

An overview of arboviruses and vectors in Australia

P.D. Kirkland, EMAI, Camden NSW Australia.

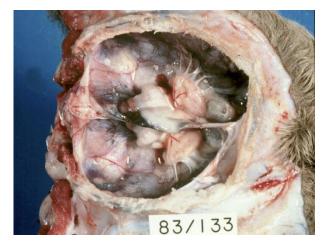
Arbovirus infections of animals in Australia

A relatively long history of arbovirus and vector research:

Culicoides borne:

- Akabane and related orthobunyaviruses (Simbu group);
- Orbiviruses Bluetongue and EHD groups; Wallal, Warrego, Eubenangee, Elsey)

Mosquito transmitted:


- Bovine ephemeral fever;
- Alphaviruses Ross River;
- Flaviviruses Murray Valley Encephalitis, West Nile.

Orthobunyaviruses

- Outbreaks of congenital abnormalities in cattle – 1938, 1956, 1974, 1983, 2004;
- Thought to be due to vector-borne virus;
- Shown in 1974 to be due to Akabane virus in Japan and Australia (first isolated in 1959 in Japan, 1968 in Australia);
- AG/HE outbreak in cattle in 1978 due to Aino virus;
- No evidence of disease with other Simbu viruses in Australia;
- Annual transmission of Simbu viruses in livestock (mainly cattle).

Bluetongue viruses

- During the search for the vector of BEF, mosquitoes and biting midges (Culicoides spp) were caught and virus isolation attempted;
- In 1975, an unidentified virus found in the north.
- In 1977, unknown virus shown to be bluetongue.
- No evidence of disease;
- 12 serotypes detected, not all endemic;
- Some serotypes have caused severe disease under experimental conditions;
- Significant impact on livestock trade.

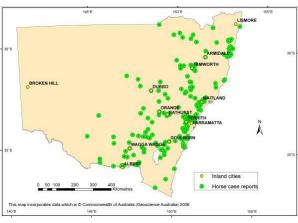
- Natural distribution of viruses determined solely by distribution of insect vector;
- BTVs transmitted exclusively by biting midges Culicoides species;
- In eastern Australia (NSW & southern Qld), Culicoides brevitarsis
- In northern Australia, especially the 'Top End' of NT, C. brevitarsis and additional tropical vectors (C. actoni, fulvus, dumdumi, wadai).

Other orbivirus infections

- During arbovirus epidemiology studies many other viruses were isolated from animals and insects;
- Many are related to BTV and have similar genetic and antigenic characteristics;
- Epizootic haemorrhagic disease viruses (EHDV) found in cattle but no association with disease.
- Wallal and Warrego viruses caused outbreak of blindness in kangaroos in Southern Australia in 1995-96.
- Eubenangee virus causes sudden death in Tammar wallabies severe haemorrhagic disease (1998, 2000s)
- Elsey and related viruses caused sporadic cases of encephalitis in horses in the Northern Territory and Queensland

- Prior to 1975, bovine ephemeral fever virus caused intermittent major epizootics of disease sweeping from the tropical north to the far south of Australia;
- Virus spread over several thousand kilometres in 1-2 months.
- Mosquito vector was suspected;
- Now endemic in both Northern and parts of Eastern Australia;
- Vaccination of dairy cattle and bulls in some regions

Alphavirus infections of animals


- Many different alphaviruses isolated from insects;
- Little evidence of disease in animals;
- Mosquito vectors;
- High transmission rates in high rainfall coastal regions and inland regions with large wetlands;
- Ross River virus sometimes associated with fever, myopathy and arthropathy in horses.
- Laboratory confirmation generally poor; High VN Ab titres common in horses.

Flavivirus infections of animals

- Many different flaviviruses isolated from mosquitoes;
- Viruses from the Japanese encephalitis group infect domestic animals (especially chickens, dogs, horses)
- JE incursion into far northern Queensland (1998-2000), 1 human death, pigs infected;
- Murray Valley Encephalitis and West Nile viruses both associated with cases of encephalitis in horses
- In 2011 outbreak of neurological disease in horses in SE Australia – more than 1000 cases, 10% mortality, predominantly WNV. No disease in wild birds.
- Rare cases of MVE encephalitis in northern Australia

- Infections and disease associated with alphaviruses are common

 particularly Barmah Forest virus and Ross River Virus.
- Account for most locally acquired arbovirus infections
- Causes of fever, rash, muscle & joint pain. Seasonal occurrence associated with large mosquito populations;
- Cases of disease are notifiable through the National Notifiable Diseases Surveillance System (NNDSS).
- Chikungunya virus is exotic but some imported cases are confirmed

Flavivirus infections of humans

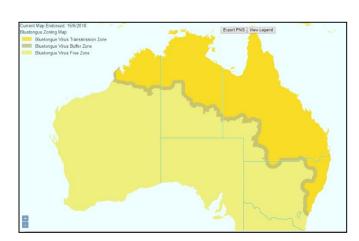
- Viruses from the Flaviviridae family are less common than alphavirus infections;
- Murray Valley Encephalitis and West Nile viruses are both associated with sporadic/rare cases of encephalitis. A single outbreak in 1950s;
- Small numbers of Dengue cases occur in tropical regions but larger numbers of imported cases are confirmed;
- After the JE incursion into far northern Queensland, there was a single human case;
- Zika virus remains exotic but imported cases are detected;
- Sentinel chicken and mosquito surveillance programs operate in several states

Arbovirus surveillance in animals

- Major vector-borne viruses systematically monitored for >30 years through the National Arbovirus Monitoring Program (NAMP)
- Virus surveillance in animals using sentinel cattle herds – BEF, BTV & Simbu viruses;
- Vector distribution monitored mainly by use of light traps targeting Culicoides spp;
- Virus transmission patterns established to define free areas;

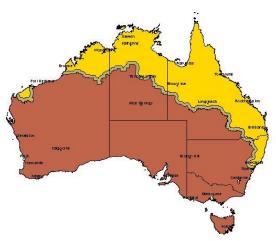
Objectives of the NAMP

- Market access to facilitate the export of live cattle, sheep and goats, and ruminant genetic material to countries where arbovirus certification is required;
- Bluetongue early warning to detect incursions of exotic strains of bluetongue virus (BTV) and vectors (Culicoides species biting midges) into Australia
- Risk management to detect changes in the seasonal distribution in Australia of endemic bluetongue, Akabane and BEF viruses and their vectors, to support livestock exporters and farmers


Distribution of Bluetongue viruses in Australia

- Natural distribution of viruses determined solely by distribution of insect vector;
- BTVs transmitted exclusively by biting midges Culicoides species;
- In eastern Australia (NSW & southern Qld), Culicoides brevitarsis
- In northern Australia, especially the 'Top End' of NT, C. brevitarsis and additional tropical vectors (C. actoni, fulvus, wadai).

Bluetongue zones in Australia


- BTV zone defined by composite distribution of viruses in previous 2 years
- A location must be BTV free continuously for 2 years to effect a change of status
- Detection of BTV in a sentinel herd in free zone activates immediate investigation, notification and change of status if BTV confirmed;
- Zone map changed and notification by email to exporters or anyone registered to receive notification of changes;

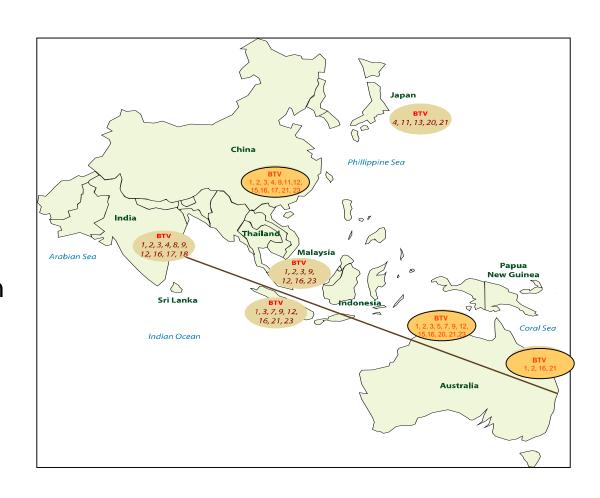
Bluetongue virus research

Research undertaken to:

- Investigate epidemiology of BTVs in Australia;
- Study pathogenicity of viruses why no disease in the field?
- Investigate vector competence;
- Molecular characterization of new strains of BTV each year to identify serotype and topotype (origin).
- Develop improved diagnostic tests eg serotype-specific qRT-PCR assays;

Some of the limitations:

- Early reporting and appropriate samples early in the course of the disease;
- Orbiviruses have prolonged viraemias/detection of RNA
- Orthobunyaviruses have very short viraemias;
- Disease outbreaks with congenital defects are the outcome of infection many months ago.
- Background infection with non-pathogenic strains/serotypes (eg orbiviruses, orthobunyaviruses)
- Multiple infections resulting in extensive cross reactivity in serological assays (eg flaviviruses)
- Animals may be strongly seropositive by the onset of disease (eg WNV in horses – role of IgM based assays)


Trends in the Australasian region

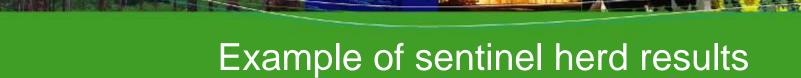
- Considered to be an evolving episystem;
- Viruses moving from equatorial regions to the north and south

Trends in the Australasian region

- Recent incursions of BTV 2, 5, 7 &12 into Australia;
- Evidence of exchange of genotypes (within a serotype) between Australia and southern Asia;
- Will other serotypes move to Australia or the Asian region??

Example of sentinel herd results

PATERSON - BTV1 PCR (2016/17)

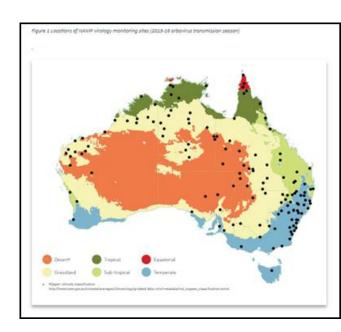

ANIMAL	EARTAG	MAR	APR	MAY	JUN	JUL	END
1	1619	NT	35.8	38.1	-	NT	NT
2	1620	NT	32.9	38.1	-	NT	NT
3	1621	NT	32.8	37.7	-	•	NT
4	1622	NT	32.2	36.0	34.3	32.3	NT
5	1624	NT	-	39.0	-	•	NT
6	1625	NT	-	-	36.9	NT	NT
7	1626	NT	33.9	-	-	•	NT
8	1627	NT	-	34.4	33.8	34.8	NT
9	1629	NT	-	-	-	•	NT
10	1630	NT	33.0	35.8	-	•	NT
At Risk (A)		9	9	1	0	0	0
No S/C (S)		0	8	1	0	0	0
TOTAL (T)		10	10	10	10	10	10

PATERSON - BTV21 PCR (2016/17)

ANIMAL	EARTAG	MAR	APR	MAY	JUN	JUL	END
1	1619	NT	-	-	-	NT	NT
2	1620	NT	-	38.0	-	NT	NT
3	1621	NT	-	-	-	-	NT
4	1622	NT	36.7	-	36.1	-	NT
5	1624	NT	-	-	-	-	NT
6	1625	NT	-	-	34.6	NT	NT
7	1626	NT	-	33.1	30.7	•	NT
8	1627	NT	31.3	30.3	30.3	37.6	NT
9	1629	NT	35.6	31.6	32.5	31.9	NT
10	1630	NT	-	31.4	-	36.2	NT
At Risk (A)		9	9	1	0	0	0
No S/C (S)		0	8	1	0	0	0
TOTAL (T)		10	10	10	10	10	10

PATERSON - BTV16 PCR (2016/17)

ANIMAL	EARTAG	MAR	APR	MAY	JUN	JUL	END
1	1619	NT	-	ı	•	NT	NT
2	1620	NT	-	•	-	NT	NT
3	1621	NT	-	1	-	-	NT
4	1622	NT	-	•	-	-	NT
5	1624	NT	29.0	30.3	31.9	31.9	NT
6	1625	NT	35.7	36.6	40	NT	NT
7	1626	NT	-	•	-	-	NT
8	1627	NT	-	•	-	-	NT
9	1629	NT	-	-	-	-	NT
10	1630	NT	-	•	-	-	NT
At Risk (A)		9	9	1	0	0	0
No S/C (S)		0	8	1	0	0	0
TOTAL (T)		10	10	10	10	10	10



PATERSON - BLUETONGUE VIRUS - ELISA (2016/17)

			<u> </u>			1	. •, ,					
ANIMAL	EARTAG	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	END
1	1619	-		-	-	-	-	85+	90+	93+	93+	95+
2	1620	-		-	-	-	-	95+	94+	88+	92+	90+
3	1621	-			-	-	-	•	91+	92+	93+	97+
4	1622	96+		94+	95+	96+	92+	94+	93+	88+	95+	91+
5	1624	-		-		-	-	86+	88+	77+	91+	96+
6	1625	-			-	-	-	92+	92+	93+	83+	94+
7	1626	-		-	-	-	-	91+	93+	93+	91+	95+
8	1627	-		-	-	-	-	65?	92+	92+	90+	95+
9	1629	-		-	-	-	-	91+	93+	84+	90+	95+
10	1630	60?		-	-	-	-	92+	93+	91+	71+	96+
At Risk (A)		8		6	8	9	9	9	1	0	0	0
No S/C (S)		0		0	0	0	0	8	1	0	0	0
TOTAL (T)		10		8	9	10	10	10	10	10	10	10

PATERSON - BLUETONGUE VIRUS - PAN PCR (2016/17)

ANIMAL	EARTAG	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	END
1	1619	NT		NT	NT	NT	-	33.4	31.4	33.7	-	NT
2	1620	NT		NT	NT	NT	-	32.6	31.7	33.9	-	NT
3	1621	NT			NT	NT	-	32.2	30.3	32.2	32.8	NT
4	1622	NT		NT	NT	NT	-	31.1	29.9	28.8	30.4	NT
5	1624	NT		NT		NT	-	26.9	27.6	28.9	30.9	NT
6	1625	NT			NT	NT	-	33.4	33.8	34.3	-	NT
7	1626	NT		NT	NT	NT	-	32.6	31.5	31.9	33.4	NT
8	1627	NT		NT	NT	NT	-	28.6	28.4	29.4	32.6	NT
9	1629	NT		NT	NT	NT	-	34.9	30.7	29.9	32.0	NT
10	1630	NT		NT	NT	NT	-	31.5	29.4	32.1	33.0	NT
At Risk (A)		8		6	8	9	9	9	1	0	0	0
No S/C (S)		0		0	0	0	0	8	1	0	0	0
TOTAL (T)		10		8	9	10	10	10	10	10	10	10

