出國報告(出國類別:實習)

研習氣渦輪機葉片之雷射粉末床 積層製造及真空精密鑄造技術

服務機關:台灣電力公司

姓名職稱:鐘震洲;機械研究專員

派赴國家:德國

出國期間:106年10月8日至10月21日

報告日期: 106年12月18日

出國報告番核表					
出國報告名稱:研習氣渦輪機葉片之雷射粉末床積層製造及真空精密鑄造技術					
出國人姓名(2人以上,以1人為 代表)			職稱	服務單位	
鐘震洲			機械研究專員	台灣電力公司 綜合研究所	
出國類別			□ 考察 □進修 □研究 ■ □ 其他(例	■ 實 習 如國際會議、國際比賽、業務接洽)	
出國期間: 106年 10月 8日至 106年 10月 21日 報告繳交日期: 106年 12月 13日					
出國人員 自我審核	計畫主辦 機關審核	審核項目			
		1.依限繳交出國報告			
		2.格式完整(本文必須具備「目地」、「過程」、「心得及建議事項」)			
		3.無抄輸	裏相關資料		
\square		4.内容3	充實完備.		
		5建議具參考價值			
		6送本機關參考或研辦			
		7送上級機關參考			
		8退回補正,原因:			
		(1)不	(1)不符原核定出國計畫		
		(2)以外文撰寫或僅以所蒐集外文資料為內容			
		(3)内	(3) 內容空洞簡略或未涵蓋規定要項		
		(4) 抄	襲相關資料之全部或部分內	容	
		(5)弓	(5)引用相關資料未註明資料來源		
		(6)霍	子檔案未依格式辦理		
		(7)未	於資訊網登錄提要資料及傳	送出國報告電子檔	
		9本報台	告除上傳至出國報告資訊網夕	,將採行之公開發表:	
		(1)	^{辡理本機關出國報告座談會(}	說明會),與同仁進行知識分享。(106、12、13完成)	
		(2)於本機關業務會報提出報告			
		(3).其他			
		10.其他	處理意見及方式:		
報告人: 13 年前 15 日 16 12 13 15 日 16 12 15 16 12 18 16 12 18 17 18 18 18					
 二、審核作 網為原 	一、 查核TF 亲應於 報告 提出 後 一 個 月 內 完 成 , 以 不 影響 出 國 人 員 上 傳 出 國 報告 至 「 公 務 報告 資 訊 網 為 原 則 」。				

行政院及所屬各機關出國報告提要

出國報告名稱:研習氣渦輪機葉片之雷射粉末床積層製造

及真空精密鑄造技術

頁數 44 含附件:□是■否

出國計畫主辦機關/聯絡人/電話:台電 人資處/陳德隆/02-23667685

出國人員姓名/服務機關/單位/職稱/電話:

鐘震洲/台灣電力公司/綜合研究所/機械研究專員/(02)8078-2219

出國類別:□1考察□2進修□3研究■4 實習□5 其他

出國期間:106年10月8日至10月21日 出國地區:德國

報告日期: 106年12月18日

分類號/目

關鍵詞: 雷射粉末床、積層製造、精密鑄造、方向性凝固、單晶 內容摘要:(二百至三百字)

積層製造(Additive manufacturing)(AM),早期稱為快速成型 (Rapid Prototyping)(RP),是根據 3D CAD 模型為標準,將材料以 程式自動化的方式一層一層的結合在一起而得到實體工件。大約 在十多年前,以雷射為加熱源之金屬積層製造方法逐漸浮出檯面。 DMLS 或 SLM 的方法,是以金屬粉末床為基礎之積層製造方法, 本次實習主要在探討製程參數對品質的影響。

要了解金屬的鑄造製程,就必須先了解凝固理論。本次實習從等軸 晶、方向性凝固到單晶的基本原理都有收穫,且在鑄造常見的偏析現象 也學習其理論公式及顯微組織情形。最後則是了解雙腔型真空鑄造爐 的內部構造,學習此機型如何應用於方向性結晶或單晶鑄件之製作。

本文電子檔已傳至出國報告資訊網

Π

目 錄

出	國幸	服告審核表	Ι
出	國幸	服告提要	II
目	錄		III
_	•	出國緣由、行程及主要任務	1
-		雷射粉末床積層製造技術實習	3
Ξ		真空精密鑄造技術實習	15
四	`	心得與建議	43
五		參考文獻	44

一、 出國緣由、行程及主要任務

出國緣由:

近年來國外葉片製造公司或研究中心,迅速發展雷射粉末床積 層製造及真空精密鑄造技術,並應用於氣渦輪機葉片或航太組件之 舊品再生及新品製造。本所正進行氣渦輪機動靜葉片等組件之先進 維修再生與新製研發工作,希望經由此次出國了解國外先進雷射粉 末床積層製造及真空精密鑄造技術之發展情況,並學習相關技術, 藉以提昇本所葉片再生技術及葉片新品製作之品質。此次出國研習 之重點如下:

- 一、至EOS公司位於德國 Munich之研發總部了解國外先進雷射 粉末床積層製造之技術發展,藉由國外之技術與經驗交流, 學習鎳基超合金雷射粉末床技術對於渦輪機葉片再生及新製 造之核心應用技術。
- 二、至 ALD 公司位於德國 Hanau 之研發總部學習真空精密鑄造技術,包含鎳基超合金材質之等軸晶及方向性凝固之技術,收集並吸取國外專家之相關經驗技術,以提升本所未來發展精密鑄造 之技術能力。

本次出國案件係應用 106 年度出國計畫第 50 號,出國核定 書為 1060501 號,電人字第 1068092263 號函。

- 1 -

出國行程及主要任務:

本次出國期間自 106 年 10 月 8 日至 10 月 21 日,主要的任 務為了解國外先進雷射粉末床積層製造及真空精密鑄造技術之發展 情況,以應用於日後本公司氣渦輪機動靜葉片等組件之先進維修再 生與新製研發工作。主要任務內容概要說明於下表:

項次	前往機構	工作內容概況
1	EOS GmbH Electro Optical Systems	 學習雷射粉末床積層製造之基本原 理及週邊配套系統組成。 學習雷射粉末床積層製造後之後製 程流程。 學習鎳基超合金材質於雷射粉末床 積層製造時之特殊作法或注意事 項。
2	ALD Vacuum Technologies GmbH	 學習鎳基超合金之真空精密鑄造技術。 學習等軸晶及方向性凝固之原理及技術。

二、 雷射粉末床積層製造技術實習

(一) EOS GmbH Electro Optical Systems 介紹及技術發展歷程

EOS 公司成立於西元 1989 年,主要創辦人是 Hans Langer 和 Hans Steinbichler 博士,在當年成功將 CAD 圖檔以雷射一層 一層加熱固化的方式生成 3D 實體,並開始進行商業化應用。先 前幾年是發展立體光雕 (stereolithography)技術,用液態樹脂、 光固化及數位化系統整合為樹脂型的快速成型系統,德國當地 的兩大競爭車廠 BMW 和 BENZ 都有先後引進該快速成型系統 以縮短產品開發時程。在1994年左右,EOS與伊萊克斯集團合 作開始發展「直接金屬雷射燒結」(Direct Metal Laser Sintering)(DMLS)技術,並推出商用機型。在1995年時期,開發 出全世界首套「砂模雷射燒結」技術,可以直接用 3D 列印方式 製作鑄造用之砂模及砂芯,並實際應用於 BMW 汽車的金屬鑄 件開發。在1997年的時候, EOS 與 3D System 達成一個重要的 協議:EOS 將「砂模雷射燒結」的產品線全部賣給 3D System, 而 EOS 將接管有關「雷射燒結技術」的所有專利並且致力於以 粉末為基礎的積層製造開發。為提升零件的精細度,EOS於2001 年開始使用極小粒徑的粉末來進行 20µm 層間的堆積參數進行 鋼材的 DMLS 製程。至於鈦合金的 DMLS 製程, 大約在 2007 年 進行商業化的推廣。到了 2009~2013 年間, 鎳基超合金 IN 718、

- 3 -

IN 625 及 HX 粉末也可以開始應用於 DMLS 製程。到了 2014 年,EOS 推出的機型(M290)開始了有品質的全時監控系統,譬 如雷射光源、粉末床、熔池、光學影像等數據的全時收集分析。 這十幾年來,EOS 公司的 DMLS 技術一直朝工件緻密化發展, 已接近「選擇性雷射熔融」(Selective Laser Melting)(SLM)的緻密 化程度,因成品內部的微細孔洞變很少,理論上可大大提升成品 強度至接近鑄造件。

(二) 金屬積層製造簡介

積層製造(Additive manufacturing)(AM),早期稱為快速成型 (Rapid Prototyping)(RP),是根據 3D CAD 模型為標準,將材料 以程式自動化的方式一層一層的結合在一起而得到實體工件。 早期製作的材料是以高分子為主,因強度不足,大多數的 RP 只 能用來確認成品的外觀及尺寸,後續還是需重新以其他傳統的 製造方法來製作成品。

大約在十多年前,以雷射為加熱源之金屬積層製造方法逐 漸浮出檯面。相關設備原理分為兩大不同的區塊,一個是類似我 們綜研所自行發展的「雷射覆銲」(Laser Caldding)技術,金屬粉 末以與雷射同軸方向連續送入被雷射瞬間熔化的熔池,隨著雷 射光點的連續自動化移動,將可使銲道的厚度增加而有積層的 效果。此法因金屬粉末有完全熔解於熔池內,銲道內幾乎無氣孔

- 4 -

存在,可得到接近同金屬粉末材質之鑄件塊材強度。而另一種則 是類似 EOS 公司或 SLM 公司的方法,是以粉末床為基礎,每當 雷射掃描過一層後,工件再往下降一點點固定高度,然後刮粉機 構作動一次將金屬粉末鋪平,然後就一直重複雷射掃描、工件下 降及刮粉的動作,直到工件完成。此種方法在 10 年前雖然即已 問世,因金屬粉末只有部分熔解與凝固,只能完成有多孔性類似 燒結的工件,並不實用。直到近幾年金屬的粉末床積層製造有了 重大的突破,金屬粉末可以完全熔解及凝固,使積層區域幾乎無 氟孔存在,可和「雷射覆銲」一樣得到接近同金屬粉末材質之鑄 件塊材強度,因為每掃描一層後工件會下降固定高度且利用刮 粉來控制粉末的厚度,使成品在 Z 軸方向的尺寸較容易掌控。 (三)粉末床金屬積層製造之製程參數

一般來說,以粉末床為主的金屬積層製造有包含圖 2-1 所示之製程參數[1],其中比較主要的製程參數有下列幾點:

- 雷射源種類:商業上常見的工業用雷射源有二氧化碳雷射 (CO₂ Laser)、雅格雷射(YAG Laser)、光纖雷射(Fiber Laser)
 等,不同金屬對各種不同波長雷射能量有不同程度的吸收率, 以圖 2-2 為例[2],通常波長越短的雷射能量越容易被吸收。
- 雷射光斑徑(Spot size): 雷射光斑徑的大小會影響能量密度, 相同雷射功率下,越小的光斑徑會提升局佈燒結區域的能量

- 5 -

圖 2-1 以粉末床為主的金屬積層製造之製程參數[1]。

圖 2-2 不同金屬對各種不同波長雷射之能量吸收率[2]。

密度,使該道次的粉末與母材(或前堆疊層)的融合更密實,但 必須縮小掃描路徑間距(Hatch spacing),才能完整覆蓋每層的 區域。較小的雷射光班徑若搭配粒徑較小的粉末,理論上可以 堆疊出表面粗度較優的工件。以EOS 的機型而言,雷射光班 徑分佈在40~100μm 左右。

- 3. 雷射功率(Power)、掃描速度(Scanning speed):為了在有限時間內製作出融合良好的工件,雷射功率及掃描速度是最關鍵的參數。其中雷射功率的單位若為 J/sec,掃描速度若為mm/sec,將以上兩者相除可以得到線性雷射能量密度(Linear laser energy density; J/mm),可以用來評估粉末層在熔融時接收到多少的雷射能量。以 EOS 的機型而言,是以 fiber laser 200W~1kW 為主,也有4組雷射源+雷射掃描器的組合,可在同一層進行4個區域的同步雷射積層作業。
- 4. 層疊厚度(Layer thickness): 層疊厚度關係到成品在Z方向的 解析度(也可以用表面粗度來描述)。通常層疊厚度不能太大, 因為在雷射掃描時,母材(或前堆疊層)也必須一起局部重熔, 才能使該層粉末一起溶入母材(或前堆疊層),最終獲得高密度 的成品工件。實習期間有請教EOS的工程師,目前常設定的 層疊厚度最小約在0.03mm,意即在此參數設定下,每掃完一 層粉末床會下降0.03mm,然後再進行鋪粉和刮粉的機構動作。

- 7 -

- 5. 掃描路徑模式 (Scanning Pattern)、掃描路徑間距 (Hatch Spacing):在雷射積層過程中,每一層掃描區域要由設定好的 Scanning Pattern 去完成大面積的掃描範圍。根據掃描區域的 特性或基於溫度控制的需求,使用者可以自行去定義 Scanning Pattern 的形狀,通常是路徑與路徑相鄰,以保持良 好工作溫度。且層與層之間的 Scanning Pattern 方向有改變的 話(譬如 90 度的變化),通常也有助於層間的鍵結。而在 Scanning Pattern裡,相鄰路徑的中心距離即為Hatch Spacing, 此距離一定要小於銲道寬度才會有 Overlap 的效果,通常 Overlap 的區域至少要為銲道寬度的 20%以上。
- 6. 粉末顆粒形狀(Powder Shape)、粉末平均粒徑(Powder Size)、 粉末粒徑分佈(Particle Distribution):粉末相關的形貌與尺寸 也是影響 DLMS 及 SLM 結果的重要因素。一般來說,粉末 顆粒形狀一定要要求是採霧化製程的圓球狀的(Spherical)顆 粒,因為在積層設備的送粉裝置中,才不容易在管或閥內部 有架橋(Bridge)阻塞的情形。而且圓球與圓球間較容易滾動, 在刮粉的時候也才容易鋪平。此外,粉末的粒徑分佈可以用 類似常態分佈圖來呈現,也通常會定義該批粉末的粒徑在某 個範圍區間的重量百分比為多少,不同的粒徑分佈情況會決 定不同的粉體流動性,也攸關刮粉鋪平的品質情況。最後,

- 8 -

粉末的最大粒徑也不能比預設的層疊厚度還要大,否則實際 製作工件的層疊厚度有可能會過厚而影響 Z 軸方向的尺寸精 度。

(四) 雷射積層相關參數設定概念

在前一節有提到,金屬積層製造有包含圖 2-1 所示之製程參 數,其中跟機器相關的參數設定有雷射功率、掃描速度、掃描路 徑間距、層疊厚度、粉末床溫控等。在實習期間,有了解這些參 數設定的概念,方式整理如下:

前面有提到一個名詞「線性雷射能量密度」,以下簡稱LED, 是代表工件在單位長度下所接受到的能量強度。基於此,我們可 以設計一系列的實驗,譬如選定金屬粉末種類、選定某粒徑分佈、 選定鋪粉厚度(層疊厚度),然後以不同雷射功率(譬如 160W, 320W,480W)及不同掃描速度(譬如 200mm/s,350mm/s,750mm/s) 去進行9組不同LED的雷射積層實驗。將銲道的橫切面進行鑲 埋及研磨拋光,在腐蝕後即可於光學顯微鏡下觀察到如圖 2-3 之 銲道形貌。

從銲道形貌中可以量測出銲冠高度、溶池深度及溶池寬度, 就可以繪製出如圖 2-4 不同 LED 對應銲冠高度、溶池深度及溶 池寬度的曲線圖,每條曲線都可以求出近似方程式,以方便後續 在這最大與最小的 LED 範圍內進行參數之選用。

- 9 -

圖 2-3 銲道剖面示意圖及各尺寸之名詞定義。

圖 2-4 線性雷射能量密度與銲道剖面尺寸之關係示意圖。

使用者可以根據"銲冠高度"的數據再去修正"層疊厚度"參 數,根據"溶池寬度"的數據再去修正"掃描路徑間距"參數,根據" 溶池深度"的數據來判斷與母材(或前堆疊層)的融合情形。而最 終要以一組全盤考量、優化後的參數再試一次雷射積層實作並 驗證,才有可能獲得可靠的製程參數。

(五) 雷射積層製程監控模組

為讓使用者有更科學的工具來更進一步的研發和優化製程 參數,EOS 有針對雷射粉末床積層製造的製程進行監控模組設 計。

- 溶池監控模組:透過傳感器及精密元件來即時過濾雷射反射 光數據並收集溶池的光輻射數據,可讓使用者分析工件各局 部區域的品質及溶池光輻射監控數據之間的關係,以提出更 好的製程改善。
- 約末床監控模組:透過整合式的影像擷取及分析系統來記錄 每一層鋪粉及雷射掃描後的床面狀態。如果有不完整的粉末 層、凹槽或空孔層都可以被辨識出來,甚至可以讓系統自動 停止待使用者確認或改善後再繼續工作。
- 光學層析成像模組:透過 CMOS 工業攝影機,可以監控並記錄整個粉末床區域在建構工件過程中,每一層的熱量分佈情形,這樣可以構成一個有用的產品製程履歷。如果收集後的

影像資料庫搭配 CT(斷層掃描)資料一起分析,或許可以找到 影像與瑕疵區域的關聯性,進而減少以後使用非破壞檢查的 成本。

(六) 金屬粉末種類與循環使用概念

目前 EOS 公司有完成鋁合金、鈷鉻鉬合金、麻時效鋼、雙 相不鏽鋼、316 不鏽鋼、6Al4V 鈦合金及鎳基超合金等金屬粉末 雷射積層之實作經驗,其中在鎳基超合金部份,有包含 HX、 IN625、IN718 等。表 2-1 為其公司代表性機型可以使用的金屬 粉末類型。

針對使用過的金屬粉末,EOS 有設計一套密閉循環回收系 統,讓使用者避免暴露在金屬粉塵環境中。如圖 2-5,抽氣系統 將金屬煙氣及部份金屬顆粒抽至①旋風集塵器,乾淨氫氣再回 到積層設備工作腔內,金屬煙氣微細粉塵和完好的金屬粉末會 被收集至桶槽內。等桶槽滿的時候,使用者再將桶槽移至②震篩 機,經由篩選後的金屬粉末裝滿槽後,即可再利用③的省力升降 設備回裝於積層設備的粉末準備艙,再次重複使用於雷射積層 製程。

- 12 -

表 2-1 EOS 某機型可以使用的金屬粉末類型。

Machine Material	EOS M 290 - 400 W Laser
	MS1 Surface 1.0 (20 µm)
EOS MaragingSteel MS1	MS1 Performance 1.0 (40 µm)
	MS1 Speed 1.01 (50 µm)
	MP1 Surface 1.0 (20 µm)
EOS CobaltChrome MP1	MP1 Performance 1.0 (40 µm)
	MP1 Speed 1.02 (50 µm)
FOS StainlassStaal 2161	316L Surface 1.0 (20 µm)
EUS StainlessSteel 316L	316L_040_Flex 1.0 (40µm)
EOS StainlessSteel CX	CX 30µm Flex 1.0 (30 µm)
EOS StainlessSteel PH1	PH1 Surface 1.0 (20 μm)
EOS StainlessSteel 17-4PH	17-4PH_Flex 1.0 (20µm)
EQS Titanium Ti64	Ti64 Performance 1.0 (30 μm)
	Ti64 Speed 1.02 (60 µm)
EOS Titanium Ti64ELI	Ti64ELI Performance 1.0 (30 µm)
EOS Titanium Ti CP	TiCP_030_Flex_1.0
EQS Aluminium AlSi10Ma	AlSi10Mg Speed 1.0 (30 µm)
LOS Aluminum Alstromy	AlSi10Mg 200C 1.0 (30 µm)
FOS NickelAllov IN718	IN718 Surface 1.0 (20 µm)
	IN718 Performance 2.0 (40 µm)
FOS NickelAllov IN625	IN625 Surface 1.0 (20 µm)
LOS MICKEMIOY MO25	IN625 Performance 1.0 (40 µm)
FOS NickelAllov HY	HX Surface 1.0 (20 µm)
	HX Performance 2.0 (40 µm)

圖 2-5 金屬粉末密閉循環回收系統。

三、 真空精密鑄造技術實習

(一)ALD 公司簡介

ALD 公司是目前世界上大型真空鑄造、熔煉及熱處理等設備 之知名製造商。其前身與3家公司有關聯,如圖3-1所示,由Emst Leybold 在1850年於科隆成立E. Leybold 公司,由 Wilhelm Carl Heraeus 在1851年於哈瑙成立C. Heraeus 公司,這兩家都是偏向 真空工程領域。第3家公司是由 Roesler 在1873年於法蘭克福成 立 Degussa 公司,此公司是偏向高品質鋼的提煉及加工製作。各 自一百多年的合作及整併,在1994年成立了ALD 公司,目前為 荷蘭 AMG (Advanced Metallurgical Group N. V.)集團下的公司。

目前 ALD 公司的主要產品分為兩大區塊,第一個是真空熱處 理和燒結爐,包含真空淬火、真空回火、真空表面硬化、真空滲 碳、真空燒結等。第二個領域是真空冶金部份,包括真空感應熔 煉和鑄造爐(VIM, VID, VIDP),電渣重熔爐(ESR),真空電弧重熔 爐(VAR),電子束熔煉爐(EB),真空感應熔煉-精密鑄造爐(VIC-IC)(如圖 3-2),真空渦輪葉片塗層爐(EB/PVD),多晶矽熔煉結晶 鑄造爐(SCU),熱等溫鍛造爐(HIF),真空感應熔煉氣體霧化爐 (VIGA),電極感應熔煉氣體霧化爐(EIGA),感應加熱石英管爐 (IWQ),高真空電阻爐(WI)等,幾乎所有與真空有關之冶金製程 設備都有包括。

圖 3-1 ALD 公司的前身及整併歷史。

圖 3-2 ALD 公司製造之真空感應熔煉-精密鑄造爐(VIC-IC)。

(二)等軸晶、方向性凝固及單晶之形成原理

1. 結晶理論

- (1)凝固(Solidification)過程分為結晶(Nucleation)及生長(Growth)過程。其中結晶過程會決定後續的晶粒尺寸(Grain Size)及晶粒號數 (Grain Number),而成長過程會決定結晶的形態(ex.等軸晶、方向 性凝固、單晶等)。
- (2)上述結晶(Nucleation)的種類又分為均質結晶(Homogeneous nucleation)及異質結晶(Heterogeneous nucleation)。其中均質結晶 指的是結晶核心為與液相相同之材質,而異質結晶是指結晶核心 為與液相不同之材質,譬如從模壁或雜質開始凝核生長。大部分 的鑄造幾乎都是屬於異質結晶。
- (3)自由能(G)的概念:(參考圖 3-3)

G = H - TS (as T increases, G decreases)

 $\triangle G = \triangle H - T \triangle S$

At equilibrium, $\triangle G = 0$

At T_m , $G_L = G_S$, at T_b , $G_L = G_V$

The equilibrium phase is the one with lowest G.

在任意溫度下,自由能(G)越低的相越安定。意即在自然情況 下,系統會越往自由能(G)越低的相發展。

(4) 體積自由能△Gv、潛熱 Lm、過冷度△T、熔點 Tm之關係: $\Delta G_V = \Delta H - T\Delta S \rightarrow \Delta G_V = G_L - G_S = (H_L - H_S) - T(S_L - S_S)$

圖 3-3 三相、自由能與溫度之關係圖。

$$\begin{split} & \ddagger PH_{L} - H_{S} = L_{m}(潛 \, \&) \\ & \overset{\bullet}{\mathbf{s}} \mathbf{T} = \mathbf{T}_{m} \mathbf{F}, \, \Delta G_{V} = 0 \rightarrow \mathbf{S}_{L} - \mathbf{S}_{S} = \frac{L_{m}}{T_{m}} \\ & \therefore \, \overset{\bullet}{\mathbf{s}} \mathbf{T} < \mathbf{T} \mathbf{m} \mathbf{F}, \, \Delta G_{V} = L_{m} - \mathbf{T} \times \frac{L_{m}}{T_{m}} \rightarrow \Delta G_{V} = \frac{L_{m}(T_{m} - T)}{T_{m}} \\ & \rightarrow \Delta \mathbf{G}_{V} = \frac{L_{m} \times \Delta T}{T_{m}} \quad (\overset{\bullet}{\mathbf{b}} \land \underline{\mathcal{B}} \& \Delta T \, \underline{\mathbf{k}} \mathsf{L}, \, \underline{\mathbf{m}} \overset{\bullet}{\mathbf{b}} \mathbf{f} = \mathbf{h} \pounds \Delta G_{V} \, \underline{\mathbf{k}} \mathsf{L}) \end{split}$$

(5)均質結晶(Homogeneous nucleation)

- a. 影響△G的因素有體積自由能△Gv+表面能量變化。(如圖 3-4)
- b. $\Delta \mathbf{G} = \mathbf{G}_2 \mathbf{G}_1 = -\mathbf{V}_S \Delta \mathbf{G}_V + \mathbf{A}_{SL} \gamma_{SL} = -\frac{4}{3} \pi r^3 \Delta \mathbf{G}_V + 4 \pi r^2 \gamma_{SL}$
- c. r* (critical nucleus size) 會出現在當 $\frac{\partial \Delta G}{\partial r} = 0$ 時, $\rightarrow \frac{\partial \Delta G}{\partial r} = -4 \pi r^2 \Delta GV + 8 \pi r \gamma_{SL} = 0 \circ m r v$, r* = 2 $\gamma_{SL} / \Delta Gv$, 物理意義:若要均質結晶,原子需至凝結到 r=r*時,才有機會 繼續穩定成長。(可由圖 3-5 理解)
- d. 又因為 $\Delta G_V = \frac{L_m \times \Delta T}{T_m}$,代入上式得 r*=(2 $\gamma_{SL} \cdot T_m$)/($L_m \cdot \Delta T$),代回第1式得臨界自由能 $\Delta G^* = (16\pi\gamma_{SL}^3 \cdot T_m^2)/3(L_m \cdot \Delta T)^2$
- e. 可把(d)的方程式繪製成如圖 3-6,其物理意義為:當△T↑時,
 r*↓,表示每個結晶長一點點就過關(成功)了,就可以繼續成長。
 另外當△T↑時,△G*↓,表示每個成功結晶所需的臨界自由能變小。
- f. 一般而言,過冷度△Thomo約=0.2Tm時,才有機會發生均質結晶。

圖 3-4 均質結晶過程之自由能變化及其組成。

圖 3-5 均質結晶過程之臨界凝核尺寸及臨界自由能之關係。

圖 3-6 降溫過程中,臨界凝核尺寸及臨界自由能之關係。

(6) 異質結晶(Heterogeneous nucleation)

- a. 如圖 3-7 所示,影響△G 的因素有體積自由能△Gv、表面能量變
 化、介面能量變化(Mold-L→Mold-S)。
- b. 異質結晶的臨界自由能 $\Delta G^*_{hetero} = 4\pi\gamma SL^3(2-3\cos\theta + \cos^3\theta) / 3\Delta G_v^2$
- c. $\Delta G^*_{hetero} / \Delta G^*_{homo} = \frac{1}{4} (2 3 \cos\theta + \cos^3\theta)$, 依上式當 $\theta = 180^\circ$ 時 (與模壁只有點接觸的圓球狀), $\Delta G^*_{hetero} = \Delta G^*_{homo}$, 此不太 可能。當 $\theta \Rightarrow 0$ 時, $\Delta G^*_{hetero} \ll \Delta G^*_{homo}$, 極易發生異質結晶。
- d. 大部分工程材料的結晶都是屬於異質結晶,較低的接觸角θ及
 較粗的模具內壁,會有助於異質結晶發展。在添加接種劑及矽化
 劑時是有條件的,其原子鍵結型式、鍵結強度需與溶液材質接近
 才能有好的結晶發展。
- e. 一般而言,過冷度△Thetero約=0.02Tm時,就有機會發生異質結晶。所以一般鑄造的凝固結晶幾乎都是以"異質結晶"的方式進行。
- 2. 等軸晶:

等軸晶(Equiaxed Crystal)是指巨觀晶粒在凝固生長過程中, 由於溫度梯度不明顯,熱傳無固定方向,使晶粒無固定方向向四 面八方生長,該區域在凝固完成後,晶粒於各方向之尺寸會大約 一致。若觀察類似圖 3-8 之自然冷卻圓柱形鑄錠,通常在中央區 域是最後凝固且為溫度梯度不明顯之區域,大多生成為等軸晶之

圖 3-7 異質結晶過程之模具-固態-液態之介面示意圖。

圖 3-8 採自然冷卻之圓形鑄錠-剖面後之結晶型態示意圖。

結構。一般不規則形狀鑄件若希望得到全體較均勻之等軸晶結構,則要確保冷卻速度慢、鑄件截面的溫度梯度小、金屬液澆鑄 溫度低、澆鑄速度慢等原則去測試出適合之製程參數。

3. 方向性凝固:

方向性凝固(Directional Solidification)的原理主要是利用溫 度梯度創造穩定、一致且同方向的熱傳環境,使液態金屬在凝固 的時候是以單方向往熱傳的反方向進行,此凝固方式可以用大野 連續鑄造法(Ohno continuous casting process; O.C.C. method)[3]來 解釋,根據上述的大野連續鑄造法重繪如圖 3-9,並以剖面結構 來呈現。左圖為一塊有水冷機構的銅板緊貼坩鍋,坩鍋周圍以高 週波線圈或電熱器讓金屬融熔並保持固定溫度,因銅板與金屬液 有很大的温差,且熱傳是單一方向向下,會讓晶粒凝核、成長的 現象逐漸在銅板表面發生,並以熱傳的反向往上成長。右圖開始 將銅板向下移動,讓固態金屬以固定速度向下移動,並利用噴水 冷卻的方式來維持固體與液體間的溫度梯度,如果要連續生產, 坩鍋上方則要連續投料,並將坩鍋溫度、噴水冷卻裝置位置(影響 Ingot 往上凝固的速度)、Ingot 往下抽拉的速度等參數做最佳化控 制,使固-液介面保持在某高度且得到想要的方向性結晶尺寸。此 種方式若參數得宜,甚至可以生產單晶材料。

- 24 -

圖 3-9 根據大野連續鑄造法重繪之剖面動作示意圖。

4. 單晶:

單晶(Single Crystal)的製造方法大致分為3種,分別為布氏法、 柴氏法及區熔法。是由1個到少數幾個核種(或模具低溫粗糙點) 作為結晶生長的發生源,以液-固介面保持平衡狀態往熱傳的反向 凝固生長,最後淘汰掉剩下1個優勝方向的結晶繼續生長,此即 為單晶。

- (1) 布氏法 Bridgeman-Stockbarger technique
- a. 原理:將圓形坩鍋內裝材料,以固定的速度垂直下降進入及離開 穩定功率的加熱區。材料在加熱區變成液態,並於離開加熱區時, 因穩定的垂直溫度梯度,使固-液介面沿熱傳的反向往上生長晶體。 搭配特殊的坩鍋造型,可讓晶體生長的方向有優勝劣敗的機制, 最終可獲得單晶之成品。
- b. 特殊的坩锅(或模具)造型:為了以"優勝劣敗"的方式來強制淘汰 側長的結晶,坩锅(或模具)的造型就必須加以設計。早期在學理 上有圓錐狀、毛細管狀、圓錐狀+毛細管狀、圓錐狀+擴大部+毛 細管狀等造型。近期在實務製造設備則大多採用"螺旋管"設計, 目的都是要淘汰側長的結晶,確保最後單晶的生成。
- c. 坩鍋(模具)的選擇重點:坩鍋材料不能與單晶材料產生反應,且 結晶生長後的材料不能與坩鍋相黏,可避免結晶材料產生應變點 (缺陷)並可快速取出結晶產物。若要避免結晶產生應變點(缺陷),

- 26 -

可使用軟模,譬如白金模,外面可再包覆堅固的容器。根據產業 實務經驗,可選擇的坩鍋材料包含 SiO2、貴金屬、氧化鋁、石墨 (可耐溫至 2500℃)等。

- (2) 柴氏法 Czochralski technique
- a. 原理:如圖 3-10,此柴氏法主要應用在半導體產業之晶圓製程。
 可將製程分為以下幾個步驟說明並了解柴氏法之原理。
- (a)加料熔化:將矽坩鍋內裝材料,以感應線圈或其他加熱器將坩鍋內的單晶材料熔化。
- (b)頸部成長:將<100>或<111>方向的晶種漸漸浸入液中,並逐漸往 上拉升,加快拉升速度可使凝固晶體生成頸部,可限縮單體生長 的方向。
- (c) 晶冠成長:降低拉升速度,使原本頸部直徑逐漸增大到單晶產品 所需的尺寸。晶冠角度(直徑增加速度)會影響後續晶體的品質。
- (d)晶體成長:穩定拉速及溫度,使晶體直徑控制在±2mm。在過程中,坩鍋需不斷上升以保持液面與加熱器相對位置不變(溫度梯度)。
- (e)尾部成長:晶體直徑逐漸縮小並與液面分離,以避免熱應力使晶 體產生差排及滑移面。
- b. 可控制之參數:包含溫度梯度、拉速、晶體轉速、坩鍋升速、氩

圖 3-10 以柴氏法拉單晶之動作示意圖。

氣流量等。

- (3) 區熔法 Zone-Melting technique
- a. 目的:主要目的是"純化",重複掃可以得到純度很高的晶體,甚
 至有可能幫助單晶的生長。
- b. 如圖 3-11,分為有坩鍋(水平式;船型)及無坩鍋(float-zone process; 熔融區由表面張力支撐)之方法。
- c. 凝固的時候會有偏析的現象,當凝固持續往同方向進行時,會把 溶質往溶液趕,隨著加熱器移動,會把高濃度雜質溶質隨著溶液 趕到塊材末端,重複幾次後會有純化材料的效果。

(三)鑄造相關之凝固巨觀偏析

金屬從液相歷經降溫而變為固相過程中,在固液共存區(L+α) 通常固相 α 的擴散速度很慢,所以在凝固過程完成後會有溶質成 份不均的情形,此稱為凝固偏析。

我們可以利用一個小小的長條形元素(element),來假設幾個 不同的凝固情況,並且衍生出不同的凝固公式。此 element 如圖 3-12(a),只有左邊有熱傳,其餘 3 邊均為絕熱(即無熱傳發生),所 以凝固過程是由左向右進行。為何可以做這樣的假設呢?對照圖 3-12(b),假設有一個大型圓柱形工件的殼模,從剖面圖來看可以 看到殼模內表面及鑄件中心線,我們把圖 3-12(a)的 element 尺寸

圖 3-12 (a)解釋凝固過程的小小元素(element); (b)大型圓柱形工件剖

面及熱傳示意圖。

放大到圖 3-12(b),若不考慮邊際效應,可以假設這 element 的上 下面各***點的溫度都一樣而無上下方向的熱傳發生。此外,這 element 的右面臨近鑄件中心線,對稱於中心線的另一個 element 的左面,都是屬於同溫度且為鑄件最高溫區,所以這些靠近中心 線的區域亦無熱傳發生。會開始發生凝固的地方是從殼模內表面 與金屬液體的接觸面開始,以左邊的 element 來看,熱傳一直同向 往左,而固液介面即同向逐漸往中心線移動。通常此類工件最後 凝固的區域是在中心線附近,也易有雜質、高濃度溶質相在這區 域產生。以下在解釋凝固的各種假設情況,此 element 的尺寸也未 必要像圖 3-12(b)那麼大,也可以縮到很小的尺寸來解釋樹枝晶 (dendrite)的形成原理。

假設液態與固態完全擴散,且固/液介面平衡:為簡化公式, 通常會把二元相圖的固相線和液相線視為固定斜率如圖 3-13。在 如此直線化後之相圖,我們可以提出一個平衡分佈係數 (Equilibrium distribution coefficient) K,因為固相線和液相線為固 定斜率,會使 $K = \frac{C_s}{C_L^*} = \frac{C_s}{C_L} = \frac{BAA \# H \#}{液 A \# \# H \#}}$ 。若將圖 3-12(a) element 的尺 寸比例縮到很小,並且長度為 1,則可以用圖 3-14 連續凝固過程 的成份變化來解釋表 3-1 的 Case I 。此為固態完全擴散之情況, 現實生活中幾乎不可能達到這樣的理想情形,因而衍生出表 3-1

圖 3-13 相線直線化後之二元相圖及不同溫度之固液成份對應標

示。

圖 3-14 液態與固態完全擴散,且固/液介面平衡之連續凝固過程溶質 成份變化。

表 3-1 凝固偏析公式整理

	Assumptions	Equations		
Case	1.液態與固態完全擴散	$\frac{C_s^* \cdot f_s + C_\ell^* \cdot f_\ell = C_o}{\circ} , \ \ $		
Ι	2.固/液介面平衡			
Case	1.液態完全擴散	$C_s^* = kC_o(1 - f_s)^{k-1}$		
П	2.固態完全不擴散			
	3.固/液介面平衡			
Case	1.液態有限擴散+不對流	$1 - k = -\left(\frac{R}{2}\right)X'$		
Ш	2.固態完全不擴散	At Steady State $C_{\ell} = C_0 (1 + \frac{1}{k} \cdot e^{-\beta L})$		
	3.固/液介面平衡	$ \diamondsuit X' = L_{c} = \frac{D_{L}}{R} \ \ \square \textcircled{P} \underbrace{ \bigcirc \frac{C_{\ell} - C_{o}}{c_{o}} = \frac{1}{e} = 0.37 } \delta \cong 3 \sim 5L_{c} $		
		Final state 寬度 ≅ 3~5L _c		
		At Initial State $C_s^* = C_o [1 - (1 - k) \cdot e^{-\left(\frac{kR}{D_L}\right)X'}]$		
		$\Rightarrow X' = L'_{c} = \frac{D_{L}}{kR} \Box \neq \frac{C_{o} - C_{s}^{*}}{C_{o} - kC_{o}} = \frac{1}{e} = 0.37$ Initial state <u>\$\mathbf{R}\$</u>		
		≅ 3~5L' _c		
Case	1.液態有限擴散+對流	$\mathbf{k}' = \frac{\mathbf{k}}{\mathbf{k}'} \qquad \pm \mathbf{k}' \cong \frac{\mathbf{C}_{s}^{*}}{\mathbf{C}_{s}} \mathbf{k} = \frac{\mathbf{C}_{s}^{*}}{\mathbf{C}_{s}^{*}}$		
IV	2.固態完全个擴散	$\frac{k+(1-k)\cdot e^{-k}}{2}$		
	3.固/液介面平衡	當 $\frac{R\delta}{D_L} \ll 1$ 時, k' = k>case II		
		當 $\frac{R\delta}{-} \gg 1$ 時, $\mathbf{k}' = 1$ >caseⅢ		
		$\square_{\rm D_L}$		
		$C_{s}^{*} = k'C_{o}(1 - f_{s})^{\kappa - 1}$		
特殊	考慮固態擴散因素	$C_{s}^{*} = kC_{o}(1 - \frac{f_{s}}{D_{o}k})^{k-1}$		
討論		$1 + \frac{D_S R}{R \cdot L}$		
		其中 Ds 為固體擴散係數,L 為晶體長度		
柴式	1.同 Case IV	$k' = \frac{k}{1 - \frac{k}{1 - \frac{c_s}{1 - \frac{c_s}{1$		
拉單	2.液態濃度維持不變	$\frac{\mathbf{R}}{\mathbf{k} + (1 - \mathbf{k}) \cdot \mathbf{e}^{-(\frac{\mathbf{R}\delta}{\mathbf{D}_{L}})}} \qquad \mathbf{R} = C_{BL} = C_{0}$		
目				
維持 planar 介面的臨界溫度梯度G _{LC} $\frac{G_{LC}}{R} \ge -\frac{m_L \cdot C_s^*(1-k)}{KD_L} = -\frac{m_L \cdot C_L^*(1-k)}{D_L}$ (G↑ R↓ C _o ↓)				

的 Case Ⅱ~Case Ⅳ固態完全不擴散之凝固偏析情形。

Case II 的條件是固態完全不擴散、液態完全擴散。意即在凝固過程,剩下液態的溶質分佈是呈現均勻而無濃度梯度。在此條件下,凝固區域隨凝固方向的溶質成份分佈可由 Scheil equation $C_s^* = kC_0(1 - f_s)^{k-1}$ 來表示,凝固完成後的成份分佈曲線圖如表 2-1 Case II 的藍線段所示,而紅線段為過程中之液態暫態濃度。

CaseIII的條件是固態完全不擴散、液態**有限擴散且無對流**。 意即在凝固過程,液態在靠近固態的擴散層δ範圍(cm)是呈現明顯 的濃度梯度,然後越遠離固態越趨近於原始濃度C_o (ppm)。一般 來說,δ範圍約等於 3~5 倍的L_c,L_c定義為特徵長度即L_c = $\frac{D_L}{R}$,其 中D_L為擴散係數(cm²/s),R 為凝固速度(cm/s)。整個凝固完成後, 可以發現除了 Initial state 和 Final state 外,中間大部分區域的固 態成份為原始濃度C_o。

Case IV的條件是固態完全不擴散、液態**有限擴散且有對流**。 此時液態對流的強弱程度將會決定最終固態成份的曲線圖是接近 Case II 或 Case III。在此條件下,凝固區域隨凝固方向的溶質成份 分佈可由 $C_s^* = k'C_o(1 - f_s)^{k'-1}$ 來表示,很類似 Case II 的 Scheil equation 公式,其中 $k' = \frac{k}{k+(1-k)\cdot e^{-\binom{R\delta}{D_L}}}$ 。如果 $\frac{R\delta}{D_L} \ll 1$ 時(意即擴散係數大或凝固速度慢),則 $k' \cong k$,凝固結果就會很接近 Case II 。如果 $\frac{R\delta}{D_L} \gg 1$ 時(意即擴散係數小或擴散層 δ 範圍大),則 $k' \cong 1 \cong \frac{C_s}{C_o}$,凝固結果就會很接近 Case III。Case IV還有一個很重要的應用,即半導體業的柴氏拉單晶製程。如圖 3-15,拉出後的單晶固體以 S 表示,單晶固體在液面有一擴散層 S,在液面以下就可以想像有一假想的 Bulk Liquid。其引用的公式同樣為 k' = $\frac{k}{k+(1-k)\cdot e^{-\binom{R_o}{D_1}}}$,其中 R 為拉單晶的速度,當求出k'之後可由 C_s = k[']C_o 求出單晶的固體濃度 C_s.

(四)鑄造相關之凝固微觀偏析

若從金相的微觀組織來看,在凝固的時候會因溫度梯度 G、 凝固速度 R、初始濃度 Co的影響,會使凝固過程的固液介面保持 (1) Plannar (2) Cellular (3) Dendrite (4) Free Dendrite 等四種不同的 微觀組織。

在圖 3-16 中,G¹a的情形為在固液介面附近溫度高於熔點(液 相溫度),當固液介面有小凸點生成時會馬上熔掉,所以可以維持 Plannar 的固液介面。G²a的情形為在固液介面附近溫度略低於熔點 (液相溫度),當固液介面有小凸點生成時會繼續存在,而生成 Cellular 的型態。G³是溫度梯度更緩於G²a,將會使固液介面的 Cellular 型態往 Dendrite 發展。最後如果是類似G⁴這樣的溫度梯 度,在主要的固液介面尚未到達時,已有許多的 Free Dendrite 在

圖 3-15 柴氏拉單晶製程之固體、擴散層、Bulk Liquid 示意圖。

圖 3-16 凝固過程溫度梯度與平衡液相線之關係。

液體中生成,圖 3-17 為 Plannar, Cellular, Dendrite, Free Dendrite 等四種不同的微觀組織型態。此外,溫度梯度G越大、凝固速度 R越小、初始濃度Co越小時,越可以讓固液介面保持 Plannar 的 型態,也就越有機會得到方向性結晶或單晶的結果。若把G/R 和 Co 作為實驗參數,將實驗結果的微觀組織型態紀錄於 XY 平面 上,則可得到類似圖 3-18 之分佈圖以方便後續之實務應用。

(五)等軸晶、方向性凝固及單晶精密鑄造之設備結構認識

ALD 公司有發展一種以鎳基超合金為主的雙腔型真空鑄造 爐,如圖 3-19。其基本的機型是使用於製作多晶型鑄件,若用戶 端有需求,可以在原有設備再加裝相關之零組件及修改控制,即 可進一步發展方向性結晶或單晶鑄件之製作。

參考圖 3-20,該設備分為上下兩腔。殼模由下腔進出爐,上 下兩腔有一自動啟閉之隔離門。在連續生產且空殼模要從下腔進 爐時,上述隔離門會關閉,以使上腔保持負壓之真空狀態。當空 殼模置妥於油壓機構上之銅塊並且關閉下腔艙門後,下腔也開始 以魯氏泵和擴散泵進行抽真空作業。當上下腔之真空壓力值相同 時,隔離門可以開啟,以使下腔之油壓機構往上升,使殼模進入 上腔之澆注作業區。

本次實習已了解方向性結晶或單晶之凝固過程,"溫度"絕對

圖 3-17 Plannar, Cellular, Dendrite, Free Dendrite 等四種不同的微觀組

織型態。

圖 3-18 G/R 和 Co與四種不同的微觀組織型態之相對關係。

圖 3-19 ALD 公司發展之等軸晶、方向性凝固及單晶精密鑄造設備。

圖 3-20 等軸晶、方向性凝固及單晶精密鑄造設備之內部主要結構。

是一個很重要的參數。以往曾經看過一般等軸晶的真空澆鑄,其殼模 是在另一個加熱爐進行預熱,再由人工抱殼模至真空澆鑄爐進行抽 真空和澆鑄作業,這樣的方法有個很大的缺點,即殼模在真正要澆鑄 時的溫度無法完全掌控,會因為人工作業速度、抽真空效率、環境溫 度等影響每次澆鑄時的殼模溫度,進而使鑄件良率不好控制。ALD 為了穩定殼模在澆鑄前的溫度,在類似圖 3-21 上腔殼模澆鑄位置設 計了一種加熱系統,先利用高週波的磁場感應加熱石墨薄片,再以熱 傳模式讓石墨薄片的熱能導入至殼模進行加熱及溫控。等殼模溫度 到達設定溫度後,即可開始澆鑄作業。

浇鑄時金屬液的溫度、澆鑄時間、傾倒角度等都是會影響品質的 參數。在澆鑄完成後,則開始進行凝固之製程。因為在上腔殼模澆鑄 位置仍然有加熱系統在維持環境高溫,所以殼模內的金屬液不會在 這裡凝固,要待油壓機構緩緩往下降時才開始進行Withdraw 的製程。

在Withdraw 的過程中, 殼模慢慢脫離高溫區域, 使金屬液從殼 模底部開始凝固, 且固液介面是相對往上移動。在起初的 Starter 區 域, 會生成柱狀晶結構, 經過 Spiral Selector 之後, 則會進行類似 Bridgeman-Stockbarger technique 所用到的"優勝劣敗"概念, 最後只剩 下一個晶粒通過 Spiral Selector, 然後再繼續往上往工件部位凝固直 到最後。如果只是要製作方向性結晶之工件, 在設計組樹方案時要考

圖 3-21 等軸晶、方向性凝固及單晶精密鑄造設備之內部主要結構。

量結晶方向和工件擺放方向,然後只要有 Starter 設計但不必放入 Spiral Selector 設計。 四、 心得與建議

金屬粉末之雷射覆銲技術在我們綜研所已應用多時,搭配後續 之 CNC 加工可以完成電廠熱元件之受損部位修補工作。在參觀 EOS 的雷射粉末床積層製造加工現場時,有看到大部份的完成樣品也是 和發動機的熱元件相關,顯示這技術與商業化的市場發展也是逐步 在朝航太、複雜結構之薄壁工件發展。也曾經和技術人員聊過像這樣 經過雷射粉末床積層製造後的工件,其拉伸相關的機械性質已接進 鑄件等級,但還是要留意因工件內部的微細孔洞而影響疲勞強度和 潛變強度,此部份若使用熱均壓處理應可以獲得改善。

發電用的燃氣渦輪葉片目前已大量使用方向性凝固的真空精密 鑄造技術。以往只知道傳統脫蠟鑄造的等軸晶鑄造方式,對於方向性 結晶或單晶葉片的製造方式一直感到很好奇,終於有機會可以在世 界級的 ALD 公司獲得一些寶貴概念。回國後藉著撰寫實習報告時重 新再整理資料,期望對於以後我公司的技術發展能夠有所幫助。

五、 參考文獻

- Aboulkhair, N. T., Everitt, N. M., Ashcroft, I., & Tuck, "Reducing porosity in AlSi10Mg parts processed by selective laser melting", Additive Manufacturing, 1-4, 77-86, 2014
- Kurzynowski, T., Chlebus, E., Kuźnicka, B., & Reiner, J., " Parameters in selective laser melting for processing metallic powders", High Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications., 2012
- A. Ohno, Continuous Casting of Single Crystal Ingot by the O.C.C. Process, pp 14-16, JOM, vol. 38, 1996.