ISO 22196 Measurement of antibacterial activity on plastics and nonporous surfaces

Tadashi Tsuchiya

Japan Food Research Laboratories

JFRL

4.1 Bacteria to be used for the tests

Both of the following species of bacteria shall be used.
a) Staphylococcus aureus

ATCC 6538P, CIP 53.156, DSM 346, NBRC 12732, NCIB 8625
b) Escherichia coli

ATCC 8739, CIP 53.126, DSM 1576, NBRC 3972, NCIB 8545

Both strains are Biosafety Level 2 (BSL 2).

4.2.3 Culture

4.2.3.2 Suspension medium - $1 / 500$ nutrient

 broth ($1 / 500$ NB)Dilute the nutrient broth with distilled or deionized water to a 500 -fold volume and adjust the pH to a value between 6,8 and 7,2 with sodium hydroxide or hydrochloric acid.

Sterilize by autoclaving.
If it is not used immediately after preparation, store it at $5{ }^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$.

A 1/500 NB that has been kept for one week or longer after preparation shall not be used.

6. Sterilization of apparatus and storage of stock cultures

6.4 Maintenance of stock cultures

Stock cultures shall be stored at $5{ }^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ on an appropriate medium and transferred monthly. After five transfers or if more than one month has passed between transfers, the stock culture shall be discarded and replaced with a fresh culture obtained from the institute or culture collection concerned.

7. Procedure

7.1 Pre-culture of bacteria

Transfer bacteria from the stock culture to the slant culture medium and incubate at $(35 \pm 1){ }^{\circ} \mathrm{C}$ for 16 h to 24 h .

From this culture, transfer bacteria onto fresh slant culture medium and incubate $(35 \pm 1){ }^{\circ} \mathrm{C}$ for 16 h to 20 h .

7. Procedure

7.2 Preparation of test specimens

Cleaning of the test specimen can cause softening, dissolution of the surface coating or elution of components, so should be avoided. If cleaning is required due to gross contamination, the cleaning method shall be stated in the test report.

7. Procedure

7.3 Preparation of test inoculum

Transfer one loop of the test bacteria into a small amount of $1 / 500$ NB.

Estimate the number of bacteria using direct microscopic observation and a counting chamber or another appropriate method (e.g. spectrophotometrically).

Dilute this suspension with 1/500 NB to obtain a bacterial concentration that is between $2,5 \times 10^{5}$ cells $/ \mathrm{ml}$ and 10×10^{5} cells $/ \mathrm{ml}$, with target concentration of $6 \times 10^{5} \mathrm{cells} / \mathrm{ml}$.

7. Procedure

7.6.2 Test specimens after incubation

After the incubation, process the remaining test specimens by adding 10 ml of either SCDLP broth or suitable, validated neutralizer to petri dish containing the test specimen.

It is important to ensure that the neutralizer completely washes the specimens by using a pipette to collect and release the SCDLP broth at least four times.

8. Expression of rsults

8.1 Determination of the number of viable bacteria For each test specimen, determine the number of viable bacteria recovered in accordance with Equation(1):

$$
\begin{equation*}
N=(100 \times C \times D \times V) / A \tag{1}
\end{equation*}
$$

N : The number of viable recovered per cm^{2} per test specimen
C: The average plate count for the duplicate plates
D: The dilution factor for the plates counted
V : The volume(ml) of SCDLP added to the specimen
A: The surface area(mm^{2}) of the cover film
8. Expression of results
8.2 Conditions for a valid test

When the three conditions respectively are satisfied, the test is deemed valid.
8.2.2 The logarithmic value of the number of viable bacteria recovered immediately after inoculation from the untreated test specimens shall satisfy the following requirement:

$$
\left(L_{\text {max }}-L_{\text {min }}\right) /\left(L_{\text {mean }}\right) \leq 0,2
$$

$L_{\text {max }}: \log _{10}$ of maximum number of viable bacteria $L_{\text {min }}: \log _{10}$ of minimum number of viable bacteria $L_{\text {mean }}: \log _{10}$ of mean number of viable bacteria
8. Expression of results
8.2 Conditions for a valid test

When the three conditions respectively are satisfied, the test is deemed valid.
8.2.3 The average number of viable bacteria recovered immediately after inoculation from the untreated test specimens shall be within the range $6,2 \times 10^{3}$ cells $/ \mathrm{cm}^{2}$ to $2,5 \times 10^{4}$ cells $/ \mathrm{cm}^{2}$.
8.2.4 The number of viable bacteria recovered from each untreated test specimen after incubation for 24 h shall not be less than $6,2 \times 10^{1}$ cells/cm².

8. Expression of results

8.3 Calculation of the antibacterial activity When the test is deemed valid, calculate the antibacterial activity using the Equation(2), recording the result to one decimal place.

$$
\begin{equation*}
R=\left(U_{t}-U_{0}\right)-\left(A_{t}-U_{0}\right)=U_{t}-A_{t} \tag{2}
\end{equation*}
$$

R: Antibacterial activity
\boldsymbol{U}_{0} : Ave. of the $\log _{10}$ of the number of viable bacteria recovered from untreated test specimens immediately after inoculation
U_{t} : Ave. of the $\log _{10}$ of the number of viable bacteria recovered from untreated test specimens after 24 h
A_{t} : Ave. of the $\log _{10}$ of the number of viable bacteria recovered from treated test specimens after $\mathbf{2 4} \mathbf{h}_{6}$
8. Expression of results
8.4 Effectiveness of the antibacterial agent

The value of the antibacterial activity can be used to characterize the effectiveness of antibacterial agent. The antibacterial - activity values used to define the effectiveness shall be upon by all interested parties.

