附錄(七):

西班牙國家再生能源中心(CENER)簡介

LEA (WTG Laboratory) Facilities & Capabilities

2018

NATIONAL RENEWABLE ENERGY CENTRE

index

- WTG Laboratory
 - 1. BETP
 - 2. BEG
 - 3. Common

1. BETP Drive train test bench

Overview

1. BETP Drive train test bench

Possible setups

Drive-train configuration

- HALT (high accelerated life tests) -> increasing torque above nominal 120-140%
- Mechanical test

Full nacelle configuration

- Grid evacuation 20kV 50Hz
- Electrical & mechanical test

1. BETP Drive train test bench

Driving system

8MW Induction motor

- o 0-773 rpm
- Drive ABB ACS6000

Gearbox

o i=33,33

- Rated power 8 MW
- Speed range 0-23 rpm
- Max. Torque 6.000 kNm

1. BETP Drive train test bench

LAS Load application system

NON TORQUE LOADS - NTL

- 5 Degrees of Freedom (DOF)
 - Axial force (Fx)
 - Radial force (Fy)
 - Vertical force (Fz)
 - Bending moment (My)
 - Bending moment (Mz)
- Frequency response 0-1,5 Hz

	EXTREME LOAD	OPERATIONAL LOAD
Fx [kN]	±1.000	± 750
Fy [kN]	±2.000	± 1.500
Fz [kN]	±2.000	± 1.500
My [kNm]	±10.000	± 7.500
Mz [kNm]	±10.000	± 7.500

2. BEG Electrical generator test bench *LayOut*

2. BEG Electrical generator test bench

Facilities: Driving System

Medium Speed

- Direct coupling motor to electric generator
- Speed range 0-770 rpm
- Max. Torque 190 kNm

High Speed

- Coupling through gearbox
- Speed range 0-2310 rpm
- Max. Torque 63 kNm

2. BEG Electrical generator test bench

Facilities: Electrical Configuration. Voltage dips test

- Voltage dips:
 - LVRT: Z1-Z2HVRT: Z1-C-R
- P.O. 12.3 and others grid codes
- Scc / Sn (spec) >= 5
- Grid frequency 50Hz.
- Scc (PCC) = 94 MVA

3. Common facilities

Foundations

- •2 independent structural foundations
- •Dimensions:
- A) 35 x 10 m
- B) 25 x 8 m
- •Foundation anchors: 1 x 1 m
- •Bolts: M80, M56 (T >1450 KN, S>425 KN)

	CARACTERISTICAS DE LOS PERNOS						CAPACIDADES DE CARGA * Ptos. Ancioje	
ZONA	TIPO	METRICA	UNIDADES (max)	LONG TOTAL (mm)	LONG ROSCA (mm)	MATERIAL	VERTICAL Z	HORIZONTAL X-Y
A	Cabezo de Mortilio DIN-7992	M56	72	1225	220	10.9	1450 KN	425 KN
B	Cabezo de Martillo DIN-7992	M80	128	1820	290	10.9	3125 KN	925 KN

3. Common facilities

Cooling

Cooling towers:

- •Maximum cooling Capacity: 3300 Kw
- oMaximum flow: 500 m³/h
- Separate outputs available for Test Components

CENTRO NACIONAL DE ENERGIAS RENOVABLES

3. Common facilities

Switchgears and transformers

- o AC 20 kV Bus
- •13 Test Components dedicated switchgears
- Transformer: 20kV/690V, 8 MVA
- •Flexible configuration, including external devices

(H-LVRT containers, load banks, etc.)

3. Common facilities Data Acquisition Systems

- o 2 independent DAS
- Based on NI hardware
- Adaptable to sensor requirements

		DAS CHANNE	LS	
ТҮРЕ	Nº MODULES	TYPE MOD.	CHANNELS/M OD	TOTAL CHANNELS
TEMPERATURE (ADVANTYS)	16	STP_ART- 0200	2	32
STRAIN	15	SCXI-1314	8	120
VIBRATION	6	PXI-4472	8	48
SOUND	1	PXI-4472	8	8
4-20 mA	2	PXI-6238	8	16
OIL QUALITY	1	PXI-8430	2	2
ANALOG	16	PXI-6224	2x8	96
DIGITAL	1	PXI-6515	32	32

GRID SIMULATOR TESTING OF WTG

Carlos Garcia de Cortazar

1st International Workshop on Grid Simulator Testing of Wind Turbine Drivetrains - Boulder, June 13, 2013

índice

- 1. LEA Wind Turbine Test Laboratory
- **BEG Electrical Generator Test Bench**
- 5 MW in a Grid Simulator Experience

Wind Turbine Test Facility

LEA - WTG Test Laboratory

- Complements the research work of CENER in wind energy Dedicated to Tests of components, subsystems & full systems
- Activities
 - Blade tests
 - Experimental Windfarm
 - Power Train tests and Electrical Testing

BLADE TEST PLANT

1. LEA - WTG Test Laboratory

BLADE TEST PLANT Capabilities

1. LEA - WTG Test Laboratory

- Perform structural tests on WTG blades
 - ☐ IEC TS-61400-23 standard / GL Guidelines
 - Static/Fatigue
 - ☐ Up to 75 m blade full length
 - ☐ Sections of up to 100m blades
- Static Tests
 - ☐ Mass, COG, moments of inertia
 - Stiffness bending/torsion
 - □ Ultimate strength
- Fatigue Tests
 - Modal analysis
 - ☐ Endurance/fatigue
 - ☐ Biaxial + Multipoint (UREX, GREX)

EXPERIMENTAL WINDPARK

2. CENER LEA - WTG TEST LABORATORY

2. CENER LEA - WTG TEST LABORATORY

6 calibrated positions

- WTG prototypes for up to 30 MW evacuation capacity
- Field tests on complex terrain (Wind Classes IA, IIA)
- Fully CFD Characterised

Wind Park features

- 120 m high Met Masts instrumented at 5 different heights & Lidar
- Field Offices & Redundant communications
- Substation 20KV/66KV

Technical Services

- IEC Certification tests (Power Curve, Noise, PQ, Mechanical Loads)
- Verification of response to voltage dips (LVRT)
- Others (design, optimization, validation, etc.)
- Energy Production Income RD661/2007

POWER TRAIN Facilities

3. LEA - WTG Test Laboratory

TEST BENCHES Configuration

3. CENER LEA - WTG TEST LABORATORY

TEST BENCHES Capabilities 3. LEA – WTG Test Laboratory

9 Power Train test bench

- ☐ Test of WTG power train up to 8MW
- ☐ Functional tests on mechanical parts
- ☐ Functional/load test of brake/coupling at high speed shaft HSS
- ☐ Concentrated life test and HALT
 - bearings in the main shaft (LSS)
 - gears and bearings in the gearbox

Generator test bench

- Functional test of generator and power electronics
- > Electrical transient simulation (voltage dips)
- > Functional tests, vibration, acoustic noise, heating, etc.
- Overspeed tests and transients surges

TEST BENCHES Capabilities 3. LEA – WTG Test Laboratory

Sometime Name of Na

- ☐ functional, emergency stop, overspeed, climatic conditions, etc.
- ☐ electrical transient simulation "Voltage dips"
- ☐ EMC and acoustic test
- ☐ Reactive power measurements

Nacelle assembly bench

- > WTG erection and nacelle setup procedures
- > Use of auxiliary assembly cranes
- > Simulation of maintenance exercises, including major corrections
- Staff training in the assembly and maintenance of WTG
- > Training in evacuation and security operations in WTG

BEG

Electrical Generator Test Bench Overview

BEG

2. Electrical Generator Test Bench

Adavantages

- ☐ Not depending on Wind conditions: maximum productivity
- ☐ Development laboratory conditions: measurement devices, communication, working conditions, etc.
- ☐ Easily different working points reproducibility

Disadvantages

- > High frequency wind and mechanical forces not considered
- > On the field certification still required

Grid Simulator Test Experience

3. Hardware involved equipments

3. Electrical Configuration

CENTRO NACIONAL DE

Grid Simulator Test Experience

2. Conclussions

Proposal for Discussion

- ☐ Laboratory Tests accepted for certification
- ☐ Bidirectional influence in Grid Simulator Tests

NATIONAL RENEWABLE ENERGY CENTER WTGS Rotor Blade Testing Laboratory 2018

CENTRO NACIONAL DE ENERGÍAS RENOVABLES

index

- 1. Lay-out
- 2. Type of Tests
- 3. Experience

Lay-out

- Two Test Benches
- ☐ Both can operate at the same time:
 - ■Test Rig Nr1: Static & Fatigue Tests
 - Test Rig Nr2: Fatigue Tests
- 2 Overhead Cranes ⇒ 2 x 32 Tons
- \square Test Hall dimensions \Rightarrow 85m (I) * 32m (w) * 15m (h)

- Clearance for deflections
 - Static test: 25m
 - Fatigue test: 15m (peak to peak)
- ☐ Static test bench sized for blades up to 100m length
- ☐ Fatigue test bench sized for blades up to 75m length
- □ 5.5m max root diameter

Type of Tests---IEC 61400-23 2014

Members of IEC 61400-23 MT23 & IECRE groups

Type of ACCREDITED STATIC Test

LEA WTGS Rotor Blade Testing Lab

Type of ACCREDITED STATIC Test

■ STATIC test MAIN features

- Loading perfored Horizontally
- <u>Multi-point</u> syncronized <u>Single-axis</u> loading by electric winches controlled by an accurate MTS FTGT controller
- 8 winches available
- Max bending moment for Static --- 100.000 kNm
- Max allowable tip deflection --- 25m
- Ultimate failure static test can be performed

Type of ACCREDITED FATIGUE Test

LEA WTGS Rotor Blade Testing Lab

Type of ACCREDITED FATIGUE Test

□ FATIGUE test MAIN features

- Loading perfomed Horizontally and/or Vertically
- Loading types:
 - ✓ Single-point Single-axis
 - ✓ Combined Single-axis
 - ✓ Multi-point Single-axis
 - ✓ Multi-point Multi-axial
- Hydraulic syncronized loading --- Exciters controlled by an accurate MTS FTGT controller

■ Exciter Type-1: 50kN, 160-1010kg, 4ud

- Fatigue FLAPWISE: exciters suitable for blades up to 50m long
- Fatigue EDGEWISE: exciters able to test blades up to 75m long

LEA WTGS Rotor Blade Testing Lab

Type of ACCREDITED FATIGUE Test

- Exciter Type-2 GREX: 100kN, 1ud
 - Focused on testing blades up to 75m in FLAPWISE direction
 - Innovative Design & Reliable & Safe
 - "Ground Exciter" Advantage ---

 ↓ Test Period

FOCUSED ON QUALITY - SAFETY - LEAD TIME

- DAQ&Test Control under Virtual Machine Concept → HW+SW Redundancy
- HBM MGCplus DAQ System: 500ch, 2400Hz, configurable, backups
- Fatigue Test: Biaxial static calibration → ↓Uncertainty on load calculations
- GREX: a 2nd unit will be ready by Q2 2018 → ↑ Complete the spare list
- Thermography available for blade inspections
- Automatic control of the tests --- Permits unnattended operation 24h
- Automatic report generation
- Upgrade for Q4 2018: ↑ Height clearance for fatigue deflections 15m→20m

LEA WTGS Rotor Blade Testing Lab

General Services

■ Services for all the tests

- Video cameras are in place to monitor/record the tests
- FEM software available for Test&Test-Tooling design
- Management of Test Design & Manufacturing of Saddles & Test-

Tools to customer requirements

- At customer request Consulting Services for Test Plan design
- At customer request Transportation Management of Blades

- \square Number of tests conducted \longrightarrow Blades from 10m to 70m long
 - Static x170
 - Ultimate Static x16
 - Fatigue Flapwise + Edgewise x30
 - ■Fatigue: a total of 60,000,000 cycles applied

Experience

- ☐Tests conducted confidentially by Qualified & Highly Skilled staff
 - ■Engineers x4
 - ■Technician x12
- □Business <u>Calendar</u>:
 - Availability: 24h 365 days

附錄(八):

西班牙馬德里 SGS 公司及其專案驗證服務內容簡介

RENEWABLE ENERGIES

ENERGY SERVICES

DELIVERING TRUST AND TRANSPARENCY

WHEN YOU NEED TO BE SURE

Madrid, July 2018 / SGS - TIER meeting

- SGS Corporate At Glance
- Certification Schemes for Wind Turbines
 - Type Certification:
 - · Design evaluation
 - Tests
 - Differences in between IEC 61400-1 and IEC 61400-3 (Offshore)
 - Loads analysis and Lifetime Extension
- [Coffee Brake ~10 minutes]
- Quality Assurance and Inspections
- Certification of Power Converters
 - Safety tests and normative
 - Grid connection codes compliance

SGS CORPORATE AT GLANCE

Wind Energy Services - SGS Renewable Energies (Madrid, 2018)

- Founded in 1878
- HQ in Geneva, Switzerland
- World's largest independent service provider in verification, testing, certification and inspection
- SGS has been evaluated by external audit (CEOC) and keeps leading the growth, mainly driven by the following factors:
 - · Rapid globalization
 - Rising concerns about the quality and safety
 - · Rise in outsourcing of the certification, testing and inspection services
 - · Growth in the regulations and industrial standards

95 000¹ EMPLOYEES AND 2 000 OFFICES & LABS WORLDWIDE FOR REACH AND LOCAL SUPPORT

SGS COMPETITIVE ADVANTAGES

- Our range of geographical network
- We ensure one-full-stop to our customers
- The skill and leadership of our people
- The depth of our expertise
- The quality of our laboratories
- Our Brand
- Our independence
- Our culture of integrity and our performance ethics

WIND TURBINES CERTIFICATION

Wind Energy Services - SGS Renewable Energies (Madrid, 2018)

SGS WIND TURBINES CERTIFICATION SCHEMES

■ IEC 61400's -from the International Electrotechnical Commission- are the reference standards, including:

- IEC 61400-3 for Off-shore specific conditions
- IEC 61400-12-1 for power performance measurement
- IEC 61400-23 for Blades approval.

- These are just some examples of the main standards involved.
- SGS is an accredited Certification Body (ISO-IEC 17065) for IEC 61400-1 and -3.

SGS WIND TURBINES CERTIFICATION SCHEMES

- Type Certification is applicable for prototypes of Wind Turbines covering design and manufacturing.
- It is required for the bankability of its production in series and installation on site, and covers:
 - Design assessment (based on a lifespan of 20 years)
 - Manufacturing approval through inspections
 - Testing including:
 - · Power performance
 - Loads measurement
 - · Noise measurement
 - · Safety and functions
- Project Certification is applicable for site-specific conditions.

Wind Energy Services - SGS Renewable Energies (Madrid, 2018)

SGS WT CERTIFICATION - DESIGN REVIEW

Design review consist of:

Structural reliability - lifespan study up to 20 years

WT CERTIFICATION – DESIGN REVIEW

- Aeroelastic calculations to obtain loads require:
 - Wind modeling: depending on the Class of the unit
 - Aeroelastic model: based on geometry and validated with:
 - · Loads measurement
 - · Design data
 - Modeling of the Control System
- For offshore, loads coming for waves shall be considered.
- Different software (such as GH Bladed, FAST, etc) are used for the simulations.

Figure 5: Flapwise Bending Stiffness [Nm²]

Wind Energy Services - SGS Renewable Energies (Madrid, 2018)

11

SGS WT CERTIFICATION - DESIGN REVIEW

■ The manufacture provides the design information and SGS repeats the modeling and calculations:

SGS WT CERTIFICATION - DESIGN REVIEW

Outputs from the simulations:

- Loads on different areas of the Wind Turbines (forces and torques).
- The results are compiled on a set of loads per case, point of the WT and direction and the maximum values are extracted for their analysis:

Wind Energy Services - SGS Renewable Energies (Madrid, 2018)

13

SGS WT CERTIFICATION - DESIGN REVIEW

Components assessment:

- Using the loads coming from the simulations and applying safety factors, a component-by-component analysis is carried out.
- Finite Element Models: stresses distribution and hot spots ID.

- Safety factors, materials and curves S-N are considered to evaluate the fatigue of the components and their suitability for a defined design lifespan (>20 yrs).
- Fatigue is calculate through Damage Equivalent Loads

SGS WT CERTIFICATION - DESIGN REVIEW

Design review also consist of:

- Electrical and control evaluation, covering:
 - · Safety of the system
 - Coherence in the control system
 - · Sizing of components and ratings
 - Failure Modes and Effects Analysis (FMEA):
 - Strategies reducing potential risks
 - Evaluating severity versus probability
- Validation tests (among others):
 - Blades static and dynamic tests (IEC 61400-23)
 - · Generator According to IEC 60034's series, including shortcircuit and temperature.
 - IEC 62477-1 for electrical safety of power converters.
 - IEC 61400-4 for gearboxes

Wind Energy Services - SGS Renewable Energies (Madrid, 2018)

15

SGS WT CERTIFICATION - TYPE TESTS

- Power Performance IEC 61400-12-1
 - Wind bins VS Power
 - Measure of power without obstacles nearby the Wind Turbine

- Noise Measurement IEC 61400-11
 - The objective is to characterize the noise emissions of the Wind **Turbine**

WT CERTIFICATION - TYPE TESTS

- Loads measurement IEC 61400-13:
 - Vibration measurements through accelerometers
 - Extensometer gauges
 - By obtaining real loads it is possible to validate the loads calculations coming from the aeroelastic model
- Safety and Functions test IEC 61400-22:
 - Similar to a commissioning test
 - The operational modes and behaviors of the controller are tested
 - Usually the test is performed following a check list

Make sure to do this test with low winds, rotor blocked, brake applied and out of wind direction	
Block the rotor shaft mechanically	
Yaw the nacelle until it is not oriented upwind	
Press emergency stop button and ensure the brake is activated	
 Read pitch angle, it should be 88°. Otherwise pitch angle in emergency is°. 	
5. Release emergency button and reset security relay	
Force relay D210 by activating DO18 in DC532 (safety chain should be closed)	
7. Check that the relay D210 is deactivated when the emergency button is pressed	

Wind Energy Services - SGS Renewable Energies (Madrid, 2018)

17

SGS

WT CERTIFICATION – MANUFACTURING EVALUATION

- A product Certification (such as a Type Certification) implies the need to assure that there are no deviations from the approved design.
- Required a manufacturing QMS certified to ISO 9001.
- Annual inspections are performed by SGS at the manufacturers facilities.
- Document control (manufacturing procedures, design documents) is reviewed during each inspections.
- Samples of components are checked, and routine tests are usually specified (e.g. dimensioning or safety tests on electrical components).

LIFETIME EXTENSION CERTIFICATION

- Is it possible to extend the life of a Wind Turbine over the 20 years of design?
- Yes. SGS is pioneer in Lifetime Extension Certification.
- Comparing real conditions versus design conditions.
- Adjusting the Operational and Maintenance procedures of the wind farms.
- A detailed analysis is performed wind farm per wind farm to state the real condition of the machines.

PHASE 3
Certification

19

SGS SUMARY

- SGS is capable of providing:
 - TYPE CERTIFICATION
 - COMPONENT CERTIFICATION
 - LIFETIME ANALYSIS OF WIND TURBINES
 - LIFETIME EXTENSION CERTIFICATION
 - BLADE TESTING AND CERTIFICATION
- Please do not hesitate to question us.

WWW.SGS.COM

WHEN YOU NEED TO BE SURE

CONTACT US

Jacobo Tevar Intl. Project Manager

+34 606 932 612

Jacobo.Tevar@SGS.com

