the C-terminus, from Sus scrofa
and Homo sapiens. Human Embryonic Kidney (HEK) 293T
cells were fransiently transfected with the plasmid vectors
fo produce the recombinant porcine and human JUNO
protein (rPJUNO and rhJUNO). Secreted proteins were
purified and conjugated to commercial magnetic beads
(His Mag Sepharose Excel GE Healthcare) to generate
the 3D models pJUNO-beads and hJUNO-beads. 3D
models were co-incubated for 1, 2, 3 and 4 hours with fresh
ejaculated boar semen from fertile males to assess the
number of spermatozoa bound per bead and the number
of bound spermatozoa reacted acrosome. Beads without
protein (Ctrl-beads) were used as internal control for the
assay. Beads were fixed in glutaraldehyde and stained
with Hoechst and PNA-FITC. We studied a total of 605
beads and statistical analysis was performed by one-way
ANOVA and when P-value was <0.05, differences among
groups were analysed by a Tukey's.

RESULTS

Expression of proteins and its conjugation fo commercial
beads was confrmed by SDS-PAGE and Western-Blot.
The greatest significant differences in the number of
spermatozoa bound were observed at 4 hours (P= 0) with
12,58+1,38 for pJUNO-beads, 7,96+0,98 for hJUNO-beads
and 5,69+0,61 for Ctrl-beads. The number of reacted
spermatozoa at 4 hours was significative higher (P= 0) in
pJUNO-beads with 5,68+0,67 while in human and control
models had 3,43+0,39 and 2,64+0,23 respectively.
CONCLUSIONS

These preliminary data show that JUNO proteins were
successfully expressed and secreted by HEK cells and
conjugated to commercial beads. The generated pJUNO-
beads model binds more reacted sperms than control and
human models showing that porcine sperm specifically
recognize porcine JUNO protein hence, indicating that the
Juno-sperm binding is species-specific.

Supported: Fundacién Séneca 20887/PI/18; Ministerio de
Ciencia e Innovacién PID2020-114109GB-100
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IMPACT OF GLYCEROL ON SPERM FERTILIZING CAPACITY IN
CHICKEN

H.H.LinL, I. Grasseau !, P. Mermillod ', E. Blesbois !, A. Vitorino
Carvalho!

'INRAE, CNRS, IFCE, Université de Tours, PRC, Nouzilly,
France

BACKGROUND-AIM

Glycerolis the most common cryoprotectant of vertebrate
semen because it provides an excellent protection of
sperm against cryodamages. In chicken, 11% glycerol is
the standard concentration for freezing sperm, but it needs
to be removed before inseminating hens, otherwise the
fertility is dramatically decreased. This phenomenon has
been discussed since 1950s, but the mechanisms involved
remain unclear. Here we hypothesize that glycerol
preserves sperm capacities at low temperature whereas
interfere with sperm biology at physiological temperature
(i.,e. 41°C). Thus, we firstly investigated the effect of
increasing glycerol concentrations on fertility. Secondly,
we explored how sperm biology, especially sperm motility
and membrane integrity, could be impaired by glycerol
presence at 41°C within 60 min (physiological time of
sperm evolving from vagina to infundibulum).

METHODS

Semen of 10 adult T44 roosters was collected, pooled, and
diluted with glycerol-Lake PC diluent to final concentration
of 0, 1,2, 6 and 11% glycerol at 4°C. For fertility test (n=2), 80
Isabrown hens were inseminated immediately after dilution
with 100x106 pooled glycerolized sperm/female. For in
vifro tests (n=5), sperm mass and individual motilities were
assessed at 0, 10, 20 and 30 min at 41°C by microscope and
computer-assisted sperm analysis (CASA), respectively,
and membrane integrity was evaluated at 0, 30 and 60
min by fluorescence flow cytometry. Data were analysed
by ANOVA tests.

RESULTS

Results revealed that 2% glycerol led to 50% decline of
fertility, and infertility was observed with 6 and 11% glycerol.
No impact of glycerol on sperm mass motility was revealed
but 1% glycerol significantly reduced sperm individual
mofility after 10 min, and more severe reduction was
observed with higher concentrations. Moreover, whereas
no impact was observed with 1 and 2% glycerol, 6 and 11%
glycerolinduced sperm membrane integrity failure after 30
min of incubation at 41°C.

CONCLUSIONS

Collectively, the presence of glycerol in semen samples
at very low concentration impacted fertility and sperm
mofility, whereas higher concentrations are also associated
with membrane defects, supporting the need to remove
glycerol before insemination to stop the disturbances of
sperm fransportation and integrity in female tract.
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APPLICATION OF COLLOIDAL CENTRIFUGATION TO REMOVE
GLYCEROL FROM CHICKEN FROZEN-THAWED SEMEN
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(1)

(1) INRAe, Nouzilly, France

*Presenting author

Corresponding author mail: linherbie@gmail.com (Hsiu-Lien Herbie Lin)

Glycerol is the most used cryoprotectant to freeze chicken sperm due to an
excellent protection of sperm cells against cryodamage. However, the presence of
glycerol in post-thawed semen causes severe fertility reduction, leading to the
necessity of removing glycerol before insemination. The main approach developed
to remove glycerol is serial dilution (SD) protocol, which implies special equipment
to maintain the thawed semen at 4°C and is time consuming. Therefore, we
developed a simple method to remove glycerol from chicken frozen-thawed semen
based on centrifugation in a colloidal gel, Percoll®, which is ordinarily used to
select motile sperm in mammals as well as in fresh chicken semen.
Eighteen adult T44 roosters were randomly divided between three groups and used
as semen donors. Semen was collected from each group and frozen in Lake PC
diluent containing 11% glycerol in straws in a programmable freezer. Frozen
semen was thawed at 4°C for 3 min, layered on PBS solution containing 200 mM
sucrose and isotonic Percoll® (Sucrose-Percoll® Solution, SPS) and centrifuged at
20°C, 800xg for 15 min. Different concentrations of SPS in PBS (40, 50, 60 or
70%) were tested to identify the best conditions by performing in vitro tests
including glycerol concentration assay and sperm individual motility evaluation, as
indicators of in vivo fertility. Artificial inseminations were performed on 36 hens
with frozen-thawed semen treated by SPS and by SD protocols to compare their
efficiencies. Data of in vitro and fertility tests were analysed by two-way ANOVA
and Chi2 tests. Our results indicated that all concentrations of SPS efficiently
decreased glycerol concentration to less than 120 mM while the concentration was
1866.3 mM before treatment. A beneficial selection of motile and progressive
sperm was achieved by all concentrations of SPS, especially SPS 70% showed the
best improvement of 25,1% and 15,2%. SPS 40 and 70% were two conditions
selected for insemination test and reached 45.8% and 21.6% of fertility
respectively, compared to 49.1% after SD treatment. Collectively, our new
colloidal method can efficiently remove glycerol from chicken frozen-thawed
semen with a positive selection of sperm motility. SPS 40% obtained better fertility
than SPS 70% but was not significantly different from SD. Compared to the
conventional SD protocol, this method can save 44% of the time while achieving
similar fertility.
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Impacts of glycerol on sperm fertilizing ability in chickens

Hsiu-Lien Herbie Lin*, Isabelle Grasseau, Pascal Mermillod, Elisabeth Blesbois, Anais Vitorino
Carvalho

*INRAE, Nouzilly, France

Abstract:

Glycerol is the most efficient cryoprotectant to freeze chicken sperm, but it is associated with
fertilization failures, requiring its removal before insemination. The cellular mechanisms underlying
these negative effects on fertility remain unknown. Here, we firstly investigated the impacts of
glycerol (0,1, 2, 6 and 11%) on sperm biology within 60 min of incubation at two temperatures to
mimic freezing procedures (4°C) and physiological temperature (41°C). After collection, semen of 10
roosters was pooled, incubated with different doses of glycerol and sperm motility, membrane
integrity, apoptosis, mitochondria activity and ATP production were assessed. Secondly, we explored
how glycerol modulates sperm storage in oviduct. Nine hens were inseminated with Hoechst stained
sperm (200x106 sperm/female), slaughtered after 24 hours, and the presence of sperm was
explored in sperm storage tubules (SST) at uterovaginal junction. 11% glycerol is the only
concentration interfering with sperm biology at 4°C whereas 6 and 11% glycerol significantly impair
sperm characteristics at 41°C, especially in terms of motility. Furthermore, % of SST containing
sperm decreased with increasing glycerol concentrations. Collectively, our data revealed important
impacts of glycerol on sperm motility, potentially responsible of the reduction of sperm storage in
SST observed in vivo after insemination, explaining reduced fertility.

Keywords: chicken, sperm, glycerol |
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