POTENTIAL VECTORS IN EQUISTRIAN DISEASES FREE ZONE, JAKARTA INTERNATIONAL EQUISTRIAN PARK PULOMAS INDONESIA

Upik Kesumawati Hadi, Susi Soviana, Sugiarto, Isna Lailatur Rohmah, Fahmi Khairi, Entomology Laboratory, Division of Parasitology and Medical Entomology Faculty of Veterinary Medicine – Bogor Agricultural University

Republic of Indonesia

- Indonesia is located in the tropical climate and crossed by the equator
- * is also the meeting place of two mountain chains, the circum-Pacific and circum-Mediterranean.
- The sun shines continuously throughout the year.
- Sector Sector
- Has a relatively high rainfall.
- * Have a tropical rain forest areas quite dense.

Indonesia is known as one of the countries that have the highest biodiversity in the world, endowed with rich and unique biodiversity fauna, including vectors of several diseases (Class Insecta & Arachnida).

Indonesia \rightarrow biodiversity of vector

Vector Surveillance

upikke@ipb.ac.id

 The Indonesian archipelago has been predicted to be a "hotspot" for the emergence of zoonotic and vector-borne pathogens Rosenberg et al. **2013**)

Vector borne disease

- A disease that is transmitted to humans or other animals by an insect such as a mosquito or another arthropod
- Nearly half of the world's population is infected by vector-borne diseases, resulting in high morbidity and mortality
- There are many examples of vector borne diseases in Indonesia:
 Malaria, Denque Fever, Japanese Encephalitis, Filariasis, Chikungunya,
 Dirofilariasis, Trypanosomiasis, Babesiosis, Ehrlichiosis etc.

Vector borne diseases system

5 SubSystem in the Transmission System of Vector Borne Disease

ARTHROPOD VECTORS

VBD in Indonesia

Tick-borne	Mosquito-borne	Other insect-borne
Lyme disease *	Malaria	Leishmaniasis *
Tick-borne encephalitis*	Dengue	Plaque
Human ehrlichiosis*	Chikungunya	Tsutsugamushi deseases
Tularaemia	Filariasis	Typhoid fever
Q fever	Japanese encephalitis	Thyphus, Trench fever
Babesiosis	West Nile virus *	Enteric bacteria diseases
Anaplasmosis	Arbovirosis upikke@ipb.ac.id	Trypanosomiasis

GLOBAL ISSUE EMERGENCE REEMERGENCE VBD

- Development of insecticide and drug resistance;
- Decreased resources for surveillance, prevention and control of vectorborne diseases;
- Deterioration of the public health infrastructure
- Unprecedented population growth;
- Uncontrolled urbanization;
- Changes in agricultural practices;
- Deforestation; and
- Increased travel

EDFZ in Core Zone JIEP

In order to support the implementation of the 18th Asian Games, especially for equistrian competition, Indonesia has to establish Equine Disease Free Zone (EDFZ).

EDFZ is a horse disease free zone defined by OIE to hold horse racing competitions at the Asian Games and is only valid temporarily

Vector surveillance

Vector surveillance is one of the biosecurity requirement in the monitoring of progress of EDFZ in control and eradication for various diseases, such as mosquito borne diseases.

- There are several mosquito-borne viral diseases that cause varying levels of morbidity and mortality in humans and animals that can have substantial welfare and economic ramifications (Durand *et al.* 2013).
- Periodic collection of local mosquito species is essential to inform vector control strategies and track their impact on mosquito borne diseases (Chapman *et al.* 2016).

 Our field studies aim to describe the potential vector species in core zone, the behaviour, habitats and the environment help to understand the the fluctuation dynamics and the potential disease spread.

MATERIAL & METHODS

- Location : in Core zone of EDFZ at Jakarta International Equistrian Park Pulomas (JIEPP)
- Time : Januari April 2018
- Sampling: beweekly

MATERIAL & METHODS

1. Mosquito larval survey → dipper

MATERIAL & METHODS

2. Adult mosquito survey → Light Trap (10)

Analisis: Mosquito Hour Density (mosquitoes densities per hours)

- Density of Mosquito larvae
- Adult Mosquito Density
- Nocturnal Mosquito Behaviour

Data per 2 week (7)
Data per month (4)
Data Total during 4 moths (1)

Results

Vector Species

- 1. Culex. quinquefasciatus (adult & larvae).
- 2. Cx. tritaeniorhynchus (adult)
- 3. Aedes aegypti (adult & larvae)
- 4. Ae. albopicus (larva)
- 5. Armigeres subalbatus (adult)
- 6. Musca domestica (adult)
- 7. Sarcophaga sp. (adult)
- 8. Chrysomya megacephala (adult)
- 9. No Tick and no bat

Mosquitoes Larvae Density

Location	Density of Larvae/Dipper	Spesies	Vector Standard Value (Permenkes No. 70 / 2016)
Temporary Bathroom (PORDASI)	71.4	Cx. quinquefasciatus & Ae. aegypti	Breedingplaces Index : Low : 0
Control Tank	28.6	Cx. quinquefasciatus	nigit. > 1
Flower Pots	24.3	Ae. aegypti	
Bromelia Plants	21.4	Ae. aegypti	
Stagnant Water Under The Fountain	14.3	Cx. quinquefasciatus & Ae. aegypti	
Dispenser	5.3	Ae. aegypti	
Lakes	0	0	+ predator (dragonfly nymph)

Density of *Ae. aegypti* larvae in Jakarta International Equestrian Park Pulomas (JIEP), January-April 2018

Density of *Cx. quinquefasciatus* larvae in Jakarta International Equestrian Park Pulomas (JIEP), January-April 2018

Density of Mosquitoes Larvae (*Ae. aegypti* and *Cx. quinquefasciatus*) in Jakarta International Equestrian Park Pulomas (JIEP), January-April 2018

Densities of Mosquitoes Larvae (larvae/dipper)

Breeding places of *Culex quinquefasciatus*

Control Tank

Breeding places Index : 28.6 larvae/dipper Temporary Bathroom Breeding places Index : 71.4 larvae/dipper

Culex larvae in Temporary Bathroom (PORDASI)

Breeding places of *Ae. aegypti* di JIEPP

Bromelia Plants Breeding places Index : 21.4 larvae/pipet Stagnant Water Under The Fountain Breeding places Index : 14.3 larvae/dipper

Potensial Breeding places of *Culex quinquefasciatus*

Stagnant Water

(Selokan yang tergenang)

Lakes in JIEP

Mosquitoes predator

Adult Mosquitoes Density

Spesies	Mosq Hour Density (MHD)	Vector Standard Value (Permenkes No. 70 / 2016)	
Cx. quinquefasciatus	1.15	Man Hour Density (MHD)	
Cx. tritaeniorrhynchus	0.08	Low : < 0.025 High : > 0.025	
Ae. aegypti	0.9		

Mosquito species

Cx quinquefasciatus

Aedes aegypti

Cx. tritaeniorhynchus

Adult Mosquitoes Density in Jakarta International Equestrian Park Pulomas (JIEP), January-April 2018

Fluctuation of Adult Mosquitoes Behaviour

Conclusion

Mosquito Vector Species

- 1. Culex quinquefasciatus:adult & larvae
- 2. Cx. tritaeniorhynchus: adult
- 3. Aedes aegypti: adult & larvae

Conclusion

- The rate of mosquito hour density (MHD) of each mosquitoes was 0.98, 0.15, and 0.77, respectively for *Cx quinquefasciautus, Cx tritaeniorhynchus*, and *Ae. aegypti*
- The larval collection showed 3 species were found i.e. *Culex quinquefasciatus, Aedes aegypti* and *Armigeres* in 11 breeding places types.
- The finding appeared that the highest larval density was showed in public bathrooms (71.4 larvae/dipper) followed by stagnant water control tank (28.6 larvae/dipper) and bromeliad plants (24.3 larvae/pipet).

Concept of Vector borne disease control

Recomendations

- Vector Surveillance System would provide a cost effective means to combat vector borne disease emergence.
- Early vector control at larval stage was a critical point of the success of EDFZ programs in Jakarta International Equistrian Park Pulomas (JIEPP) Indonesia

The principle of Integrated Pest Management: the use of insecticides with little or without insecticides.

Disposal of waste/garbage in a timely manner will prevent infestations of flies and odors

Good drainage must be maintained to prevent stagnat water and breeding sites of mosquitoes and other annoyance insects

1. Tribun Area:

Prevention: Tribun (Air flow/UV Electric Light Trap near the entrance).

Insectiside aplications by ULV / Fogging machines: 1-2 days before horse coming,

Source reduction in out door areas (park, fountain, flower pots, gutter etc)

Vector control in Office areas : 2. Indoor areas

Prevention: Indoor (Air flow/UV Electric Light Trap near the entrance).

Daily Insectiside application by using One Push (One push aplication: effective protection 8-12 hours)

Efforts to eliminate the source of mosquitoes (breeding places) in door (inside the building)

Vector Control: 3. In Out door areas

- Insectiside aplications by ULV / Fogging machines: 1-2 days before horse coming,
- Source reduction of mosquito breeding sites: (1) Good drainage must be maintained to prevent waterlogging and mosquito breeding, (2) replacement of bromeliad plants etc.

Vector Control: 4. In Horse Stables

- Insectiside aplications by ULV / Fogging machines: 1-2 days before horse coming
- Daily insecticide application with One Push (One push application: one push effective for protection 8-12 hours, every night in certain areas that are safe from horse contact
- UV electric light traps
- Good management of manure, wastes, water and food

Recomended Insecticide: Pyrethroid

For adult mosquitoes & other annoyance insects

 Alpha-cypermethrin, Permethrin, Deltamethrin, Lambdasihalotrin, Transflutrin, Cyflutrin, Metoflutrin, etc. circulating in Indonesia with various brands and formulations.

For Mosquito Larvae:

• Temephos 1%, Bacillus thuringiensis H-14 1200 ITU/ltr, S Methopren IGR 1.8% G 72 mg/ m2, etc.

For Flies:

• Agita 1GB, Agita 10 WG, ZeroFly ^{R)} Livestock Last Recommendation

JIEPP must have one pest control authority whose in charges in vectrol control activities

- The research was supported by the Directorate General of Livestock and Animal Health Services (DGLAHS), Ministry of Agriculture, The Republic of Indonesia,
- Veterinary Services of Jakarta Metropolitan

Vector Surveilance Team

Terima Kasih_Thank You

