Activities on tick borne diseases in China

Zhijie Liu

- Brief introduction of the institute
- Activities on Piroplasm and Anaplasma
- Current situation of African swine fever

Facilities of National Capacity: A national high-containment animal health center

ABSL-3 Laboratory

Our Impact – What We Deliver

Research

- Epidemiology
- Pathogenesis and immunity
- Novel vaccine and diagnostic tools

Diagnostic Service

- Rapid response service (FMD)
- Pathogen characterisation and emerging diseases
- Clinical investigation on site and surveillance

Technical Advice and Training

- Private practice/government veterinarians
- Laboratory capacity building
- International partners: FAO, OIE

Institutions working with Piroplasm or Anaplasma

- Lanzhou Veterinary Research Institute, CAAS
- Huazhong Agricultural University
- Xinjiang Agricultural University
- Henan Agricultural University
- Northwest University
- Beijing Institute of Microbiology and Epidemiology
- National Institute for Communicable Disease Control and Prevention

Ectoparasites and Vector-Borne Diseases Team

• Main focus:

- Theileria, Babesia
- Anaplasma, lyme disease
- Ticks
- Bluetongue, BEF, BVD, Africa swine fever

Piroplasm collection and identification:

- More than 100 species, strains or isolates of piroplasm
- Newly designated 3 Theilerias, *T. sinensis*, *T. luwenshuni*, *T. uilenbergi*
- Newly found but undesignated 2 Babesias, one from sheep and another from cattle

• Main studies:

- Genomics of Babesia, Theileria, Anaplasm
- Attenuated vaccine for T. annulata
- Biology and biocontrol of ticks
- Passive surveillance of African swine fever

Prof. Dr. Hong Yin Email: yinhong@caas.cn

Piroplasm collection

Working groups

Piroplasm working group, Leading by Prof. Dr. Jianxun Luo Mainly focus on Babesia and Theileria

Tick working group, Leading by Prof. Dr. Guangyuan Liu Mainly focus on ticks

Tick- borne bacteria working group, Leading by Dr. Zhijie Liu Mainly focus on Anaplasm, Borrelia and ASF

Vector-borne virus working group, Leading by Dr. Junzheng Du Mainly focus on BTV, BEFV, BVDV and Japanese B encephalitis

Known Babesia species in China

1	Babesia species	Host	Tick vector		
Isolated (10)	B. bovis	Cattle, Buffalo	R. (Boophilus) microplus		
	B. bigemina	Cattle, Buffalo	R. (Boophilus) microplus		
	B. major	Cattle	H. punctate		
	B. ovata	Cattle	H. longicornis, H. punctate		
	B. orientalis	Buffalo	R. sanguineus		
	B. sp. Kashi	Cattle	Hy. anatolicum, Hy. asiaticum, Hy. rufipes		
	B. motasi	Sheep, Goat	H. longicornis, H. qinghaiensis		
	B. sp. Xinjiang	Sheep, Goat	Hy. anatolicum		
	B. caballi	Equine	D. nuttalli, D. silvarum, D. sinicus, D. niveus		
	B. gibsoni	Dog	H. longicornis, R. sanguineus, R. haemaphysaloides		
Detected (6)	B. divergens	Bovine, Ovine	Not studied		
	B. ovis	Sheep, Goat	Not studied		
	B. trautmanni	Pig	Not studied		
	B. perroncitoi	Pig	Not studied		
	B. hongkongensis	Cat	Not studied		
	B. canis	Dog	Not studied		

Known Theileria species in China

Theileria	Host	Tick vector
T. annulata	Cattle	Hy. anatolicum, Hy. rufipes, Hy. dromedarii
T. orientalis	Cattle	H. longicornis
T. sinensis	Cattle	H. longicornis, H. japonica
T. ovis	Sheep, Goat	Hy. asiaticum
T. uilenbergi	Sheep, Goat	H. longicornis, H. qinghaiensis
T. luwenshuni	Sheep, Goat	H. longicornis, H. qinghaiensis
T. equi	Equine	D. nuttalli, D. silvarum, D. niveus, R. sanguineus

Diagnostic and detection methods available in laboratory

Method	Targeting pathogen
Blood smear examination	All of the Babesia and Theileria sepcies
Lymph node centesis	Theileria
Inoculation to animals	All of the Babesia and Theileria sepcies
In vitro cultivation	Babesia and T. annulata
ELISA	T. annulata, T. luwenshuni, T. uilenbergi; B. bovis, B. bigemina, B. motasi, B. orientalis, B. sp. Xinjiang;
PCR	All of the Babesia and Theileria sepcies
LAMP	B. motasi, B. sp. Xinjiang, B. bovis, B. bigemina, T. annulata, T. orientalis, T. luwenshuni, T. uilenbergi
Reverse line blot	All of the Babesia and Theileria sepcies for ruminants

The first large-scale survey of piroplasm

Method: Examination of blood smears + literature review

Period: 1991.4-1993.10

Range: 26 provinces, 3184 cattle herds

Target: Bovine piroplasm

Achievements: Identified 6 species, B. bigemina in 17 provinces, B. bovis in

15 provinces, *B. major* +*B. ovata* in 4 provinces, *T. annulata* in 13 provinces, *T. orientalis* in 15 provinces and *T. mutant* in 3 provinces

The second large-scale survey of piroplasm

Method : ELISA

Period : 2005 - 2014

Range : 17 - 22 provinces, more than 2000 herds for each pathogen
Target : *B. bovis*, *B. bigemina*, *T. annulata*, *T. senensis*, *T. sergenti*, *B. motasi*, *B.* species Xinjiang, *T. luwenshuni* and *T. uilenbergi*Achievements : Obtained the basic data about the situation of these pathogen infection in China.

Babesia bovis

Province

Gansu

Qinghai Xinjiang Henon Shoorni Yunnan

Method: rRAP-1 ELISA				
Period: 2010 - 2014				
Range: 17 provinces				
Sampling: 2364 herds				

Results: Positive rates, 6.40 - 47.27%

Prefecture (No. of positive ser a/ No. of sera)	No. of positive	No. of sera	Positive ratio (%)
Zhangye (4/74) Gannan (61/89) Qingyang (39/57)	104	220	47.27
Haibei	95	207	45.89
Hetian (4/14) Yili (42/108)	46	122	37.70
Zhengzhou	26	73	35.62
Yanan	16	54	29.63
Xishuangbanna (10/40) Wenshan (3/32) Honghe (7/31) Dehong (16/32) Qujing (4/15)	40	150	26.67
Baoding	8	32	25.00
Jilin (5/29) Changchun (8/24)	13	53	24.53
Dalian (\$/29) Benzi (\$/29) Anshan (3/24)	20	82	24.39
Macming (16/60) Qingyuan (1/25) Zhaoqing (8/25)	25	110	22.73
Lasa	106	555	19.10
Hulanbeier (7/46) Bootou (4/27) Xillinguoloumeng (9/35) Xingunneng (7/39) Wukarchabu (6/19) Alashan (5/15) Bayanzhuoer (1/39)	39	220	17.73
Wanzhou (0/26) Jiangjin (10/31)	10	57	17.54
Anshun (1/24) Qiandongnon (6/29) Qianxinon (5/30) Qianxa (5/31) Tongren (3/31)	20	165	1212
Hunihun (4/28) Changde (4/28) Yongzhou (0/23)	8	79	10.13
Panzhihua (5/30) Luzhou (0/30)	5	60	8.33
Guillin (6/35) Baise (2/60) Chongzuo (0/30)	8	125	640
	589	2364	24.92

Babesia bigemina

Method: rRAP-1 ELISA

Period: 2010 - 2013

Range: 6 provinces

Sampling : 516 herds

Results: Average positive rates, 18.4%

Babesia motasi

Method: Crude antigen ELISA Period: 2005 - 2010 Range: All over the country Sampling: 3204 herds Results: Average positive rates, 43.5%

Province	ce Prefecture (no. of positive scraho, of		No. of positive	Positive ratio
	sera)	sena	sera	(5)
Inner Morgoläs	Chifmg	134	122	91.0
Guangdong	Qingyuan (30/86) Zhaoqing (31/38)	74	61	824
Human	Yongzhou (25/27) Hunikun (23/29)	82	67	81.7
	Changde (19726)		-	
Shandong	Dongying	91	70	76.9
Lisoming	Liaoyang	195	143	73.3
Chongqing	Wandhou (22/28)	58	42	724
Sächuart	Panshihua (20/32) Lushou (22/31)	63	42	66.7
Shanxa	Lviang	50	31	62.0
Xagiong	Alary (38/90) Aksu (36/187)	464	267	57.5
	Ei (143A 87)			
Guangxi	Chongzuo (13718) Baise (3060)	148	78	527
	Naming(9/31) Guilán (26/39)			
Anhui	Hefsi	144	74	51.4
Yaman	n Wenshan (9/29) Xishuangbarna (13/ 32)		70	43.8
	Qujing (12/35)			
	Dehong (20/32)			
	Honghe (16/32)			
Gansu	Lanzhou (4/91) Wuw ci (15/62)	337	116	344
	Gansas (97/224)			
Qinghai	Haltei	96	33	34.4
Guichou	Juiehou Qiandongnan (9/29) Qiannan (11/30)		33	33.8
	Qianxinan (7/34)			
	Anshun (15732)			
	Gaiyang (11732)			
Nangoas	Wuzhong	80	22	27.5
Zhejung	Taizhou (7/29)	8	в	200
1	Lishui (3/19)	20.5	0	140
Hebei	moding	396	63	13.9
fanet Shoomri	LINESS VICTOR	113	7	11.5
Mahai	Guždeva:	27	á	8.1
Jain	Soussian	186	3	1.6
Total		3.204	1.393	43.5
		1000	1,000	43.5

Babesia sp. Xinjiang

Method: Crude antigen ELISA

Period: 2005 - 2010

Range: 22 provinces

Sampling: 3857 herds

Results: Positive in 20 province, average positive rates, 31.7%

Bovine theileriosis

Method: rMPSP ELISA Period: 2010 - 2013 Range: 17 provinces Sampling: 2473 herds

Results: Average positive rates, 43.6%

Ovine theileriosis

Method: rTISP ELISA

Period: 2010 - 2013

Range: 21 provinces

Sampling: 2351 herds

Results: Average positive rates 41.0%

Investigation by DNA based tests

Method: PCR, Revers line blot, LAMP

Sampling : Less than 1000 for each test

Results: Obtained regional epidemiological data, detected some

new species such as T. capreoli, Theileria BO302-SE, Theileria

sp. OT3, Theileria sp. RSR, ect.

Attenuated Vaccine against *T. annulata*

- Schizonts infected lymph cell passaged *in vitro* to make the attenuated vaccine. When injected to animal, the merozoites did not appear in red cell.
- This vaccine was used in 1970s, its protection efficacy was 85.8-99.1%.

Vaccine using recombinant protein

• The rTuIP was used to produce recombinant antigen vaccine against *T. luwenshuni* infection. Only partial protection was observed.

Anaplasma

Anaplasma	Host	Tick vector
A. marginale	Cattle	R. (Boophilus) microplus, Hy. asiaticum, I. ricinus, D. pictus
A. ovis	Sheep, Goat	D. nuttalli, Rh. pumilio, Hy. asiaticum
A. bovis	Cattle	Not confirmed
A. phagocytophilum	Mammals	I. persulcatus
A. platys	Dog	Not studied
A. capra	Human, ruminants	Unknown

PCR available for all of the species, ELISA available for A. *marginale* and A. *ovis*.

Genome project for A. ovis

Circular map of the Anaplasma ovis genome. The outermost ring shows the genome size in 100 kb increments. Moving inwards, the light blue marks indicate the coding sequences on the forward and reverse strands, the black marks indicate pseudogenes, the next ring contains the noncoding RNAs with tRNAs in green, rRNAs in red and other ncRNAs in orange. The innermost ring shows the GC skew, with olive green being positive and purple being negative.

General Features of Anaplasma Genomes

	A. ovis	A. marginale	A. centrale	A. phagocytophilum
	Str Haibei	Str St. Maries	Str Israel	Str HZ
Total Bases	1,214,674	1,197,687	1,206,810	1,471,282
CDS Count	938	949	925	1066*
tRNAs	37	37	37	37
nc RNAs	3	3	3	3
rRNAs	3	3	3	3
tmRNA	1	1	1	1
Pseudogenes	44	20	24	111
Functional	15	14	16	75
pseudogenes				
Coding %	83.0	85.4	84.4	68.2
GC %	49.0	49.9	50.0	42.6

Phylogenetic tree based on 16S sequences. Other 16S sequences were taken from whole genomes with accession numbers as follows: *A. centrale*: CP001759; *A. ovis* Haibei: CP015994; *A. marginale*: CP00030; *A. phagocytophilum*: CP000235.

Whole genome alignment of Anaplasma species

Panel A shows the comparison of A. centrale (CP001759) and A. marginale (CP000030) with A. ovis Haibei (CP015994). The A. centrale genome was flipped for the alignment. Panel B shows the alignment of A. ovis Haibei and A. marginale with the Idaho pseudochromosome. Red indicates regions of identity in the same orientation while blue indicates regions of identity with the opposite orientation.

Antigenicity of recombinant protein AAAP of A. ovis

Lane 1: mouse anti-RGS-His antibody; Lane 2: *A. ovis*-positive sheep serum; Lane 3: serum from uninfected sheep; Lane 4–9, 11: positive sheep sera against *Mycoplasma ovipneumoniae*, *M. capricolum capricolum*, *Babesia motasi*, *Babesia* sp. Xinjiang, *Theileria uilenbergi*, *T. luwenshuni* and *A. bovis*, respectively; Lane 10: positive cattle serum against *A. marginale*

The cut-off value of the rAAAP ELISA was determined to be 6.0% by testing 434 negative and 163 positive reference sera using interactive dot diagram. With this threshold, the calculated sensitivity and specificity were 95.1 and 95.4.

Reaction with positive sheep sera against *A. ovis*, *A. bovis*, *Mycoplasma ovipneumoniae*, *M. capricolum capricolum*, *Babesia motasi*, *Babesia* sp. Xinjiang, *Theileria uilenbergi*, *T. luwenshuni* and negative serum from uninfected sheep

Isolation and identification of A. bovis from sheep

Epidemiological status of Anaplasma spp

Summary on piroplasm and Anaplasma

- Recent years, more and more piroplasm and *Anaplasm* have been identified and isolated.
- Many diagnostic tools have been developed, however, none of them has been commercialized and their use are limited in the laboratory.
- Diminazene Aceturate, Imidocarb and Primaquine phosphate are often used chemicals for the treatment of the infection.
- Vaccine against *T. annulate* did not use in the field because of its old fashion production procedures.
- The systematic studies on ecology and epidemiology need to be implement.

Activities on African swine fever

- ➢ Workshop on ASF epidemiology and diagnosis in September, 2010
- Regents transfer: genomic DNA of 17 ASFV isolates, positive and negative sera, virus antigens from CISA-INIA, Spain
- Techniques transfer: virus isolation, PCR (conventional PCR, Real-time PCR, multiplex PCR for differential diagnosis of ASF and CSF), genotyping for ASFV, Serological diagnostic methods (ELISA and IB)
- We developed a PCR and LAMP methods using the materials
 We developed a recombinant NDV-vectored ASF vaccines (rNDV/P30, rNDV/P54 and rNDV/P72)

Worried about ASF since last year 与伊尔库次 兄り полписания протоколов о сотрудн 2017.3 Irkutsk 克拉斯诺 亚尔斯克 Красноярс 新西伯利亚 Новосибирск 阿斯坦纳 Heilongjiang 克斯坦 蒙古 Xinjiang) 日本温 China 中西伯利亚高牌 叶卡捷琳堡 支持新诺亚尔集 新德里 巴基斯坦 New Delhi 乌兰巴托 孟加拉国 印度 蒙古 二连浩特 Mumba 菲律宾深

First discovery of ASF in Shenyang

- From July 1 to August 1, a total of 47 of 383 pigs died on a farm in the Shenbei District of Shenyang, Liaoning Province, China.
- > Postmortem showed extremely swollen and severely necrotic spleens.
- Pathologic changes included hemorrhages in tonsils and lungs, marbled lesions in mandibular and mesenteric lymph nodes, and diffuse hemorrhages in a large part of gastric serosa.

Wang Q, et al. Journal of China Animal Health Inspection. 2018;35:1-9

First discovery of ASF in Shenyang

- PCR and real time PCR were applied to detected the virus from two pig tissues.
- P72 gene, CD2v protein gene, TRS gene was successfully sequenced from the positive samples.
- P72 based ELISA from the INGENASA and P30 based ELISA from IDvet gave negative results.

	88.42.88.42.88.42.88.42
ATGCAGCCCACTCACCACGCAGAGATAAGCTTTCAGGATAGAGATACAGC	50
TCTTCCAGACGCATGTTCATCTATATCTGATATTAGCCCCGTTACGTATC	100
CGATCACATTACCTATTATTAAAAACATTTCCGTAACTGCTCATGGTATC	150
AATCTTATCGATAAATTTCCATCAAAGTTCTGCAGCTCTTACATACCCTT	200
CCACTACGGAGGCAATGCGATTAAAACCCCCCGATGATCCGGGTGCGATGA	250
TGATTACCTTTGCTTTGAAGCCACGGGAGGAATACCAACCCAGTGGTCAT	300
ATTAACGTATCCAGAGCAAGAGAATTTTATATTAGTTGGGACACGGATTA	350
CGTGGGGTCTATCACTACGGCTGATCTTGTGGTATCGGCATCTGCTATTA	400
ACTTTCTTCTTCAG	417

Wang Q, et al. Journal of China Animal Health Inspection. 2018;35:1–9

First discovery of ASF in Shenyang

Ge S, et al. Emerg Infect Dis. 2018 Nov

Outbreaks of ASF

Aug 3, Shenyang, Liaoning
 Aug 16, Zhengzhou, Henan
 Aug 19, Lianyungang, Jiangsu
 Aug 22, Wenzhou, Zhejiang
 Aug 30, Wuhu, Anhui
 Sept 2, Yicheng, Anhui
 Sept 3, Yicheng, Anhui
 Sept 3, Wuxi, Jiangsu
 Sept 5, Jiamusi, Heilongjiang

Total of 14 outbreaks distributed in 6 provinces.

Outbreaks of ASF

Date of definitive diagnose	Site	No. of Pigs	No. of sickness	Morbidity	No. of death	Mortality
Aug. 3	Shenyang	383	47	12.3%	47	100%
Aug. 16	Zhengzhou	260	30	11.5%	30	100%
Aug. 19	Lianyungang	unknown	615	-	88	Culled
Aug. 22	Wenzhou	unknown	430	-	340	79.1%
Aug. 30	Wuhu	459	185	40.3%	80	Culled
Sept. 2	Yicheng	725	-	-	134	-
Sept. 3	Xuancheng	308	152	49.4%	83	54.6%
Sept. 3	Wuxi	97	12	12.4%	9	75%
Sept. 5	Jiamusi	87	39	44.9%	12	30.7%
Sept. 6	Jiamusi	203	26	12.8%	10	38.5%
	Wuhu	30	13	43.3%	4	30.8%
	Xuancheng	52	15	28.8%	15	100%

Main measures for control ASF

- Initiate emergency response plan;
- Block infected area and threating area;
- Culling and bio-safety disposal of the infected and contaminated animals;
- Disinfection of contaminated area;
- Forbidden all of the pigs and pig products move in or out of the blocking area.

Acknowledgements

