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Visualization and Analysis of three traits in 93 tomato cultivars.
By Hsin Yi Tseng (Tseng004) and Romee Verhagen (Verha058)

Introduction

For this project a dataset was provided by the Center for BioSystems Genomics
(CBSG) and it contains 93 genotypes of tomato cultivars. The Netherlands and the
CBSG together provide roughly 70% of varieties and seeds of the global fresh tomato
production. The cultivars in this dataset can be divided into three categories; cherry,
round and beef. Of all these cultivars the metabolic profiles were measured which
resulted in 129 potentially interesting metabolites. These can also be divided into
separate categories; Volatiles (V_), untargeted volatiles (UV_), non-volatiles (NV_)
and derivative volatiles (DV_). For all the genotypes multiple sensory and
physiological traits were also determined, however, in this case only three traits are of
interest; sweetness, tomato taste and fruit weight. For the metabolites models were
used to estimate the mean trait values per genotype and corrected for the influence of
other factors on individual measurements.

The goal in this project is threefold; first the dataset will be visualized, secondly
several classification methods are used to see which best fits the data and to help
determine metabolites of interest. And lastly a regression analysis is performed to see
how well the traits can be predicted and again which metabolites are of interest or
necessary for these predictions.

Description of Methods

Visualisation (Description & motivation of method and choices)

To visualise the dataset three boxplots were made, each boxplot was made to compare
one of the traits between the different tomato types. This was done to give a clear
visual of the distribution of data. Furthermore, a PCA was performed for each
category of metabolites to reduce the amount of variables and make the large data set
is easy to visualize. To identify which metabolites have a correlation with sweetness,
tomato taste and fruit weight the correlation matrices were plotted. For sweetness and
fruit weight the correlations were only plotted if they were higher than 0.7, for the
tomato taste they were only plotted if they were higher than 0.3.

Classification (Description & motivation of method and choices)
For the classification multiple methods were used and compared to see which one was
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best for this data set. To compare the methods the models were trained with 75% of
the data set and subsequently tested with the remaining 25% of the dataset. The
methods were compared for their predictive capabilities and their accuracy. The
methods that were compared were the k-nearest neighbours, decision tree and random
forest. After that one-way ANOVA’s were performed on the most important
metabolites found to confirm that they were significantly different between the tomato
categories and then boxplots were made to see what those differences were.

Regression (Description & motivation of method and choices)

For this dataset, due to the large number of variables, it was only possible to use

Lasso regression or Ridge regression. For this analysis Lasso regression was used to
eliminate any irrelevant or less important data and to only focus on the most important
variables for this study.

Results & Discussion

Visualisation

From the boxplots (Figure 1), it can clearly be seen that for sweetness and fruit weight
cherry tomatoes have very different values than round or beef tomatoes, with cherry
tomatoes being much sweeter and lighter. For the round and beef tomatoes no big
difference can be seen for sweetness or tomato taste, however the beef tomatoes
appear to be heavier than the round tomatoes. For tomato taste, it seems that there is
no difference amongst those three tomatoes.

From the PCA most variances can be explained by the first two PCs. (PC1 explains
71.8% of the overall variation and PC2 can explain 17.2%). From PCL1 for all traits a
clear difference can also be seen with on the one hand the cherry tomatoes and on the
other hand the beef and round tomatoes. There is a lot of overlap between the beef and
the round tomatoes, with the main difference being that the round tomatoes cover a
bigger area (Figure 2).

To determine which metabolites have a correlation with sweetness, tomato taste and
fruit weight correlation matrices were plotted for each trait (Figure 3). For sweetness
the original matrix was very large so the metabolites which had a correlation lower
than 0.7 were excluded from this analysis. From the correlation matrix it is clear that
sweetness has a negative correlation with fruit weight and a positive correlation with
sugars such as sucrose, fructose and glucose which is to be expected.

Fruit weight also had a large original matrix so for this trait the metabolites with a



correlation lower than 0.7 were again excluded. Since fruit weight has a strong
negative correlation with sweetness it is logical to see that is also has a negative
correlation with the same metabolites that sweetness has a positive correlation with,
such as sucrose, fructose and glucose. Furthermore, the negative correlation between
sweetness and fruit weight makes sense since the bigger the fruit is the more the
sugars are spread out over the volume of the tomato, making the concentration of
sugars lower overall and thus the fruit less sweet.

For tomato taste there were only very small correlations with the metabolites, the
highest correlation still being lower than 0.4, therefore only those with a correlation
lower than 0.3 were excluded. The biggest correlations were with UV_u_2182 14 and
UV _nitrocyclopent, but as said before these were still quite low. Since tomato taste is
a trait that is quite hard to define it isn’t surprising to find no strong correlations with
anything, since it is not clearly defined what tomato taste itself really means.

Classification

For the k-nearest neighbour method an optimum value for k was found at k=4. This
has a 85.7% accuracy for the test data and an accuracy of 78.3% for the training data
(Table 1). In the training data, however, most of the beef tomatoes were categorized as
round tomatoes, this was the same for the testing data. Since the goal of classification
is to define all the samples in the correct group this method doesn’t appear to be the
best choice since it has a lot of difficulty differentiating beef tomatoes from round
tomatoes.

The decision tree had an accuracy of 91.3% for both the training and the testing data
(Table 2). After cross-validation the tree was pruned with an optimum level of three,
given that this is also the amount of categories of the data set this was to be expected.
This method is better at categorizing beef tomatoes than the k-nearest neighbour
method, however there are still a few mistakes in both the training and testing dataset.
From the pruned tree two metabolites can be identified that were used to differentiate
between the different types of tomato. These metabolites are NV_gtocopherol (<5.564)
and NV _rutin (<3.042) (Figure 4).

The third method tested was the random forest method. Here an accuracy of 91.3%
was found (Table 3), which is the same accuracy as found in the decision tree method,
and random forest also has some mistakes with the beef tomato. From the results the
same important metabolites are found as from the decision tree with one addition in
between. NV _rutin was found as the most important metabolite, UV _terpineol 91 as



second best and NV _gtocopherol as third (Figure 5).

Overall the decision tree and random forest methods give the highest accuracy, both
making 2 mistakes (see Tables 2 & 3), the difference only being in that the random
forest made 2 mistakes in classifying the beef tomatoes and the decision tree made 1
mistake for beef tomatoes and 1 for round tomatoes. Based on these results both
methods appear to be equally well suited to classify this dataset. What can be said for
sure is that they are both better than the k-nearest neighbour method for this dataset.
However, if more of the available traits that pertain to the distinction between the
round and beef tomatoes were included in the dataset this could change, given that
this seems to be the main problem for all the methods.

To further investigate the metabolites of interest two one-way ANOVAs were
performed, one on NV_gtocopherol and the other on NV _rutin.(Table 4 & 5). For
both metabolites the Anova showed that at least one of the tomato categories is
significantly different (p<2e-16 for both metabolites, a =0.01, see Table 4 & 5) from
the other categories. Next a boxplot was made for each metabolite to compare them
between the tomato categories and this showed that cherry tomatoes had the highest
count for both NV_gtocopherol and NV _rutin, and that round tomatoes showed a
higher count than beef tomatoes for Nv_rutin. This leads to the conclusion that the
cherry tomatoes are significantly different from round and beef tomatoes for these two
metabolites, which is expected since the classification methods had no problem with
differentiating cherry tomatoes from round and beef tomatoes.

Regression

The lasso regression for sweetness had a R? value of 63% and a Q? value of 57.99%
(Table 6), which are both reasonable. The highest coefficient was for DV_glucose
which, again, is to be expected since this is a sugar and the measured trait is sweetness.
Therefore, this is an important metabolite which can be used to predict the sweetness
of tomatoes.

The values found for tomato taste from the regression were extremely low, with the
R? being only 4.51% and the Q% only 1.23% (Table 6). The most important metabolite
for this trait appears to be NV_atocopherol, however, with such low values for the R?
and the Q7 the regression is extremely unreliable and can’t really be used to predict
anything accurately.

For fruit weight the highest numbers were found, with a R? value of 84,88% and a Q?
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value of 77,47%. Therefore, the regression model for this trait is the most accurate in
explaining the found values and is the best prediction model. The most important
metabolite from this regression is again NV _rutin with a very high negative
coefficient (Figure 7), which means this is an important metabolite to help predict
fruit weight in tomatoes. Other metabolites with high negative coefficient values are
again NV_gtocopherol and DV _fructose, which again isn’t surprising since this is a
sugar and bigger fruit are generally less sweet.

Conclusions

From the boxplots and PCA used for visualization it was clear to see the cherry
tomatoes were the easiest to distinguish from the other categories of tomato. It was
also evident that it would be harder to distinguish the beef tomatoes from the round
tomatoes. This proved true in the classification, where the decision tree and random
forest method both performed equally well, better than the k-nearest neighbour
method. From the classification it was clear that NV _rutin and NV _gtocopherol were
important metabolites to classify the samples into the appropriate categories. From the
Anova’s and boxplots of these metabolites confirmed that the cherry tomatoes are
significantly different from the round and beef tomatoes, however, this can’t be said
for certain about the difference between round tomatoes and beef tomatoes. From the
regression analysis it is clear that no accurate predictions can be done based on tomato
taste, however sweetness and mainly fruit weight are quite accurate and reliable
predictors. Furthermore, the regression analysis showed that DV_sucrose and

DV _fructose are important metabolites which can be used to make reliable prediction
models for sweetness and fruit weight respectively.
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Reflection

Overall the project went quite well. In the future it might be a good idea to also do
t-tests to see if there was a difference between round and beef tomatoes for NV _rutin,
or to also do Anova’s for DV_sucrose and DV _fructose to see if they might be able to
provide enough of a distinction between round and beef tomatoes.

The cooperation went well, there weren’t any disagreements and the workload seems
to have been divided fairly equally. The main change to this project that would be
beneficial would be if it didn’t start in the study week since most students plan on
studying for their tests at that time and would prefer to have done this earlier in the
period.
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Figure 1. Boxplots for comparing three different tomato types on sweetness (left),
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colors represent different types of tomato.
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Figure 3. The correlation matrix plots for the metabolites or sensory/physiological

traits whose correlation is higher than 0.7 with sweetness (upper left) and fruit weight

(upper right), and higher than 0.3 with taste.
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Figure 4. Decision tree plot for the classification of the different types of tomatoes

into three groups.
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Regression
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Figure 7. The coefficient of most significant metabolites after Lasso regularization on
sweetness (top), taste (middle) and fruit weight (bottom).
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Tables

Table 1. The classification table shows the prediction results of using the k-nearest neighbour

classifier

Observed Beef Overall Percentage

Beef
Predicted Cherry

Round

Percentage correct 28.6% 78.3%
Table 2. The classification table shows the prediction results of using the decision trees
classifier

Observed Beef Overall Percentage

Beef 6
Predicted Cherry 0

Round 1

Percentage correct|  85.7% 91.3%
Table 3. The classification table shows the prediction results of using the random forests
classifier

Observed Beef Overall Percentage

Beef 5
Predicted Cherry 0

Round 2

Percentage correct 71.4% 91.3%

Table 4. One-way ANOVA table to assess effects on NV_gtocopherol

Source Df Sum of squares Mean square Fvalue Pr(>F)
label 2 3.091 113.4 <2e-16 ***
Residuals 90 1.226

Signif. codes: 0 “***’0.001 “***0.01 “*’0.05°.”0.1“’1
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Table 5. One-way ANOVA table to assess effects on NV_rutin

Source Df Sum of squares Mean square Fvalue Pr(>F)
label 2 6.668 3.334 110 <2e-16 ***
Residuals 90 2.727 0.03

Signif. codes: 0 “***’0.001 “**’0.01 “*’0.05°"0.1“’1

Table 6. The R? and Q7 of Lasso regression on sweetness, taste, and fruit weight.

Sweet Tomato Fruit.Weight
R*2 63% 4.51% 84 88%
Q2 a7.99% 1.23% T747%
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Introduction

Plant growth promoting rhizobacteria (PGPR) are a group of bacteria living in
rhizosphere and benefiting plant growth by different mechanisms. To understand the
interactions between plants and PGPR can help us utilize PGPR effectively in
agriculture, such as used as bio-fertilizers. Some possible biosynthetic pathways of
phytohormones and nitrogen fixation have been proposed. However, many
mechanisms of PGPR characteristics which enhance the plant growth or stress
tolerance are still not clear. Therefore, it deserves to discover more PGPR
characteristics related to plant growth.

Bioinformation analysis is a useful tool to provide insight into the molecular
level. Here, we use proteomics data of 15 PGPR strains collected form desert plants,
and try to figure out how these bacteria help plants growth under drought or salinity
stress. Phytohormone regulations and nitrogen fixation are common ways in
beneficial bacteria to promote the plant growth or deal with abiotic stress. Therefore,
we want to identify the strains which are capable of producing phytohormones or
involving in nitrogen fixation and link these characteristics to growth promotion of
plants. In addition, we also use phenotype to associate the possible orthologous and to
find if there is other possible mechanism. Under this project, | will focus on
identifying the pathways which are involved in the biosynthetic pathways of
phytohormones in bacteria genomes and comparing the performance of different
strains.

Materials and Methods

Bacteria materials

Dr. Rene Geurts and his teams collected about 1600 isolates form Indigofera
argentae, and selected 15 strains that represent the most abundant OTUs in
rhizosphere and endophytic compartment of Indigofera argentae. They also provided
the phenotype data of tomato growth under non-sterile saline conditions. Including
individual data and treated with different synthetic communities (SynCom).

Pfam IDs identification
In order to identify the characteristics in 15 strains, we can analysis their protein
function to know the possible role they play in metabolic pathways. We can compare
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the sequence similarity with known proteins or domains in database to recognize their
protein function in 15 strains. Therefore, we searched possible biosynthetic pathways
of phytohormones and nitrogen fixation form previous studies, and listed key
enzymes/genes involved in the pathways. We can use these known information as
reference to find the protein domains with the same functions in bacteria genomes.
The aim of Pfam IDs identification is to search if there are proteins involved in
biosynthetic pathways of phytohormones and nitrogen fixation in 15 strains.

The Pfam database is a database of protein families. Each Pfam entry is defined
by multiple sequence alignments and hidden Markov models (HMMs) [1]. According
to the known proteins, we can search their specific Pfam accession numbers from
UniProt database (https://www.uniprot.org/) and find their major domains (Figure 1).
After listing all known IDs, the Pfam-A HMM library (version 32.0) was download
from EMBL-EBI website (ftp://ftp.ebi.ac.uk/pub/databases/Pfam) to search the
proteins which have the same Pfam IDs with referential proteins in 15 strains by
HmmSearch (version 3.1b2)[2]. The default parameters were used. In this way, we
can get candidate proteins in 15 strains.

In addition, we also use BLAST and TIGRFAMs ID to identify if referential
proteins exist in 15 strains. We use the proteins of 15 strains to do protein-protein
BLAST against the protein sequences of referential proteins for searching protein
sequence similarities. TIGRFAMs is a database of protein families described by
hidden Markov models (HMMs) [3]. TIGRFAMSs focus on not only sequence
similarity but specific function of proteins.

We use some strategies to filter proteins. Trusted cutoff scores is the HMM score.
That can help us decide if the proteins belong to the same members. Proteins is above
trusted cutoff scores which means no false positive hits. Both trusted cutoff scores of
Pfam and TIGRFAMs provided from TIGRFAMs database
(http://tigrfams.jcvi.org/cgi-bin/index.cgi) were used to filter out the proteins which
are below the score. After searching genomes by HmmSerach in 15 strains, we select
the first 5 proteins which are significant proteins and ascending ranked by E-value of
full sequence. E-value is the statistical significance. Therefore, the lower E-value, the
more confidence we can say that this is a homologous domain. According to the
results of BLAST, we also include the proteins which are above 60 % identity. We use
these proteins to do multiple alignment and plot the phylogenetic tree. The results of
BLAST and the identifications of TIGRFAMs ID were provided by other members.

Phylogenetic tree construction
Although sequences with the same Pfam IDs, they may not have the same
function. For example, the Amino_oxidase entry (Pfam: PF01593) consists of various
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amine oxidases, including maize polyamine oxidase (PAO), L-amino acid oxidases
(LAO) and various flavin containing monoamine oxidases (MAO). Therefore, we can
use phylogenetic tree to subdivide them into subfamilies and identify the most related
group.

Except referential proteins, some similar protein with the same Pfam IDs and
annotation obtained from UniProt were also used as referential proteins to do multiple
alignment with candidate proteins, and then plotted phylogenetic tree. According to
the results of cluster, we can identify the most related proteins. Generally, these
referential proteins would cluster closely to each other. The multiple alignment and
Phylogenetic tree construction were performed on EMBL-EBI MAFFT website
(https://www.ebi.ac.uk/Tools/msa/mafft/) [4].

After plotting the phylogenetic tree, we selected the proteins which clustered
with referential proteins as candidate proteins. If the most related cluster contains
more than one protein of each strain, the lowest E-value protein of each strain was
retained.

Results

Pfam IDs identification and candidate proteins selection in 15 strains

We searched genes involved in phytohormone production and nitrogen fixation
from literature, used known proteins as referential proteins to do BLAST and
searched their Pfam IDs and TIGRFAM IDs (Table 1). Afterwards, we used
HmmSearch to find the proteins which had the same Pfam ID with referential proteins
in 15 strains (Supplementary data S1). However, the same Pfam IDs might contain
different functional proteins. Therefore, we can use multiple alignment and
phylogenetic tree to help us find the most related proteins (Supplementary data S2-S6).
The referential proteins usually group nearby, so we can select the proteins which are
in the same cluster with referential proteins to decide the most related proteins in 15
strains (Figure 1). The candidate proteins are shown in Table 2.

For auxin, we selected 3 possible pathways : iaaM/iaaH pathway, ipdc/ IAAld
dehydrogenase pathway, and nitrilase pathway. None of iaaH was identified in 15
strains, so iaaM/iaaH might be not possible. The annotations in most of proteins are
involved in tryptophan metabolism. That is because tryptophan is a main precursor for
the biosynthesis of indole-3-acetic acid (IAA). According to the results of Pfam IDs
identification, most of strains can produce IAA via ipdc/IAAld dehydrogenase or
nitrilase pathway. On the other hand, ipdc contains multiple domains (PF02775,
PF00205 and PF02776), so we can use TIGRFAMs ID identification to find the most
related proteins. Unfortunately, no proteins hit the TIGRFAMs TIGR03393
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(Supplementary data S7). IAA can regulate various plant growth processes. According
to the results, 12 strains are identified to be capable of producing IAA. This indicates
that IAA is an important phytohormone in bacteria and most of stains can produce
IAA. Auxin can help plant growth by root-growth regulation, and root elongation is
also an important characteristic under drought or salinity stress.

For abscisic acid (ABA), there is not a clear ABA biosynthetic pathway
described in bacteria. In Arabidopsis, abscisic-aldehyde oxidase, AAOS3, catalyzes the
final step in abscisic acid biosynthesis [5], so we use AAO3 as a key protein for ABA
biosynthesis. AAO3 include 6 domains. Among them, PF01315 relates to aldehyde
oxidase and xanthine dehydrogenase, so we use PF01315 as the main domain to
represent AAO3. Here, we found 8 strains might contain AAO3. Nevertheless, if
AAO3 also can work in bacteria is unknown. It needs further experiments.

Iso-pentyl transferase (ipt) is a key enzyme which is responsible for the synthesis
of cytokinins (CK) [6]. The main domain, PF01715, belongs to tRNA
dimethylallyltransferase. The results show that there are 3 strains, SA403, SA436 and
SA444, annotated as tRNA dimethylallyltransferase. We assume these strains might
contain ipt and could produce CK.

Ethylene can stimulates leaf senescence under stress and affect the plant growth.
1-aminocyclopropane-1-carboxylate (ACC) is a precursor of ethylene. Bacteria can
produce ACC deaminase to help degrade ethylene. The Pfam ID of ACC deaminase is
PF00291. Members of this family are all pyridoxal-phosphate dependent enzymes.
The protein identified as PF00291 in SA188, SA424, and SA613 was annotated as
tryptophan synthase beta chain, which was also one of the members of PF00291
family. However, we can just assume that tryptophan synthase beta chain are related
to ACC deaminase. Whether it could act as ACC deaminase is not clear.

Bacteria can use 2-oxyglutarate as substrate and the ethylene-forming enzyme
(EFE) to synthesis ethylene [7]. However, the results show that the most related
proteins in SA148, SA188, SA244, SA403, and SA613 are not annotated as EFE.
Again, we can just assume they are related to EFE. Whether they can act as EFE
needs further confirmation.

The gibberellin (GA) biosynthetic pathway in plants need cytochrome P450
monooxygenases (CYPs) to synthesis GA. In bacteria, CYP112, CYP114, and
CYP117 are found in Bradyrhizobium japonicum and are involved in GA production
[8]. Here, we found some candidate proteins annotated as Cytochrome P450 related
proteins and grouped with referential proteins, which means they share high identity.
Therefore, we can infer that these candidate proteins might have similar function with
referential proteins involved in GA production.

Biological nitrogen fixation also can help plants for enhancing plant growth.
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Nodulation factors (Nod factors) act as signal chemicals between symbiotic bacteria
and plants to form root nodules in leguminous plants. In addition, rhizobia have the
ability to fix nitrogen via nitrogenase and nitrogen fixation (nif) gene. The results
show that the candidate proteins of nod factors and nitrogen fixation found in SA403
are related to nodulation or nitrogen fixation. Therefore, SA403 might exist nod
factors and nitrogen fixation proteins to help plant growth.

Comparing the possible pathways in SynComs with the phenotype of tomato

Table 4 shows the number of strains involved in the biosynthetic pathway of
phytohormones in SynComs. We compared the performance of tomato growth with
different SynComs under saline conditions, and combined the possible pathways
which SynComs are involved. The result shows that SynCom E, F, and G contain all
possible pathway. SynCom A, B, and C lack of ACC degradation pathway. Nod factor
and nitrogen fixation pathway is absent in SynCom D and H. It can suppose that
SynCom E, F, and G can help the plant growth mostly. However, from Rene’s et. al.
data, the highest dry weight of tomato is with SynComs C.

Discussion

According to previous studies, many rhizobacteria can produce IAA[9] and
different biosynthetic pathways have been proposed [5]. SA087, SA187, and SA188
might be involved in both ipdc/ IAAId and nitrilase pathway, so multiple pathways to
produce IAA might be possible. Only SA113, SA436 and SA670 seems like not
involved in ipdc or nitrilase pathway. However, there are other possible biosynthetic
pathway of IAA which are not included in this study, such as amine oxidase pathway
[5].

Some proteins contain multiple domains, so using one Pfam domain to find the
related proteins seems like unreliable. However, although NifA contains 3 different
domains (PF01590, PF02954 and PF00158), the most related proteins are the same
(Figure 2). That is, when we used these 3 different domains to perform clusters
separately, ICELOAJG_05683, Nif-specific regulatory protein, always grouped with
referential proteins. Consequently, for some proteins containing multiple domains,
they still would cluster with similar proteins for each domain, and using phylogenetic
tree can help identify the most related groups.

Even if we have no ideas about the species of 15 strains, according to the results
of candidate protein identification, SA403 contains the most nod factors and nitrogen
fixation proteins, so we can suppose that SA403 is a rhizobium, which can nodulate
legumes or fix nitrogen. Indeed, SA403 is Ensifer sp, a rhizobial species [10]. In
addition, SA403 contains the most candidate proteins involved in the biosynthetic
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pathway of phytohormones and nitrogen fixation than other strains, which supposes
that it can promote the plant growth better than others. SA403 only lacks of ACC
deaminase to degrade ACC (Table 3). Besides, from the phenotype of individual data
of tomato, the dry weight of tomato living with SA403 performs the best as well.
Therefore, SA403 might help plant growth via phytohormone production and nitrogen
fixation.

Although the candidate proteins cannot explain the performance of SynCorm
completely, it is possible that those bacteria can produce intermediates or precursors
of phytohormones to enhance the plant growth. Therefore, some strains may be
involved in the intermediate steps but we didn’t search every intermediates. In
addition, the interaction of phytohormones between bacteria and plants is still unclear.
It needs more evidence to discover. Moreover, bacteria can help the plant growth
under salinity stress via other non-phytohormones mechanisms, such as osmotic
adjust or nitrogen fixation, but they are not been studied in this project.

Conclusions and Recommendations

We identified some candidate proteins involved in biosynthetic pathway of
phytohormones and nitrogen fixation. According to the results, auxin production
might be the common way that bacteria enhance plant growth and stress tolerance. On
the other hand, CK and GA production might be strain specific, which means only a
few strains are involved. SA403 contains proteins involved in nod factors and
nitrogen fixation, and it might help plants absorb nutrition under stress. It can suppose
that these strains can enhance the plant growth via these pathways, but the interaction
between these strains is still unclear.

In the future, the candidate proteins need more experimental designs to validate
their functions. Some possible experiments could be adopted. It can detect if these
strains can produce phytohormones or induce root nodule to confirm the pathways
which the strains are involved. In addition, gene expression data of candidate proteins
for the stress response can also provide evidence to validate the results. Moreover,
genome-wide association study is an approach to identify genes involved in
phytohormone production and nitrogen fixation. For SynComs experiments, it can
reduce the number of strains of each SynComs because the interaction of bacteria is
very complicate.

Author Contribution

Hsinyi searched the Pfam ID of known genes and identified the Pfam ID in the 15
strains. Emma compared the candidate proteins with the phenotype of the plants. Irene
annotated all the genes of the important orthlogous groups for plant growth using
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eggNOG. Jasper ran the orthofinder to make orthologous groups and convert the files
for PhenoLink. Lars performed BLAST against the related genes in the 15 strains, and
helped with finding the Pfam ID and TIGRFAMs ID of known genes. All members
searched the genes and pathways involved in the biosynthetic pathway of
phytohormones and nodulation.
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Table 1. The genes involved in the biosynthetic pathway of phytohormones and
nitrogen fixation from literature.

Referenced
UniProt
Phytohormones Protein Pfam ID TIGRFAMs Protein Entry
Auxin iaaM tryptophan 2-monooxygenase PF01593 P06617
jaaH Indoleacetamide hydrolase PF01425 Q04557
indole-3-acetaldehyde
dehydrogenase, IAAld
dhas, aldA  dehydrogenase PFO0171 034660
Indole-3-pyruvate PF02775, PF00205,
ipdC decarboxylase PF02776 TIGR03393 P23234
Nitrilase Nitrilase PFO0795 TIGR04048 AOA380UK73
PFO1315, PF02738,
PF03450, PF00941,
Abscisic acid AAO3 Abscisic-aldehyde oxidase PFO0111, PFO1799 Q7G9P4
Cytokinin ipt iso-pentyl transferase PF01715 TIGR00174 Q94I1D3
ACC degradation acdS ACC deaminase PF00291 Q5PWZ8
2-oxoglutarate-dependent
Ethylene EFE dioxygenase PF03171, PF14226 P32021
GA CYP112 Cytochrome P-450 BJ-1 PFO0067 P55544
CYP114 Cytochrome P-450 BJ-3 PF00067 P55543
CYP117 cytochrome P-450 BJ-4 PF00067 P55540
Nod factors NodD2 Nodulation protein D2 PF00126 P23719
NodD1 Nodulation protein D1 PF00126 P23718
NodA2 Nodulation protein A2 PF02474 LOLQ69
Chitooligosaccharide
nodB deacetylase PF01522 P24150
Nitrogen fixation NifH Nitrogenase iron protein PF00142 TIGR01287
PF01590, PF02954,
NifA Nif-specific regulatory protein  PF00158 TIGR01817 P54930
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iaaM

iaaM

iaaM

iaaM

iaaM

iaaM

iaaM

iaaM

iaaM

dhas, aldA
dhas, aldA
dhas, aldA
dhas$, aldA
dhaS, aldA
dhas$, aldA
dhaS, aldA
dhas$, aldA

dhas, aldA

ipdc

ipdc

ipdc

ipdc

ipdc

ipdc

Tabble 2. Candidate proteins in the 15 strains involved in the biosynthetic
pathway of phytohormones.

LJPOONFC_05823

CGAAFPPJ_01728

OCHNELDH_01781

HOJGJPCK 02680

MINAGANF_00540

OKDGACPM_02389

CFELDAFL_01821
JILMHJOK_04884
HGEOGIFL_04713
CGAAFPPJ_03198
CJEMLAAP_02976
LDGNIBBK_03314
OCHNELDH_02086
ICELOAJG_01723
CADKOPAA_00670
CFELDAFL_04401
JILMHJOK_04088

HGEOGIFL_02133

LJPOONFC_03988

LDGNIBBK_03181

OCHNELDH_00508

CKMIMADB_03670

CKMIMADB_00408

NKLKAAAI_04503

SA087

SA113

SA188

SA424

SA444

SA613

SA619

SA670

SA681

SA113

SA148

SA187

SA188

SA403

SA436

SA619

SA670

SAG81

SA087

SA187

SA188

SA190

SA190

SA244

hypothetical protein

Tryptophan 2-monooxygenase

hypothetical protein

L-amino acid dehydrogenase

Tryptophan 2-monooxygenase

L-amino acid dehydrogenase

Tryptophan 2-monooxygenase
Tryptophan 2-monooxygenase
Tryptophan 2-monooxygenase
Aldehyde dehydrogenase
Aldehyde dehydrogenase
Aldehyde dehydrogenase
Long-chain-aldehyde dehydrogenase
Aldehyde dehydrogenase
Phenylacetaldehyde dehydrogenase
Aldehyde dehydrogenase
Aldehyde dehydrogenase

Aldehyde dehydrogenase

hypothetical protein

Pyruvate-flavodoxin oxidoreductase

Alpha-keto-acid decarboxylase

hypothetical protein

1-deoxy-D-xylulose-5-phosphate
synthase

2-oxoglutarate oxidoreductase

AAO3

AAO3

AAO3

AAQ3

AAO3

AAO3

AAO3
ipt
ipt
ipt
acdS
acds
acdS
EFE
EFE
EFE
EFE
EFE

CYP112,

CYP112,

CYP112,

CYP112,

CYP112,

CYP112,

CIJEMLAAP_02801

NKLKAAAI_03419

ICELOAJG_00629 4-

HOJGJIPCK 02340

MJINAGANF_01140

OKDGACPM_03645

JILMHJOK_07934
ICELOAJG_07515
CADKOPAA_00940
MJINAGANF_05482
OCHNELDH_01957
HOJGIPCK_04122
OKDGACPM_02632
CIEMLAAP_03688
OCHNELDH_00679
NKLKAAAI 02823
ICELOAJG_05209

OKDGACPM_03647

CGAAFPPJ_03313

OCHNELDH_01282

NKLKAAAI_06535

ICELOAJG_05607

HOJGJPCK_05782

CADKOPAA 00829

SA148

SA244

SA403

SA424

SA444

SA613

SA670

SA403

SA436

SA444

SA188

SA424

SA613

SA148

SA188

SA244

SA403

SA613

SA113

SA188

SA244

SA403

SA424

SA436

Putative xanthine dehydrogenase
molybdenum-bi

putative xanthine dehydrogenase subunit
D

hydroxybenzoyl-CoA reductase subunit
alpha

Putative xanthine dehydrogenase
molybdenum-bi

Aldehyde oxidoreductase

putative xanthine dehydrogenase subunit
D

hypothetical protein

tRNA dimethylallyltransferase

tRNA dimethylallyltransferase

tRNA dimethylallyltransferase
Tryptophan synthase beta chain
Tryptophan synthase beta chain
Tryptophan synthase beta chain
hypothetical protein

hypothetical protein

Validamycin A dioxygenase
hypothetical protein

Validamycin A dioxygenase

Cytochrome P450 107B1

Carnitine monooxygenase reductase

subunit

Mycinamicin IV hydroxylase/epoxidase

Pentalenolactone synthase

Pentalenic acid synthase

Cytochrome P450(BM-1)
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Nitrilase

Nitrilase

Nitrilase

Nitrilase

Nitrilase

Nitrilase

Nitrilase

Nitrilase

Nitrilase

Nitrilase

Nitrilase

AAO3

LJPOONFC_00801

CJEMLAAP_03368

LDGNIBBK_02294

OCHNELDH_03044

CKMIMADB_00063

NKLKAAAI_00609

ICELOAJG_04010
HOJGJPCK 04466
OKDGACPM_00261
CFELDAFL_03203
HGEOGIFL_01397

LJPOONFC_01147

SA087

SA148

SA187

SA188

SA190

SA244

SA403

SA424

SA613

SA619

SA681

SA087

subunit KorB

Apolipoprotein N-acyltransferase

Apolipoprotein N-acyltransferase

Apolipoprotein N-acyltransferase

Apolipoprotein N-acyltransferase

Apolipoprotein N-acyltransferase

Apolipoprotein N-acyltransferase

hypothetical protein

Apolipoprotein N-acyltransferase
Apolipoprotein N-acyltransferase
Apolipoprotein N-acyltransferase
Apolipoprotein N-acyltransferase

Aldehyde oxidoreductase

CYP112,

CYP112,

NodD2,
NodD1
NodA2

nodB

nodB

nodB
nodB
nodB
nodB
NifH

NifA

CFELDAFL_00881

HGEOGIFL_00316

ICELOAJG_05277

ICELOAJG_04065

CGAAFPPJ_02920

ICELOAJG_04064

MINAGANF_01241
CFELDAFL_03399
JILMHJOK _02077
HGEOGIFL_02821
ICELOAJG_05821

ICELOAJG_05683

SA619

SA681

SA403

SA403

SA113

SA403

SA444

SA619

SA670

SA681

SA403

SA403

Cytochrome P450-SU2

Cytochrome P450-SU2

Nodulation protein D 2

Nodulation protein A

hypothetical protein
Peptidoglycan-N-acetylglucosamine
deacetylase

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

Nitrogenase iron protein

Nif-specific regulatory protein

Table 3. The result of 15 strains involved in the biosynthetic pathway of
phytohormones
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Table 4. Number of strains involved in the biosynthetic pathway of

IAA° ABA CK Ethelene ACC degration GA Nod N fixation Total

SA087 Y \%
SA113 \%

SA148 WY v Y

SA187 Y%

SA188 W% v \

SA190 Y

SA244 &Y v v \

SA403 BY v v v \ v \%

SA424 Y \ \

SA436 v Y

SA444 WY Y \

SA619 Y% Y

SA613 W% Y \% \

SAG670 v

SA681 [V v

Total 12 8 3 4 2 8 1 1

phytohormones in SynComs.
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Figure 1. Strategies to identify the most related proteins in 15 strains.
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Figure 2. Part of phylogenetic tree of PF01590 (a), PF02954 (b), and PF00158 (c)
in NifA. The protein with green means referential proteins, and the protein with
yellow means the most related protein.
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