
INER-F1205    

  
INER-F1205

 

出國報告（出國類別：實習） 
  

赴日本東京工業大學研究風場評估與

風機發電預測計算 

   

  服務機關： 核能研究所 
姓名職稱： 林彥廷 副研究員 
派赴國家： 日本 
出國期間： 106 年 8 月 11 日~106 年 9 月 2 日 
報告日期： 106 年 9 月 25 日 
  

  



 



第 i 頁 

摘 要 

由 於 近 年 來 台 灣 在 再 生 能 源 與 相 關 綠 能 政 策 上 的 支 持，陸 域 與 離 岸 風 力 發

電 之 相 關 計 畫 已 蓬 勃 發 展 。 但 由 於 風 力 發 電 的 不 穩 定 與 季 節 變 動 影 響 ， 特 別 是

以 台 灣 或 日 本 之 的 複 雜 地 形 及 島 嶼 氣 候 ， 對 於 電 網 系 統 的 建 置 與 發 電 量 造 成 重

大 影 響 。 因 此 精 確 與 可 靠 的 風 能 評 估 與 預 報 資 料 以 提 供 風 力 發 電 預 測 是 降 低 電

網 調 度 與 電 力 衝 擊 之 解 決 方 法 之 一 。 在風力發電之電力系統中不同時間尺度的預報系

統皆有不同領域的應用，極短期預報模式通常應用在電力負載追蹤與操作行為安排等；短期

預報模式則應用於電力負載匹配調度等；中期預報模式可以安排風力機是否停機或是後備運

轉；長期預報模式則可以安排歲修等維修保養工作。但 根 據 過 去 的 研 究 資 料，台 灣 目 前

較 無 針 對 風 機 系 統 的 風 力 預 報 與 即 時 發 電 評 估 技 術 ， 故 本 次 出 國 實 習 公 差 前 往

東 京 工 業 大 學 機 械 系 學 習 風 能 評 估 與 風 力 發 電 預 報 計 算 ， 主 要 指 導 成 員 為 機 械

系 Feng Xiao 教 授 與 CEF(clean energy factory)工 程 師 Dr. Yuzhang Che。 實 習 期 間

學 習 利 用 WRF 氣 象 分 析 軟 體 分 析 日 本 淡 路 島 風 場 風 速 分 布 ， 以 及 淡 路 島 風 機 之

發 電 預 報 ， 分 析 過 程 也 導 入 卡 爾 曼 濾 波 器 (Kalman fil ter) 與資料同化方法(Data 

assimilation)、並採用 CFD 分析驗證以獲得更準確預報資料。淡路島風力機風場位於淡路島西

南方區域，共安裝 15 台 GE(General Electric GE)公司 2.5MW 水平軸風機，並由日本 CEF 公司

負責運轉維護。安裝塔架為 80m 與風機旋轉直徑 84m，風速量測資料利用風機機艙上方的風

速風向儀並採用 IEC61400 量測標準，以每 10 分鐘為平均完成風速風量資料收集。研究結果

發現利 用 資 料 同 化 方 法 可 以 使 原 始 WRF 預 報 資 料 誤 差 在 ME、 RMSE 與 IA 指 標

分 別 下 降 34.6%、 23.9%與 8.8%， 而 卡 爾 曼 濾 波 器 則 可 以 分 別 降 低 97%、 22%與

10%誤 差。因 此 相 對 於 資 料 同 化 方 法 的 電 腦 運 算 量，卡 爾 曼 濾 波 器 提 供 更 加 簡 易

且 有 效 的 預 報 結 果。預 報 確 認 發 電 數 據 後，OpenFOAM 計 算 流 體 力 學 程 式 被 使 用

於 驗 證 以 及 分 析 淡 路 島 流 場 細 節 ， 如 風 速 與 紊 流 程 度 。 故 在 透 過 大 尺 度 與 微 觀

尺 度 的 流 場 分 析 之 後 對 於 特 定 風 場 之 風 力 發 電 量 可 更 加 準 確 與 可 靠 的 預 測 並 安

排 相 關 風 機 運 維 為 工 作。最 後 此 行 程 期間也實地見習東工大 GSIC-TSUBAME2.5 氣象分

析之平行電腦並與研究人員研究交流，並介紹台灣核能研究所 150kW 風機實驗平台以尋求未

來雙方的合作機會。 

 

關 鍵 字 ： 東 京 工 業 大 學 、 WRF、 淡 路 島 、 風 力 發 電 、 風 速 預 報  
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一、 目 的  

風能是再生能源之一，主要來源係透過太陽對空氣加熱而形成的空氣對流現象。風力發

電系統由製造到發電過程皆有著對環境友善與可持續發展的優越特性，因此成為近年來發展

最蓬勃的再生能源。依據世界風能協會(WWEA)資料顯示，截至 105 年底，全世界累積的風

電裝置容量為 487GW，其中以中國大陸其累積的風電裝置容量為 169GW 居世界領先地位，

而離岸風電的全世界累積容量則為 14.4GW，並以英國 5.2GW 離岸風力裝置容量為最多。此

外，於 106 年 6 月底止，台灣大型風力機組亦已安裝建置 345 部，其中國營台電公司 169 部，

其他民間企業 176 部，總裝置容量為 690MW，至 106 年 6 月之總發電量為 8 億 895 萬度。預

計 114 年裝置容量達 9,952 MW。台灣政府於 106 年通過之離岸風力再生能源躉購電價也以每

度 7.0622 新台幣達到最高收購價格。此外，政府也透過國內離岸風機設置之能源國家型計畫，

並整合產官學研各界之科技研發資源，以協助相關技術的建立順利推動此國家重大的風力發

電政策。 

根據台電陸域風力發電機的發電歷史資料台灣陸域風能來源主要依賴秋季與冬季之東北

季風，而在夏季則因為北回歸線的直射造成風力大減，且由於風機無法在颱風環境化操作，

因此造成在台灣用電量最高的夏季而無法使用廉價的風電。更因為台灣島內人口稠密因此無

法如同日本與歐洲，將陸域風電建設在內陸或丘陵地區，因此透過離岸風電的建置將風力機

組建構在風能較佳的海域，既可遠離人群避免生活干擾亦可達到綠能減碳與促進產業發展。

由於離岸風電建置位於海上，因此對於維修作業、運轉保養、發電併網規劃、天災預防與實

驗驗證皆須透過穩定可靠的風力評估與發電預報技術。且對於未來離岸風電之發電量與電網

或微電網調度匹配需要相應的操作策略，又因風力發電係依靠自然風力發電，故良好的風能

預測與風機發電預報是建構與發展離岸風能產業的重要基礎。 

此外，2015 年蘇迪勒颱風通過台灣台中地區也造成台中及石門共七座風力發電機倒塌，

約造成 5 億元的投資損失，而此倒塌風機距離除役年限約還有 10 年之久。可歸咎於此次颱風

因沒有透過風力預報針對此倒塌地區預測風速分布，以及該風速類型對運轉風機之結構計

算，形成運轉廠家無法有效預防與確保而造成重大損失。因此局部風速預報與風機系統整合

計算是台灣地區必須參與的研發課題。 

核能研究所過去的風機研發主要以風機本體製作技術為基礎，經歷 400W、25 kW 及 150 

kW 的中小型風機研製與設計評估技術，並於近 5 年專注於離岸風機支撐結構負載計算且與

國外重要風力發電實驗室合作，是目前國內唯一具有設計及系統整合技術能力的國家級研究

實驗室。因此為精進風機系統設計、分析、測試及運轉之機械系統整合工程技術能力，本次

出國前往東京工業大學機械工程系實習，主要加入肖鋒教授之計算流體實驗室學習風能評估

與風力發電預報技術，並透過肖教授的安排見習東工大 GSIC-TSUBAME 2.5 高速電腦中心並

與 CEF 業界工程師討論風機運轉發電分析技術。亦透過實地的技術交流了解目前日本風電產

業研發現況與發展方向，以希冀促成國際合作機會與強化本研究單位風機研發能量與競爭

力，亦有助於核能研究所「中小型風機工程技術研發」計畫及「大型風機工程技術研發」計

畫的執行及未來風能研發方向之規劃。 
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二、 過 程 

此行於 106 年 8 月 11 日由桃園機場搭機前往日本，本公差目的主要前往東京工業大學

實習風能分析與風機發電預報分析技術，地理位置如圖 2-1。實習過程主要跟隨機械系肖鋒教

授。肖教授在 Journal of Computational Physics 國際期刊上的數值方法論著 “The Constrained 

Interpolation Profile Method for Multiphase Analysis” 在 2017 年達到 842 次的論文引用次數，研

究結果已成功應用於大氣現象、波浪行為、雙相流模擬與流故耦合模擬。肖鋒教授為計算物

理與雙相流領域專家且為日本機械學會、日本氣象學會、日本數值流體力學會、日本流體力

學會與日本計算工學會會員並擔任國際期刊 J. of Computational Physics 副編輯。肖教授也與國

際知名研究單位共同合作，如中國科學院、中國氣象科學研究院、西安交通大學與 Johns 

Hopkins 大學等。 

 本次實習課程由肖教授傳授淡路島風場風能分析與風機發電預報分析技術，實習過程並

與 CEF (CLEAN ENERGY FACTORY http://cef.co.jp/index.html)公司工程師 Dr. Yuzhang Che 學習

風力發電機的實際發電監測方式與發電評估方法，並與該員技術交流。CEF 公司為日本風力

發電場建設承包商與風電管理公司，其主要業務之風場管理涵蓋全日本 9 座風場共 107 台陸

域大型風力機。故本次實習亦是學習 CEF 公司與東工大合作開發之風場評估與風機發電預報

技術，課程期間也實地見習東工大 GSIC-TSUBAME2.5 平行電腦並與研究人員研究交流，實習

期間也介紹台灣核研所 150kW 風機實驗平台以尋求未來雙方的合作機會。由於東工大在日本

關東地區共有三個校區(圖 2-2)，校本部與高速電腦在大崗山(圖 2-3)，本次主要在橫濱分校區

(圖 2-4)實習除前往校本部見習 GSIC-TSUBAME2.5 超級電腦。本次公差工作人員為核能研究

所林彥廷副研究員，工作日期自 8 月 11 日至 9 月 2 日，為期共 23 天。 

  

圖 2-1，日本東京出差行程地理位置圖 

東工大橫濱校區 

東工大校本部 

東京成田/桃園進出 
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圖 2-2、東工大全部校區(引用東工大校園簡介資料) 

 

圖 2-3、東工大大岡山校本部與高速電腦中心(引用東工大校園簡介資料) 
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圖 2-4、東工大橫濱校區(引用東工大校園簡介資料) 

  

由於本次實習主要藉由肖鋒教授(Prof. Feng XIAO)與 CEF 公司車玉章博士(Dr. Yuzhang 

Che)的直接教學。由於肖教授與車博士皆為氣象物理與計算流體力學專家，因此訓練課程以

氣象基本現象教導、分析工具介紹、分析軟體提供、分析軟體安裝教學、網路重要資源提供

與分析軟體操作教學。之後經由車博士教導示範 CEF 公司在實際風機風力與發電數據收集與

分析，最後利用理論修正精進預報結果。圖 2-5 為與東京工業大學機械系肖鋒教授(左)及 CEF

公司車玉章博士(右)於學校合影。圖 2-6 前往校本部見習東京工業大學 GSIC-TSUBAME2.5 高

速電腦中心。 

  

圖 2-5、與東京工業大學機械系肖鋒教授(左)及 CEF 公司車玉章博士(右)合影 
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圖 2-6、見習東京工業大學 GSIC-TSUBAME2.5 高速電腦中心(引用附錄五-(三)) 

 

表 2-1、實習課程表 

序列 課程名稱 課程內容 

1 氣象介紹 風力來源、分類及其特性介紹 

2 氣象預報分類 

與分析技術 

氣象預報的分類對風機運維的影響及主要分析技術介紹 

3 氣象分析軟體 氣象分析軟體介紹及市場簡介 

4 氣象軟體安裝教學

與軟體資源提供 

氣象軟體安裝與操作教學，並提供關鍵軟體資源 

5 風場風機介紹 介紹淡路島風機系統與 CEF 風場營運公司 

6 風機發電分析 淡路島 2.5MW 風機系統發電與模式建立 

7 平行電腦教學 東工大 TSUBAME 2.5 平行電腦介紹與連線操作教學 

8 預報修正教學 學習卡 爾 曼 濾 波 器 (Kalman fil ter)與資料同化方法(Data 

assimilation) 

9 預報評估教學 WRF 預 報 資 料 誤 差 ME、 RMSE 與 IA 指 標 教 學  

10 OpenFOAM- 

CFD 驗證 

OpenFOAM-CFD 驗證與 WRF 驗證比較教學 

 

 以下章節將介紹本次實習所提供之教學內容大綱，詳細的論文資料將以附錄呈現。根據

表 2-1 的課程順序，課程內容主要由大氣現象開始介紹，之後再依序介紹軟體以及實際操作

與分析過程。 

(二)-1 風的來源 

風是空氣受不同大氣壓力而導致的移動現象，當大氣之間存在壓力差時則空氣將會由高壓

區域流向低壓區域。風的強度或速度主要受以下兩要素影響。一為兩地區的壓力差異(pressure 

difference)的多寡，壓力的差異越大則風的速度越快，而大氣壓力則來自於太陽熱對空氣的加

熱。另一為隧道效應(tunneling effect)，風速主要受到地形地貌的影響，如峽谷與大樓間隙等。

因此，根據風的流動過程又可將風分類為四種，分別定義如下： 

1. 行星風系(Planetary Winds)：忽略地形地貌影響之低層大氣之氣流，包含東北季風

(North-East Trade Winds)、東南季風(North-East Trade Winds)、溫帶西風帶(Temperate Westerlies)
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與極地東風帶(Polar Easterlies)。這些風況整年皆非常的平穩並受緯度壓力帶所控制。整體

來說，行星風的理論有三個假設：地軸不傾斜，地表無海陸差異與地表無高度差異。因此

地球整體皆受此行星風系影響。 

2. 季候風系(Monsoon Winds)：陸地與海洋之間的溫度差異造成兩區域之間的氣壓分布

差異，也形成兩區域之間在不同季節的大氣壓力變化。因此形成風向大致相反的季節性風

系，稱為季候風。其主要為風向在夏季由海洋吹向陸地，冬季風向則由陸地吹向海洋。季

候風以東南亞區域最為強盛，因此台灣也是季候風系的主要影響區域。 

3. 氣旋與反氣旋風系(Cyclone and Anti-cyclone Winds)：氣旋是指圍繞著一個低壓中心而

強烈旋轉的大氣風系系統，且由於內外大氣壓力差異大，四周的空氣快速流向低壓中心。

氣旋通常會帶來不穩定且惡劣的天氣，如颱風與颶風。反氣旋則是指地區性的大氣系統其

中心氣壓較高，四周氣壓較低造成高壓中心的大氣向外圍壓力降流動之現象。高壓區域內

部空氣向下流動，形成晴朗而乾燥的天氣。 

4. 局部風系(Local Winds)：局部地區的空氣受熱不均而產生小規模環流現象，包括焚風

（fohn winds）、谷風、山風、龍捲風、海風和陸風等地方性風系。海風和陸風出現於沿

海地區，受海面與陸地溫差造成的空氣壓力差異，日間風由海吹向陸地，夜間風由陸地吹

向海面，如同季候風系。山風和谷風常見於山區，白天時，空氣受熱而上升，風從山谷吹

向山頂爬升，稱為谷風；夜間時，空氣冷卻而沿山頂吹向山谷下沉，稱為山風。焚風則是

乾燥而溫度較高的風系，當有風系吹過高山，由於迎風面的上升空氣導致凝結降雨，使得

水汽減少，之後再沿背風面山坡下降，使空氣溫度增加而形成焚風風系。 

除了上述風系，亦有其他受科式加速度與離心加速度等造成的相對穩定之壓力系統。但由

於複雜的地球表面之地形地貌所造成的複雜大氣邊界層(Atmosphere boundary layer, ABL)，通常

造成更加複雜的局部之不穩定大氣壓力系統。因此適當解析 ABL 是開發風能與預測風力機發

電之重要步驟。 

 

 
圖 2-2-1、地球大氣之對流層示意圖(引用 Atmospheric Science 2006,Wallace and Hobbs 圖 9.1) 

 

(二)-2 大氣邊界層(Atmosphere boundary layer, ABL) 

地球大氣之對流層可以粗略的分類成兩部分：第一為自由大氣層(free atmosphere, FA)與靠

近表面的邊界層(boundary layer)，又稱大氣邊界層(Atmosphere boundary layer, ABL)，如圖 2-2-1

所示。此 ABL 在各類工程領域皆為重要的背景資料，如航空氣象學、空氣汙染、農業氣象、
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水文學、氣象預測、氣候研究與風能研究。ABL 主要被定義在 1 個小時的尺度之內大氣與地

球表面交互作用之氣流層。其垂直高度約在 10m 到 2km 之間，約占比對流層 10%到 20%。相

比於自由大氣層 FA，其之間的差異列於表 2-2-1。大氣邊界層 ABL 與日照循環的結構繪製於

圖 2-2-2。大氣邊界層 ABL 主要有三層結構，分別為混合層(mixed layer, ML)、滯留層(residual 

layer, RL)與穩定邊界層(stable boundary layer)。在靠近地球表面，有終日存在的薄邊界層(thin 

boundary layer)且垂直方向的紊流通量(turbulence fluxes)趨於常數。 

 

表 2-2-1、自由大氣層(free atmosphere, FA)與大氣邊界層(Atmosphere boundary layer, ABL) 

Property free atmosphere, FA Atmosphere boundary layer, ABL 

Turbulence Mostly laminar. Almost continuously turbulent over 

its whole depth. 

Friction Small viscous dissipation. Strong drag against the earth’s 

surface. Large energy dissipation. 

Dispersion Small molecular diffusion.  Rapid turbulent mixing in the 

vertical and horizontal. 

Winds Winds nearly geostrophic. Near logarithmic wind speed profile 

in the surface layer. 

Sub geostrophic, cross-isobaric flow 

common. 

Vertical 

Transport 

Mean wind dominates. Turbulence dominates. 

Thickness Less variable 8-18Km. 

Small time variations. 

Varies between 100m to 3km in time 

and space. 

Diurnal oscillations over land. 

 

 
圖 2-2-2、大氣邊界層 ABL 與日照循環的結構示意圖 

 (引用 Stull, R. (2010). Meteorology for Scientists and Engineers, third edition) 

 

(二)-3 複雜地貌的流動現象 

在日本陸域風場的風機通常是位於複雜山脈區域，因此地形所造成的影響(如紊流)將影響
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風場評估位置的風速與風向，並間接造成風資源與風場評估的難度。為了解地形地貌對風場

的影響，實地量測驗證是直接有效的方法，但通常受限於地形問題造成量測困難。因此透過

有限的實驗量測驗證與數值分析是目前風場評估最被推薦的方法。風洞模型與實驗是研究特

定地形地貌最常用的方法，其關鍵是利用特定比例模型重建真實地形並在風洞中實驗量測。

Meroney(Meroney, RN. 1980. Wind-tunnel simulation of the flow over hills and complex terrain. J. of 

wind engineering and industrial aerodynamics, 5(3-4):297-321)與 Neal 及 Stevenson 等人(Neal, D., 

Stevenson, D., and Lindley, D. 1981. A wind tunnel boundary layer simulation of wind flow over 

complex terrain: Effect of terrain and model construction. Boundary-layer meteorology, 21(3):271-293)

分別利用 1/5000 與 1/4000 比例模型研究紐西蘭山脈風速。Bowen 學者(Bowen, A. 2003. Modeling 

of strong wind flows over complex terrain at small geometric scales. J. of wind engineering and 

industrial aerodynamics, 91(12):1859-1871)則建議最低為 1/6000 比例的模型才有較佳實驗結果，

亦有其他學者提出相關研究。但由於風洞的設備維持與實驗方法複雜，以及難以模擬地球之

大氣邊界層(Atmosphere boundary layer, ABL)現象，故有效模擬地球大氣邊界層的數值方法則可

能提供更精確且更有效率的風能評估方法。 

 近年來利用計算流體力學方法(computational fluid dynamics, CFD)是廣泛使用於評估複雜

地形之風能評估方法。目前被廣泛使用的數值方法則有 Reynolds-averaged Navier-Stokes(RANS), 

Large-eddy Simulations 與 Detached-eddy simulation 等方法。RANS 已被廣泛使用於複雜流場，

但由於其基本架構是採用平均值與變動量的計算，因此對於大小不一的渦流並無法適當的分

析與重建。也因此近年來 LES 方法被廣泛地用於 RANS 數值分析所無法分析的問題並獲得更

準確的結果。但是由於 LES 之邊界條件的重建、地形幾何建立與 LES 的紊流區域網格細緻化

設定難度皆遠大於 RANS，因此 RANS 依然是執行風能計算與評估的經濟選擇。 

 

(二)-4 風能預報模式 

由於地球風系行為的混沌特性，因此正確預測其風場未來風速與方向趨勢依然是重要研究

課題，以期能達到與電網發電操作匹配與電力儲存之預備。一般來說，風能預測主要希望能

預測風力機發電量，且其通常利用一種以上的風力預報模式以完成該項任務。風力預測模式

主要可以區分為以下四類： 

1. 極短期預報(Very-short-term forecasting)：由幾分鐘到 1 小時以內。 

2. 短期預報(Short-term forecasting)：由 1 小時到數小時之間。 

3. 中期預報(Medium-term forecasting)：由數小時到 1 週以內。 

4. 長期預報(Long-term forecasting)：由 1 週到一年以上。 

 

表 2-4-1 繪製出各個時間尺度預測模式在風力發電產業的應用。在電力系統中不同時間尺度的

預報系統皆有不同領域的應用，極短期預報模式通常應用在電力負載追蹤與操作行為安排

等；短期預報模式則應用於電力負載匹配調度等；中期預報模式可以安排風力機是否停機或

是後備運轉；長期預報模式則可以安排歲修等維修保養工作。整理如下： 

 

表 2-4-1、各個時間尺度預測模式在電力產業的應用 

Time-scale  Range Applications 

Very-short-term Few minutes to 1hour ahead Electricity market clearing 
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Real-time grid operations 

Regulation actions 

Short-term 1 hour to several hours ahead Economic load dispatch planning 

Load reasonable decisions 

Operational security in electricity 

market 

Medium-term Several hours to 1 week ahead Unit commitment decisions 

Reserve requirement decisions 

Generator online or offline 

decisions 

Long-term 1 week to 1 year or more ahead Maintenance planning 

Operation management 

Optimal operating cost 

Feasibility study for design of the 

wind farm 

 

(二)-5 風能預報技術 

風能預報模式技術是利用現有的風力資訊或是過去一段時間的風力資訊再耦合各類數值

分析軟體達到預測未來風能資訊，目前主要採用的方法有守恆法(persistence method)、物理近

似法(physical approach)、統計法(statistical technique)與混合法(hybrid method) 四種，介紹如下。 

1. 守恆法(persistence method) 

此方法利用當下的風速預測未來的風速，其數值方法需建立在極微小的時間步長，因此

及計算時間較長但數值技術簡單。其優點是在 Very-short-term 與 Short-term 預報上比物理近似

法(physical approach)、統計法(statistical technique)準確。 

 

2. 物理近似法(physical approach) 

此方法係建構在數值氣象預報模式(numerical weather prediction model, NWP)，其是利用已

知的物理公式搭配當下真實的氣候資訊去預測未來氣象，並可以獲得數小時到數天的精確且

可靠的預估。NWP 是透過複雜的數學公式與考慮溫度、風速、風向、壓力與表面粗糙度等條

件達到氣候預報目的。各類衍生的 NWP 技術如 WRF(Weather research and forecasting)、

RAMS(regional atmosphere modeling system)與 MM5(Fifth-Generation Penn state/NCAR mesoscale 

model)等皆已被大量地使用於風能預報與評估技術。 

 

3. 統計法(statistical technique) 

相對於 NWP 方法，統計法則提供更加精簡與簡易的氣象預測，特色是只須少許電腦運算

資源即可達到精確的短期預報。其核心理論主要運用於過去風速氣象等歷史資料去預測未來

數小時的氣象資料，主要技術可以區分為時間序列模式(time-series based models)與神經網路法

(neural network based models, NN)。以時間序列模式(time-series based models)建構的預報方法則有

自動回歸移動平均模式(auto regressive moving average, ARMA)與其他衍生模式，如自動回歸積

分移動平均模式(auto regressive integrated moving average, ARIMA)、季節-自動回歸移動平均模式

( seasonal-ARMA)、分段自動回歸移動平均模式(fractional - ARMA)與含外加資料自動回歸移動

平均模式(ARMA with exogenous input, ARMAX or ARX)。以及有其他時間序列模式如：線性預

測(linear predictions)、灰色預測(grey predictors)與指數平滑(exponential smoothing)。ARMA 方法
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已被 Torres 學者等人文獻證明其 10 小時預報結果比 persistence method 減少約 20%誤差。 

 神經網路法(NN)利用過去一段週期的氣象資料學習風速輸入與輸出的關係，其方法並不

需要氣象流體力學等基礎公式運算，只要是利用神經網路學習達到資料輸入與輸出的關聯模

式即可完成預測要求。但如同 ARMA，當預測的時間過長時則 NN 的準確度也快速下降。NN

法亦有其他衍生模式，如供給向前神經網路法(feed-forward neural networks, FNNs)、多層感控法

(multi-layer perceptron, MLP)、迴圈神經網路法(recurrent neural networks, RNNs)、逕向基本函數

(radial basis function, RBF)與 Adaline networks 神經網路法。 

 除了上述的方法，有些統計法持續被開發中，如：fuzzy logic model、wavelet transform、spacial 

correlation、ensemble forecasts 與 entropy based training 等。 

4. 混合法(hybrid method) 

 混合法顧名思義即是利用前述 3 種主要技術達到氣象與風力預測目的，主要綜合各個方

法的優點達到最佳化預測目的。如 ANFIS 法即是結合 ANN 與 fuzzy logic 的方法，並成功運

用於短期風力預報。此外亦有學者成功利用 NN 結合 NWP 或是 spacial correlation 的預測方法。

此方法是目前學者們所努力的方向。 

  

(二)-6 NWP 數值氣象預報模式 

NWP 預報技術主要是利用空氣流動的控制方程式完成預測分析，其主要可以分為資料收

集(data collection)、資料同化(data assimilation)、預報、後處理(post-processing )與發佈資料

(distribution)。前兩項為預測核心程式，研究開發主要著重於此以建立更精確的起始資料與數

值方法。根據運算區域分類，亦可區分為兩類，一為全體地球計算，另一為局部區域細部計

算，如圖 2-6-1 所示。目前商業與科學研究主要採用的 NWP 技術軟體如表 2-6-1 所示。這些軟

體已被廣泛使用於氣象預報，如洪水、強降雨與颱風等，因此本次於東京工業大學機械系實

習主要也是以 NWP 技術為主，並用於風速預測與風力機發電量評估。 

 

圖 2-6-1、日本列島局部區域細部計算示意圖(引用附錄五-(一)與(二)) 



第 11 頁 

表 2-6-1、目前市場主要 NWP 軟體列表 

Model name Hydrostatic or 

Non-hydrostatic 

Global or 

Regional model 

Owner 

ECMWF Non-hydrostatic Global European union 

GEM Hydrostatic Global Canada 

UKMET Non-hydrostatic Global/Regional United kingdom 

NOGAPS Non-hydrostatic Global Navy 

T639 Non-hydrostatic Global China 

MM5 Non-hydrostatic Global PSU 

MSM Non-hydrostatic Global Japan 

GSM Non-hydrostatic Global Japan 

NAM Non-hydrostatic Global NCEP 

WRF Non-hydrostatic Global NCEP 

GFS Non-hydrostatic Global NCEP 

 

 

圖 2-7-1、WRF 計算流程架構示意圖(引用 http://www2.mmm.ucar.edu/wrf/users/supports/tutorial.html) 

 

(二)-7 WRF 氣象預報軟體架構 

Weather Research and Forecasting Model 軟體功能主要分為三組架構，分別為前處理
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pre-processing system、核心處理器 WRF model 與後處理 post-processing。其各功能之間的連結

如圖 2-7-1 所示。圖中顯示出 WRF 整體架構有兩套運算核心，分別為 advanced research 

WRF(ARW)另一套為 non-hydrostatic mesoscale model (NMM)，本次實習主要採用前一套核心。

此外 WRF 計算資料主要提供理論風場計算與預測真實風場資料之預報，本分析選擇後者。

WRF 預報的真實風場之起始資料設定步驟如下： 

1. 讀取 WRF 前處理所生成之資料。 

2. 計算乾燥地形表面壓力、模型階層與垂直差補資料。 

3. 計算參考溫度曲線。 

4. 準備土壤地表參數。 

5. 檢查地表土壤類別、土地使用、土地遮蔽、地表土壤溫度、海面溫度皆互相符合季節

特性。 

6. 輸入時間週期以產生橫向邊界條件(lateral boundary conditions)。 

7. 定義三維邊界條件，如溫度、速度、熱量與溼度等資料與地圖網格耦合。 

 

此外，在實際運算 WRF 之前，其前處理主要是劃分計算區域與設定相應邊界條件，因此適當

設定邊界與區域可以獲得準確的預報資料且消耗較低的運算資源。故分析通常採用巢式迴圈

的運算區域，主要利用較大的網格運算區域預先算出周邊區域，再於此範圍更加的局部細化

所需要的風場資料，如此經由父子區域的巢式運算可以獲得最佳的預報結果，巢式迴圈的運

算區域示意圖如圖 2-7-2 所示。因此巢式運算則可根據運算資源與風場條件規劃為單向資料傳

遞之 one-way 計算或是父子網格相互傳遞與修正之 two-way 計算。鑒於風場特性與運算資源，

日本淡路島風場風力發電計算採用 one-way 巢式計算。 

 

 

圖 2-7-2、WRF 計算區域之巢式結構示意圖 

(引用 http://www2.mmm.ucar.edu/wrf/users/supports/tutorial.html) 
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(二)-8 WRF 氣象預報模式處理器 

WRF 核心處理係利用全可壓縮、Euler non-hydrostatic 與 hydrostatic 模式，並使用 2 階與 3

階 Runge-Kutta 時間積分算則，在垂直與水平方向的空間離散可由 2 階定義到 6 階對流算則。

網格計算採用 Arakawa C-grid 錯離網格(staggering grid)。氣象物理條件則又區分為幾類副程式

分析氣象特性，分類如下： 

1. 微物理模組(Microphysics)：主要計算水蒸氣、雲以及降雨過程。 

2. 積雲參數化模組(Cumulus parameterization)：主要計算積雲現象。 

3. 地表層模組(Surface layer)與 land-=surface model：計算地表之摩擦速度、交換係數

(Exchange coefficient)、熱量與濕度。 

4. 行星邊界層模組(Planetary boundary layer)：提供大氣之溫度、空氣動量與濕度趨勢計算。 

5. 大氣輻射(Atmospheric radiation)：計算大氣與地表吸收與放射太陽輻射，以計算大氣溫

度變化。 

 

 

圖 2-9-1、WRF 計算分析流程 

(引用 http://www2.mmm.ucar.edu/wrf/users/supports/tutorial.html) 

 

(二)-9 WRF 氣象預報後處理 

WRF 核心處理程式計算完成之後主要以 NETCDF 的格式輸出，之後通常採用 NCL(NCAR 

Command Language)軟體完成計算數據的後處理與可視化。該軟體亦支援各類氣象分析數據輸

出格式，如 NETCDF、HDF4、HDF4-EOS、GRIB、binary 與 ASCII 格式。另一套後處理採用

RIP4(Read/Interpolate/Plot4)軟體，該軟體係採用 fortran 格式操作之可視化與氣象資料網格化軟

體。整體的 WRF 操作軟體分類如圖 2-9-1 所示。 

 

(二)-10 日本淡路島風場模擬設定 
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本次實習主要了解第 2 類技術之 NWP 方法的風力預測技術，其採用的分析工具為 Weather 

Research and Forecasting Model (WRF)分析軟體，並用於分析日本淡路島風場(Awaji wind farm)

的風力預測與發電資料。淡路島氣象分析採用 Warnar 學者提出的巢式分析模式，採用一個父

計算區域與三個子計算區域並使用 one-way 計算方式。父區域位於北緯 34.65 度與東經 134.635

度且為 75x73 計算網格之 78 公里解析度。子計算區域分別為 97x97 之 12km 網格、101x109 之

3km 網格與 103x109 之 1km 網格。背景氣象條件為 50hPa 並採用 GFS(Global Forecast System)

氣象資料作為邊界條件，以及採用 U.S. Geological Survey 的地形資料並分別套用在父系統與三

個子系統解析度為 5 弧分(Arc minute)、2 弧分、30 弧秒(Arc second)與 30 弧秒。 

淡路島模型風機發電量預報時間訂為 2013 年 8 月 1 日到 2014 年 1 月 31 日並採用 1 小時

週期預報輸出。每一次的預報時間都必須要利用歷史資料的前 12 小時並加上 6 小時的計算穩

定時間以達到最適當 24 小時預報分析。因此在持續預報資料分析需先累績前 18 小時的歷史

資料以達到分析驗證。詳細的淡路島模型解析如下圖 2-10-1 與圖 2-10-2。 

 

 
圖 2-10-1、WRF 預報分析之地理幾何規劃示意圖(引用附錄五-(一)與(二)) 

 

淡路島風力機風場位於淡路島西南方區域，共安裝 15 台 GE(General Electric GE)公司

2.5MW 水平軸風機，並由日本 CEF 公司負責運轉維護。安裝塔架為 80m 與風機旋轉直徑 84m。

根據本次預報分析，量測資料利用風機機艙上方的風速風向儀並採用 IEC61400 量測標準，以

每 10 分鐘為平均完成風速風量資料收集。2.5MW 風機之運轉資料如圖 2-10-3 所示。但由於為

了數值解析方便，將風機的功率曲線採用多項式擬合以利數值計算，係數如下(根據附錄五-(一)

與(二))： 
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風能理論輸出 
 

實際發電輸出  

相關係數 

a10=2.23e-06，a9=-0.002，a8=0.0061，a7=-0.1125 

a6=1.2089，a5=-7.8032，a4=29.3869，a3=-55.9710 

a2=48.3195，a1=-16.7577，a0=2.0053 

 

圖 2-10-2、淡路島陸域風場高度與空照圖(引用 CEF 公司官網 http://cef.co.jp/ ) 

 

 

圖 2-10-3、GE2.5MW 實際運轉與理論數據比較圖(引用附錄五-(一)與(二)) 
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(二)-11 Kalman filter 卡爾曼濾波器與 Data assimilation 資料同化方法 

本次實習亦討論 NWP方法的風力預測技術與卡爾曼濾波器及 Data assimilation 資料同化方

法對發電預測的改善。卡爾曼濾波器是由 150 年前 Rudolf E. Kalman 所發展，其採用遞迴操作

在連續的資料中運算出統計上的最佳輸出。此方法的優點在於容易調控、遞迴運算、最佳化

特徵與最小電腦運算量。因此淡路島風場的發電預報則採用卡爾曼濾波器降低 WRF 預報的誤

差以獲得更精確的預測。 

卡爾曼濾波器的導入通常可分為兩步驟，第一為時間更新(time update)，主要利用現有的

誤差去投影下一時間的誤差。第二步驟為量測更新(measurement update)，採用實際量測資料以

修正過去的預測資料，再更正未來的預報。詳細的運算過程可參考卡爾曼濾波器相關文獻。 

Data assimilation 資料同化則是採用三類主要分析方法：1.採用優先資訊(prior information)

的動態系統。2.連續性的真實數據資料收集。3.數值模式的選用。詳細的背景理論可參閱附件

資料。 

 

(二)-12 預報準確度評估方法 

 淡路島風機再經由 WRF 預報軟體運算後，再利用卡爾曼濾波器的修正以達到最佳的預報

結果，其準確度評估方法可利用三種計算方式，分別為平均誤差(mean error, ME)、均方根誤差

(root mean square error, RMSE)、Pearson 修正係數(Pearson product moment correlation coefficient, CC)

與重合指數(index of agreement, IA)，定義如下(根據附錄五-(一)與(二)): 

 

 

 

(二)-13 WRF 氣象分析與淡路島發電量預報分析結果 

 本次實習主要學習整體的風機風場發電預報技術，主要利用 WRF 計算後再透過卡爾曼濾

波器修正以即資料同化方法等修正預測風速以達到準確預報發電量。整體的計算流程與相關

技術的導入如圖 2-13-1 所示。透過已知的氣象與地形資料搭配 WRF 並選擇適當的算則與數值

方法，之後搭配卡爾曼濾波器與淡路島風機的實際發電量與風速完成風機的發電量預測。 
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 根據圖 2-13-2 與圖 2-13-3 之計算結果，預報趨勢分布可確定透過 WRF 以及 Kalman filter

卡爾曼濾波器與 Data assimilation 資料同化方法可準確預估風機發電量，且有效降低傳統 WRF

預報愈差。其結果也顯示 Kalman filter 卡爾曼濾波器與 Data assimilation 資料同化方法有相同的

誤差改善效果。研究結果發現利 用 資 料 同 化 方 法 可 以 使 原 始 WRF 預 報 資 料 誤 差 在

ME、RMSE 與 IA 指 標 分 別 下 降 34.6%、23.9%與 8.8%，而 卡 爾 曼 濾 波 器 則 可 以 分

別 降 低 97%、 22%與 10%誤 差 。 因 此 相 對 於 資 料 同 化 方 法 的 電 腦 運 算 量 ， 卡 爾 曼

濾 波 器 提 供 更 加 簡 易 且 有 效 的 預 報 結 果 ， 故卡爾曼濾波器是較佳的 WRF 改善策略。

預 報 確 認 發 電 數 據 後，OpenFOAM 計 算 流 體 力 學 程 式 被 使 用 於 驗 證 以 及 分 析 流 場

細 節 ， 如 風 速 與 紊 流 程 度 。 故 在 透 過 大 尺 度 與 微 觀 尺 度 的 流 場 分 析 之 後 對 於 特

定 風 場 之 風 力 發 電 量 可 更 加 準 確 與 可 靠 的 預 測 並 安 排 相 關 風 機 運 維 工 作 。  

 

 

圖 2-13-1、計算流程與相關技術的導入示意圖 

(引用附錄五-(一)與(二)及 http://www2.mmm.ucar.edu/wrf/users/supports/tutorial.html) 

) 
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圖 2-13-2、WRF 預報與資料同化方法結果比較圖 

(引用附錄五-(一)與(二)) 
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圖 2-13-3、WRF 預報、卡爾曼濾波器與資料同化方法結果比較圖 

(引用附錄五-(一)與(二)) 

 

 

 

 

 

 

 

 

 



第 20 頁 

三、心 得  

由於風力發電機的潔淨與、可持續性與再生能源特性，自 1990 年全球風能安裝容量約為

每四年達到倍數成長。但根據日本市場統計，2016 年風能在日本全國發電只占比約 0.6%，其

發展遲緩原因約可歸納於複雜地理環境、人口密度與政府政策。其中複雜的地理環境容易造

成複雜的空氣對流而形成較大的發電量變動，進而造成區域電網整併困難。有效的解決方案

即是在併網之前補充穩定風力發電量來源。此外為了最佳化操作策略，精確的預測風場與風

力機之風速與發電量是最為關鍵的技術。但不論是台灣或是日本，風電公司對於預報發電系

統開發皆較為缺乏。 

 因此，本次的實習主要是因為 CEF 公司遇見此預報系統的重要性而委託東京工業大學機

械系執行此預報系統開發，並開發中尺度氣象 WRF 模式之發電預報。此研發成果已利用日本

淡路島複雜地形風場之 15 台風機完成 WRF 驗證。在將近 6 個月實驗期間裡利用預報結果與

風機機艙風速的量測比較後，已確認 WRF 的發電預報系統可提供相對可靠的操作控制預測。

但由於量測數據的不確定性易造成數據判斷誤差與預報錯誤，因此透過導入 Kalman filter 濾

波器與 data assimilation 資料同化法應用於後處理資料的重製，亦被確認有效降低風速預報誤

差與發電量之量測不確定性。且 data assimilation 資料同化法更可優於 Kalman filter 濾波器在

降低亂數誤差之功效，但其電腦運算量亦遠大於後者。         

 由於 WRF 預報計算之解析度為 500m 為單位之計算，因此更加複雜的地形亦會降低 WRF

之預報結果，也限制 WRF 之預報只能用於中尺度的地形幾何，故實習課程亦討論利用 CFD

技術以彌補次預報上的缺陷。CFD 的特點是可以建立多尺度的預報系統，不論地形的複雜程

度皆可在運算系統獲得解析。故針對本次實習提出未來精進方案：(一)、CFD 之流體紊流模

式、算則與網格結構需要更進一步修正以獲得更準確與改進目前之預報系統。(二)、紊流模式

之不穩定係數可採用 Ensemble Kalman filter(EnKF)方法以了解對發電機預報的影響。(三)、在

資料同化分析中，運算過程比較需要高品質的數據來源，但商業風機通常採用 IEC61400 量測

標準，故數據只有 10 分鐘一筆。未來可以透過合作以獲得較佳的 WRF 起始運算資料。 

 日本風機市場與台灣市場類似，皆較歐洲起步較晚。其早期的風力機大多數來自國外，

但近期已開始有自製風機或是合資公司。其風機管理公司大多是外包給民間公司長期管理，

並且亦有與學校與研究機構的研究開發案，此點比台灣進步且已達到市場開放。日本東京工

業大學與其研究單位亦與業界緊密結合，通常企業會派駐資深員工研讀博士班並提供相關計

畫投資學校以達到投資-研究-合作相輔相成。 

 東京工業大學之 GSIC-TSUBAME 高速電腦中心在日本系採用聯盟營運方式，其合作方式

有收費、優待與免費使用方式。最便宜的合作方式提供企業與其他單位無償使用，但其研究

成果必須無償提供給學校與日本政府。優待方式則可用較便宜的方式輔導中小企業研發並保

有研發機密。 

 最後感謝行政院原子能委員會核能研究所提供此次出國實習公差，藉由此機會得以學習

未來執行業務時所需之專業知識，期許將此次所學充分運用於發展研究上，使專業更為精進，

並透過此次交流得以拓展與推廣所內風能相關計畫研發成果，以提升本所於國際間更多相關

計畫合作之機會。 
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四、建 議 事 項 

 

(一) 日本 CEF 公司為風力發電運維公司(http://cef.co.jp/index.html)，其主要業務為風場開發、風

機建設、運轉維護與發電監控。目前該公司擁有 9 座風場共 107 台風機之管理業務，並依

其公司需求尋求東京工業大學等研究單位技術開發。建議核能研究所亦可依此經驗，尋找

台灣類似於 CEF 之相關風機管理公司，輔導研究升級，亦可獲得業界運轉數據。 

(二) 以WRF軟體評估風能評估與風力發電預報技術已被確定可行且有效幫助電網電力調度。但

目前台灣風力預測停留在較長期的風力預報，對於短期間預測，如數小時的預報資訊較缺

乏，且對於局部區域的預測也缺乏此類評估單位。建議核研所成立相關研究小組。 

(三) 東工大肖鋒教授建議核研所應積極與日本學術界或各研究單位合作，以精進風機技術與離岸

風能工程分析技術。因台灣特殊且嚴苛的地形與氣候條件與日本類似，傳統國際上IEC61400

標準無法滿足國內設計要求，台灣應積極開發自主分析軟體與程序以掌握開發離岸風電與風

機技術。 

(四) 日本東京工業大學之GSIC高速電腦中心，有提供免費合作計畫但其研究成果需歸於學校

與日本政府。因此建議所內亦可在計畫範圍內利用此機制擴大與業界合作機會，並鼓勵中

小企業參與研發。 

(五) 日本風機發展與台灣雷同，皆比歐洲或是中國大陸起步較晚，故其風機大多來自國外機

組，如美商 GE 公司。但日本依然透過國營企業積極開發自製風機與支撐結構組件，並開

發相關安裝機具以完整佈建風機運維供應鏈。建議台灣相關單位亦可尋求此模式或參與日

本相關產業建立合作模式。 
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五、附 錄 

檢附相關研究論文兩篇、GSIC 見習資料與核研所交流資料 

(一) An integrated wind-forecast system based on the weather research and forecasting model, Kalman 

filter, and data assimilation with nacelle-wind observation 

(二) A wind power forecasting system based on the weather research and forecasting model and Kalman 

filtering over a wind-farm in Japan 

(三) 東京工業大學 GSIC-TSUBAME2.5 資料 

(四) 與日本東京工業大學交流簡報-Wind energy research in INER 
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To forecast wind speed at hub-height is a challenging task for wind energy applica-

tion, especially in Japan where the terrain feature is very complex and large fluctua-

tions are observed in surface wind field. In this study, an integrated system to predict

the hub-height wind speed has been developed by combining data assimilation and

Kalman filter with the high resolution Weather Research and Forecasting (WRF)

model. Assimilating the nacelle wind data (quality-controlled) and the Kalman filter

algorithm effectively improves accuracy of the WRF model forecast by optimizing

initial condition and post-processing the model output, respectively. It is found that

the WRF model forecasts can be markedly improved after assimilating the nacelle

wind data through the Gridpoint Statistical Interpolation analysis system, with the

relative improvements of 34.3%, 23.9%, and 8.8% in ME (mean error), RMSE (root

mean square error), and IA (index of agreement), respectively. The implementation

of the Kalman filter can significantly reduce ME and RMSE while increases the

value of IA as well. Further improvement can be achieved if the Kalman filter and

nacelle wind data assimilation are implemented simultaneously. It is observed that

the role of the Kalman filter is more dominant for the wind band of rated out speeds,

while data assimilation is effective in reducing the random errors and becomes more

important in rare or extreme weather conditions. Both data assimilation and Kalman

filter modules apply the nacelle wind data which is routinely available, so the system

can be easily adopted in different wind farm sites for operational use. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4966693]

I. INTRODUCTION

The short-term wind energy estimation relies heavily on the low-level wind forecasts

derived from the numerical weather prediction (NWP) model. As documented by Landberg and

Watson,1 Costa et al.,2 recent progresses in forecast skills of NWP models make it possible to

provide more reliable predictions of surface wind field which is essential for wind energy man-

agement. However, the current NWP models are still far from a mature stage and particularly

large errors are found in the prediction of the surface wind forecasts, which has motivated con-

tinuous efforts to improve the NWP models themselves.3,4 The encouraging results in these

works suggest that more reliable forecasts can be made by using more advanced and sophisti-

cated numerical models which are generally believed to possess dynamic cores with less

assumptions and accurate numerics, refined parameterization packages for physical processes

that directly affect the phenomena of interests. Unfortunately, other factors beside the model

inaccuracy, such as the uncertainties in observations and the chaotic nature of atmosphere, also

prevent the outputs of deterministic NWP models being directly usable to many applications.

Thus, other approaches are found to be more effective in improving the forecasts of the given
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numerical models. For example, efforts have been made to use the available observations which

are always regarded as the more reliable representation of the real atmosphere.

Some existing studies5–7 indicate that post-processing statistical methods that evaluate and

correct the model outputs against the observations, for example, Model Output Statistics (MOS)

and Kalman filter, are very effective and demonstrate significant capability of reducing errors in

the outputs of numerical models. Another effective method is data assimilation (DA) to gener-

ate the initial conditions (known as the “analysis”) as close as possible to the real atmosphere8

for the NWP models in use to improve their forecasting skill. In this work, we develop and

evaluate a DA component for a forecast system of local surface wind field,9 which is based on

the Weather Forecasting and Research (WRF) model and Kalman filter.

For operational wind farms, the conventional observations include upwind meteorological

(MET) tower measurement and nacelle wind data. In general, the measurements from an MET

tower at a wind farm site cannot accurately reflect the real wind field around the turbines which

are located at different locations away from the MET tower, particularly when the terrain of a

wind farm is complex. Instead, the nacelle-mounted anemometer which is placed on the top of

nacelle behind the rotor can provide the routine data of wind speed and direction for each turbine.

Although the wind observation of the nacelle-mounted anemometer is always affected by the

design/shape of the wind turbine and nacelle, as well as the operation condition of the tur-

bine,10,11 some studies still show that nacelle-based wind speed observation, after proper calibra-

tion and data quality control, is more representative to the wind behavior (e.g., wind disturbance)

experienced by the wind turbines in a wind farm than that from an upwind MET tower.12,13 In

this study, we have developed and evaluated a DA module to assimilate the nacelle-based wind

data for a surface wind forecast system we developed previously.9 The DA module has been con-

structed by using the WRF model and the Gridpoint Statistical Interpolation (GSI) analysis sys-

tem developed by the National Centers for Environmental Prediction (NCEP) Environmental

Modeling Center (EMC).

Being a continuation of our existing work9 to establish a practical prediction system of sur-

face wind and power generation for wind farms in Japan, we have developed the data assimila-

tion module as another key technique and integrated it to the WRF model in addition to the

Kalman filter post-processing tool. Both DA and Kalman filter make use of the nacelle-based

wind data which are available for common wind farms, and thus the system can be easily

adopted for operations on different sites.

The rest of the paper is organized as follows: the details of methodology, data, and experi-

ment design are described in Section II. The performance of the DA technique based on the

nacelle wind data and Kalman filter is presented in Section III. Section IV summarizes the

results and provides several concluding remarks.

II. METHODOLOGY AND DATA

A. The forecasting model and GSI assimilation system

The Advanced Research WRF (ARW) model version 3.6, which is a limited-area meso-

scale model based on a fully compressible and non-hydrostatic dynamic core,14 is used in this

study. The initial and boundary conditions used to drive the WRF model are taken from the

NCEP Global Forecast System (GFS) real-time forecasts, which are gridded to a horizontal res-

olution of 0.5� 0.5�.
The domain configuration of the WRF model which follows the steps recommended by

Warner et al.15 is shown in Figure 1, including a parent domain (D01) and three nested

domains (D02, D03, and D04) with horizontal resolution of 24.0 km, 6.0 km, 1.5 km, and

0.5 km, respectively. There are 35 vertically stretched eta levels, 10 of which are within the

lowest 1 km used for all domains and the top level is located at 50 hPa. The topographic data

are obtained from the U.S. Geological Survey (USGS) global 30 arc-s elevation (GTOPO30)

dataset for all domains except that the topography height of D04 is replaced with a 50 m reso-

lution data obtained from the Geospatial Information Authority of Japan to furnish the local

real observation information during the GSI DA processing. The longwave and shortwave
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radiation schemes are based on the studies of Mlawer et al.16 and Dudhia,17 respectively. The

WRF Single-Moment 6-class (WSM6) microphysics parameterization scheme,18 the Kain-

Fritsch convective parameterization scheme,19 and the Noah land surface model (LSM)20 are

used in the four domains. With respect to the planetary boundary layer (PBL) scheme, the

Asymmetric Convective Model version 2 (ACM2)21 is adopted based on the sensitivity experi-

ments in our previous study.9

One of the biggest limitations of WRF wind forecasts at hub-height is the difficulty in

obtaining accurate information on the current state of the atmosphere, which can be partly solved

by using the DA technique based on the available observations. In this study, the GSI analysis

system, which is capable of assimilating a diverse set of observations, is integrated with the

WRF-ARW mesoscale system. More specifically, this paper will implement the GSI 3DVar

(three-dimensional variational data assimilation) system using the nacelle wind data to improve

the hub-height wind forecasts.

The underlying idea of 3DVar data assimilation is to find the analysis increment x0 of phys-

ical variable x by minimizing the cost function that measures the distance between the back-

ground forecast and observation.8 The cost function Jðx0Þ is defined by

J x0ð Þ ¼ 1

2
x0ð ÞTB�1

f x0ð Þ þ 1

2
Hx0 � y0
� �T

R�1 Hx0 � y0
� �

; (1)

where Bf and R are the static background and observation error covariance matrices, respec-

tively; y0 is the innovation vector; and H is the linearized observation operator. More detailed

description and information of the GSI system can be found on the GSI website (http://

www.dtcenter.org/com-GSI/users).

B. Observational data

Same as in our previous work, the target region (shown in Figure 1) is the wind farm

located in south Awaji Island, Japan, where 15 wind turbines (see in Figure 1(d)) have been

installed. All wind turbines (General Electric GE2.5) have a rated capacity of 2.5 MW and the

power curve is displayed in Figure 7. The rotor diameter of the turbines is 84 m and the tower

height is 80 m. The nacelle wind for each turbine is measured by the anemometers placed on

the top of the nacelle behind the rotor. After the conventional quality control, the observed

wind data are input into the GSI DA system for wind prediction and used to evaluate the fore-

cast results as well. The wind data (speed and direction) are available every 10 min for one

month period from 1 January to 31 January 2016.

FIG. 1. Four nested domains (a) D01, (b) D02, (c) D03, and (d) D04 and model topography. The detailed terrain height

(shaded with the gray bar in meter) of the D04 is shown in panel (d). The red triangles indicate the locations of the 15 tur-

bines in a wind farm in south Awaji Island, Japan. Wind speed and direction are measured on the nacelle top of each

turbine.
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In general, the nacelle-based wind data are always used by wind farm operators directly for

the turbine control (e.g., to determine the cut-in/cut-out speeds). Nevertheless, the quality of the

nacelle wind observations needs to be evaluated before assimilating the data into the NWP

models, so as to avoid the degradation of forecasting skill due to the assimilation of a few bad

data points, which might even outweigh the benefits of assimilating many other good data

points. Thus, we, in this study, implement the standards addressed in the technical report of

National Oceanic and Atmospheric Administration (NOAA) Earth Systems Research

Laboratory (ESRL)22 to flag out the unreasonable data points for each turbine separately.

C. The Kalman filter algorithm

The primary Kalman filter is a recursive algorithm to estimate a signal from noisy measure-

ments. In this study the Kalman filter is used in predictor mode, to reduce the uncertainties in

wind speed forecasts at hub-height by using the information of the most recent forecasts and

observations. Though a number of studies have already demonstrated that the Kalman filter can

improve the raw forecasts of the NWP model, we still intend to understand its performance in

eliminating the errors in high resolution (i.e., 500 m for D04 of the WRF model in the present

configuration) wind speed forecasts at hub-height and then to investigate whether it has advan-

tages to the DA technique. Here, only the main equations are given as below and the more

detailed description of the Kalman filter algorithm can be found in Refs. 6 and 23.

Considering the state of the unknown process at time t, the bias between the forecasts and

the true (unknown) is related to the state at previous time t – dt

xtjt�dt ¼ xt�dtjt�2dt þ gt�dt; (2)

where dt is a time lag, xt is the true forecasting bias at time t, xtjt�dt is the a priori state esti-

mate at time t, g is the white noise that has zero-mean, and the variance (r2
g;t) uncorrected in

time. Then the forecasting errors yt can be written as

yt ¼ xt þ et ¼ xtjt�dt þ gt þ et; (3)

where a random error et is normally distributed with zero-mean and variance r2
e;t. The uncer-

tainties and errors in numerical models and inaccuracy in initial and boundary conditions are

the main sources of et.

Given a reasonable initial guess of the expected mean square error p and Kalman gain K (i.e.,

p0 and K0), the Kalman filter can recursively generate an estimate of forecast bias x at tþ dt
through the equations shown below

x̂tþdtjt ¼ x̂tjt�dt þ Kt yt � x̂tjt�dt

� �
Kt ¼

pt�dt þ r2
g;t

pt�dt þ r2
g;t þ r2

e;t

pt ¼ ðpt�dt þ r2
g;tÞ 1� Ktð Þ;

8>>>><
>>>>:

(4)

where the hat (̂ ) notation indicates the estimation of the variable. The white noise, r2
g;t and r2

e;t,

which are crucial to the implementation of the Kalman filter procedure, are calculated via the

same procedure by Delle Monache et al.6

D. Experiment design

Four experiments (shown in Table I) were carried out to investigate how assimilating the

nacelle wind data and using the Kalman filter algorithm influence the performance of WRF wind

forecasts at hub-height, and to understand the priority of those two procedures. In the first experi-

ment (Case1), only GFS data were used to obtain the raw wind speed forecasts by re-initializing

the WRF model as a “cold-start” at 12:00 UTC each day. In each re-initialization runs for 30 h,
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the initial 6 h (spin-up time) were excluded from the forecasting data series. The second experi-

ment (Case2) was conducted to evaluate the impact of assimilating the nacelle wind data with

cyclic mode, in comparison with the results of Case1. As displayed schematically in Figure 2, the

final analysis field at 18:00 UTC each day was cyclically assimilated three times with a 6-h inter-

val. Using this analysis field as initial condition, the wind speed forecasts of continued 24 h were

obtained. We designed the experiment of Case3 to evaluate the contribution of the Kalman filter

algorithm for improving the raw forecasts of Case1 based on the available nacelle wind speed

observations. Finally, the experiment of Case4 was carried out to compare the contributions of

the DA technique and the Kalman filter algorithm in improving the wind speed forecasts.

To compare the difference in these experiments quantitatively, the following set of statisti-

cal metrics is used.

Mean error (ME):

ME ¼ 1

N

XN

i¼1

forei � obsið Þ; (5)

where i is the time point and N is the total number of verification time points. fore and obs rep-

resent the predicted and observed values, respectively.

Root mean square error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

forei � obsið Þ2

N

vuuut
: (6)

Index of agreement (IA):

IA ¼ 1�

PN
i¼1

forei � obsið Þ2

PN
i¼1

jforei � obsj þ jobsi � obsj
� �2

; (7)

TABLE I. The four sets of experiments for evaluating the impact of data assimilation and Kalman filer. The “WRF,”

“GSI_DA,” and “KF” with “þ” represent the use of WRF model, GSI analysis system, and Kalman filter, respectively.

Experiment Case1 Case2 Case3 Case4

WRF þ þ þ þ
GSI_DA þ þ
KF þ þ

FIG. 2. The schematic of implementing GSI system in cyclic mode. The white boxes stand for the total assimilation time

of 18 h with an interval of 6 h, while the gray boxes represent the forecasting length (24 h) of WRF model after assimilating

the nacelle wind data.
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where obs denotes the mean of observations. The value of IA, which indicates the agreement

between the observations and forecasts, ranges from 0 to 1. A larger IA value means better

agreement.

Pearson product-moment correlation coefficient (CC):

CC ¼

XN

i¼1

forei � f ore
� �

ðobsi � obsÞ

XN

i¼1

forei � f ore
� �2 XN

i¼1

obsi � obs
� �2

" #1=2
; (8)

where f ore indicates the average of forecasts.

III. RESULTS

In this section, first the overall result of comparison between the raw wind speed forecasts

of the WRF model and the forecasts with DA is presented based on the statistical parameters

introduced in Section II. Then the role of the DA technique and the Kalman filter algorithm in

improving the raw wind speed forecasts of the WRF model will be investigated. It is noted that

all of the statistics and discussions are based on the 15-turbine averaged data unless otherwise

specifically stated.

A. Impact of assimilation on the hub-height wind forecasts for the experiment period

Figure 3(a) illustrates the comparison between raw forecasts (black), observations (red) and

the forecasts with DA (blue) of wind speed, which are represented with “Case1,” “Obs,” and

FIG. 3. (a) One month series of the raw wind speed forecasts (black), the forecasts with assimilation (blue), and the corre-

sponding observations (red). (b) The comparison of the RMSE of wind speed using data assimilation (solid white bar) with

respect to the raw forecasts (solid black bar) for the 15 turbines individually. The marked red line stands for the relative

improvement due to the data assimilation. The period is from 18:00 UTC 1 January to 23:00 UTC 31 January 2016.
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“Case2,” respectively, during the experiment period from 18:00 UTC 2 January to 23:00 UTC 31

January 2016. It can be seen that the raw wind speed forecasts (Case1) reproduces the observation

with relatively good accuracy, though there are occasional large errors, especially when the

observed wind speed is larger than 15 ms�1. It is also easy to find that the blue line lies closer to

the red line than the black one during almost the whole period, which implies that the forecasts of

wind speed with DA are remarkably improved in comparison with the forecasts without DA

(Case1). Obviously, the evidence from Figure 3(a) also shows that the forecasting skill of wind

ridge is largely increased after assimilating the nacelle wind data, though the contribution of DA

for other periods is relatively slighter or even not clear in some cases. This might be attributed to

the WRF model itself whose forecasting ability of large wind speed at hub-height is inferior to

that of regular wind speed (e.g., ranging from 4 ms�1 to 15 ms�1). It reveals that implementing

DA with the nacelle wind data can significantly improve the forecasting skill of the WRF model

in extreme weather conditions. The values of ME, RMSE, IA, and CC are listed in Table II to

quantify the effects of assimilating nacelle wind data into the WRF model, in comparison with the

raw forecasts. Examining the second column, the positive values of ME indicate that both cases

overestimate the wind speed in the whole period (nearly one month). Compared to the raw fore-

casts (Case1), the ME in case 2 is reduced by 34.3% where the nacelle wind data is assimilated.

Regarding RMSE, the value of Case2 is much smaller compared to Case1, with a relative error

reduction of 23.9%. Similarly, both IA and CC are increased when assimilation is implemented.

In addition to the 15-turbine average results shown above, we also examined the impact of

the data assimilation on each individual turbine. Figure 3(b) illustrates the comparison of the

RMSE between the raw wind speed forecasts and the forecasts with data assimilation for 15

turbines separately. It is found that forecasting skills of wind speed are improved by assimilat-

ing the nacelle wind data for all 15 turbines. The relative improvement in RMSE varies from

19.5% to 25.9% with an average of 21.5%.

Figure 4 displays the 30-case mean (30 days) forecasts of Case1, Case2 and observations

during the 24-h forecasting length. Apparently, the overestimation of wind speed is found no

matter whether the nacelle wind data is assimilated or not. However, this systematic discrep-

ancy has been significantly corrected by using the DA technique. The relative decrease of

RMSE (36.4%) further demonstrates the large impact of assimilating the nacelle wind data in

reduction of the systematic bias in WRF model.

From the above discussions, we may conclude that assimilating the nacelle wind data can

substantially improve the accuracy of WRF model in forecasting the hub-height wind field in

the target wind farm site of interest.

B. Verification of Kalman filter and the difference compared to DA

Having confirmed the effect of assimilating the nacelle wind data on improving the raw

wind forecasts at hub-height, we further evaluated the integrated forecasting system which uses

the Kalman filter as another key technique to improve the prediction. To this end, we conducted

other two experiments, i.e., Case3 and Case4, to include the Kalman filter as another module.

In order to implement the Kalman filter properly, the first 15 days are chosen as a training

period and thus the following discussions are all based on the forecasts and corresponding

observations of the second half 15 days. Figure 5 displays the statistical parameters that quan-

tify the performance of the integrated prediction system and the contributions of its different

components in forecasting the hub-height wind under configurations of the four test cases.

TABLE II. The monthly mean ME, RMSE, and CC calculated with the forecasts (with or without assimilating the nacelle

wind data) and the corresponding observations of wind speed at hub-height.

Experiment ME (ms�1) RMSE (ms�1) IA CC

Case1 2.54 3.51 0.80 0.83

Case2 1.67 2.67 0.87 0.84
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As observed above, the ME and RMSE of Case2 are largely reduced compared to Case1,

while the values of IA and CC are increased, which shows the large improvement due to assim-

ilating the nacelle wind data.

The effects of implementing the Kalman filter to the raw forecasts of the WRF model are

also examined by comparing the results of Case1 and Case3 in Figure 5. It seems that the bias

(Figure 5(a)) in the raw forecasts can be largely revised and meanwhile the random errors

(Figure 5(b)) can be partly reduced as well. Furthermore, the values of IA and CC of Case3

FIG. 4. Comparison between the hub-height wind speed forecasts with (blue) and without (black) assimilating the nacelle

wind data based on the corresponding observations (red), during the 24 h forecasting period (30-day averaged).

FIG. 5. The ME (a), RMSE (b), CC (c) and IA (d) of four cases described in Table I. All results are based on data series of

the second half 15 days (16–31 January 2016 with 1 h interval).
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become larger after using the Kalman filter compared to those of Case1. All of these results

demonstrate that the Kalman filter as a post-processing method can significantly improve the

forecasting skill of hub-height wind speed.

Figure 5 also illustrates the difference between DA and Kalman filter when one compares

among the results of Case2, Case3, and Case4. For Case4, in which the DA is used to improve

the initial condition and then the Kalman filter is adopted to post-process the forecasts, the

RMSE is further reduced and the values of IA and CC are larger than both Case 2 and Case3,

while the value of ME is nearly same. This implies that combining the Kalman filter and the

nacelle wind data assimilation can provide the best forecasts and the role of the Kalman filter

is more important in calibrating the systematic bias. On the contrary, comparing the RMSE and

IA of Case3 and Case4 suggests that assimilation of nacelle wind data shows better perfor-

mance against the Kalman filter in revising random uncertainties. However, if we consider the

differences represented by all four statistic parameters of Case2 and Case3 synthetically, the

Kalman filer shows the priority over DA for wind speed forecasts at hub-height.

To further evaluate the improvements of assimilating the nacelle wind data and Kalman fil-

ter, we show in Figures 6(a)–6(c) the ME, RMSE, and IA at different forecasting periods (i.e.,

0–12 h and 12–24 h). In regard to the raw forecasts (Case1), the forecasting skill at period of

FIG. 6. The statistical parameters of the hub-height wind speed forecasts for four cases in different forecasting periods

((a)–(c)) and different wind speed bands ((d)–(f)). Same as in Figure 5, the evaluation period is 15 days from 16 to 31

January 2016.
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0–12 h is slightly higher than the period of 12–24 h. The same conclusion can be drawn for the

forecasts with data assimilation (Case2) where the errors in the raw forecasts have been largely

reduced after assimilating the nacelle wind data. As same as shown in the Figures 5(a), 5(b),

and 5(d), the Kalman filter (Case3 and Case4) can significantly improve the model forecasts

under the situations with or without DA for different forecasting periods. Comparing the values

of ME, RMSE and IA of Case3 and Case4 during different periods, we observe that the impact

of DA is more apparent compared to the Kalman filter in the period of 12–24 h, due to the dif-

ference between Case3 and Case4 during 12–24 h is larger than that in the period of 0–12 h.

In practice, the simplest way to obtain the wind energy forecasts of a specific turbine is to

use the designed (or theoretical) power curve provided by the turbine manufacturer, which is

usually a function of the mean hub-height wind speed. In this study, the target wind farm con-

sists of 15 2.5 MW horizontal-axis turbines and the corresponding power curve is shown in

Figure 7. As displayed, the value of cut-in (4 ms�1), rated output (15 ms�1) and cut-out speed

(25 ms�1) is crucial to power management in routine operations. Therefore, the forecasts of

0–4, 4–15 and 15–25 ms�1 wind speed bands are further validated. The results are displayed in

Figures 6(d)–6(f). Apparently, almost all of the ME and RMSE of the raw forecasts (Case1) are

reduced by applying both DA and the Kalman filter, meanwhile the value of IA is increased. In

addition, the smallest value of ME and RMSE and the largest IA in the band of 4–15 ms�1 indi-

cate that it is easier to obtain relatively accurate hub-height wind speed forecasts in the interval

of 4–15 ms�1 compared to other wind speed bands. When the wind speed is larger than

15 ms�1 which is the rare case in the experiment period, the performance of the system

becomes worse (with small IA), and DA shows more significant effect in comparison with the

Kalman filter. It suggests that the DA technique can be more effective in correcting the forecast

under rare or extreme weather conditions.

Overall, the forecasts are remarkably improved after assimilating the nacelle wind data

(Case2) or using the Kalman filer (Case3). The largest improvement is found when the two

techniques are combined (Case4). It seems that the role of the Kalman filter is more dominated

as the difference between Case3 and Case4 is much smaller than that between Case1 and

Case2, while DA becomes more important in rare or extreme weather conditions.

IV. SUMMARY

We have developed a practical forecasting system for surface wind and power output by

integrating data assimilation and Kalman filter into the WRF model. Both data assimilation and

FIG. 7. The theoretical wind power curve for a 2.5 MW turbine used in this study and the corresponding cut-in, rated output

and cut-out speed.
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Kalman filter modules make use the nacelle wind data which is routinely available, so the sys-

tem can be easily adopted in different wind farm sites for operational use. Due to the complex

topographic features, the surface wind field in Japan region is significantly fluctuating and more

difficult to predict, the present system employs data assimilation and Kalman filter to eliminate

the uncertainties from two aspects, i.e., the data assimilation improves the accuracy in initial

conditions and Kalman filter provides a posterior correction to the raw model output, and thus

can be expected as a promising tool in real-case operations.

The system has been validated using the data of a wind farm in Awaji Island, Japan. The

wind speed forecasts at hub-height have been substantially improved by data assimilation to

refine the initial wind field for WRF model, i.e., the ME and RMSE errors in WRF prediction

were reduced by 34.3% and 23.9%, respectively, while IA has been improved by 8.8% due to

the DA technique. On the other hand, the Kalman filter, as a post-processing method, is able to

provide more reliable wind forecasts with a short training period (15-day in this study). By

using both Kalman filter and nacelle wind data assimilation, the raw forecasts can be further

improved. Detailed evaluation indicates that the role of the Kalman filter is more dominant for

the wind band of rated out speeds, while data assimilation becomes more important in rare or

extreme weather conditions.
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The rapid development of wind energy in Japan and the associated high

uncertainties and fluctuations in power generation present a big challenge for both

wind power generators and electric grids. Accurate and reliable wind power

predictions are necessary to optimize the integration of wind power into existing

electrical systems. In this study, a hybrid forecasting system of wind power

generation was developed by integrating the Kalman filter (KF) with the high

resolution Weather Research and Forecasting (WRF) model as well as an empirical

formula of wind power output (power curve). The system has been validated with

observations including wind speed and power output over a six-month period for

15 turbine sites at a wind farm in Awaji-island, Japan. The results show that the

tuned WRF model is able to provide hub-height wind speed prediction for the

target area with reliability to some extent. The predicted wind field can be substan-

tially improved by the Kalman filter as a post-processing procedure. The 15-turbine

averaged improvements of mean error, root mean square error, and correlation

coefficient are 97%, 22%, and 10%, respectively. Meanwhile, the Kalman filter

also demonstrates a promising capability of reducing the uncertainties in the power

curve model. Systematic validations regarding both wind speed and power output

were carried out against the observations for the target wind farm, which show that

the hybrid power forecasting system presented in this paper can be an effective and

practical tool for short-term predictions of wind speed and power output in Japan

area. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940208]

I. INTRODUCTION

The recent assessments of the World Energy Council have reported the difficulties that

Japan is facing in lieu of the shortage of energy caused by the complete shutdown of nuclear

plants after the Fukushima accident.1 In order to compensate for the loss of the nuclear power

generation, extra fossil resources are currently imported, which has led to the rise of electricity

cost and to an increase of the fossil fuel emissions. As an alternative to the traditional fossil-

energy resources, renewable energy has been the focus of recent developments as a long-term

and sustainable solution. In particular, wind energy has shown tremendous potential in terms of

economic and environmental effects.

Global wind energy capacity has been doubling nearly every three and a half years since

1990, due to its clean, renewable, and sustainable characteristics. However, wind makes up

a)Author to whom correspondence should be addressed. Electronic mail: xiao@es.titech.ac.jp
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only 0.44% of the total power supply in Japan2 where the development of wind energy is

limited by a number of factors, such as complex geographic features, high population density,

and the government policy.3 Among them, the topographical complexity may be an important

reason that complicates wind flow, and thus causes greater fluctuation in power output, which

makes the integration of wind power into the electric power grids more challenging than for

other regions. An effective solution to stabilize the wind power output is to make use of supple-

mentary electric sources/sinks through active operations before delivering the power to the grid

systems. In order to optimize the operation plan, accurate predictions of both the wind speed

and wind power for the targeted turbines and wind farms are of crucial importance.4

A number of studies have proposed several methods and models to predict wind speed,

which can be grouped into two broad categories:5 statistical and physical. Statistical approaches

explore relationships between future and current state (observed data), and include techniques as

artificial neural network6,7 and auto-regressive moving average.8 They can provide accurate wind

speed forecasts over short time scales with limited computational requirements. However, the

forecasting skill of these techniques degrades quickly with increasing forecasting lead time.9

Physical-based models, often based on numerical weather prediction (NWP), on the other hand

do not have this drawback. NWP models project the real atmosphere state based on an approxi-

mation of known physical laws, and result in more accurate and reliable estimates for longer time

horizons (from hours to several days). Different limited-area NWP models, such as Weather

Research and Forecasting (WRF), Regional Atmospheric Modeling System (RAMS), and Fifth-

Generation Penn State/NCAR Mesoscale Model (MM5), have been used for wind energy resource

assessment by various researchers.10,11 However, to a large extent the wind forecasts derived

from NWP models are affected by errors stemming from uncertainties in initial/boundary condi-

tions, simplifications in physics, and numerical approximations.12 Great efforts have been devoted

to reduce these uncertainties by improving data quality13 and developing more accurate numerical

models with improved dynamic cores and more sophisticated physical parameterizations.14,15

Although efforts to improve NWP models have led to substantial progress in the accuracy

of deterministic predictions, it cannot be expected to eliminate all uncertainties in real-case

applications, which result in deviations between the NWP output and the real atmospheric state.

An effective way to reduce the uncertainties of the NWP models is by implementing post-

processing methods to revise or correct the NWP model outputs based on their past performan-

ces. Typical and widely used post-processing methods include Model Output Statistics (MOS)16

and Kalman Filter (KF).17–19 The Kalman filter is a popular algorithm due to the simplicity of

the algorithm, the moderate computational costs, and the short training period required. It has

been applied successfully for wind energy modeling to produce more accurate predictions. The

works by Louka et al.20 and Al-Hamadi and Soliman21 clearly demonstrated that the forecasting

errors of both wind power and electric load can be effectively reduced with the Kalman filter.

They have shown that combining NWP models and statistical post-processing into a tuned pre-

diction system can further improve wind speed and power forecasts. Unfortunately, to the best

knowledge of the authors, there is no report in literature on any practice to establish such a pre-

diction system for wind farm sites in Japan.

The purpose of this study is to develop a wind power prediction system for the Awaji-

island wind farm in Japan as an effort to facilitate the short-term wind power forecast in Japan

area. The system is mainly based on the high resolution WRF model and the Kalman filter. The

power curve model adopted in this system is constructed based on a polynomial fit technique

using the historical data of the observed wind speed at hub-height and power output. We first

evaluate the forecasting ability of the WRF and power curve model separately as the basic

components of the hybrid prediction system, to show that they are able to provide reasonably

reliable forecasting results in the target site which has complex geographic environment very

typical in Japan. Then the forecasting skill of the hybrid system has been further improved by

implementing the Kalman filter to the WRF model and the power curve model. The capability

of the system for predicting the real-case wind power outputs in the target farm has been vali-

dated over a four-month period.
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The rest of the paper is organized as follows: the details of datasets and methodology are

described in Section II. Section III mainly analyzes the performance of the hybrid approach for

the predictions of wind speed and power. The paper ends with concluding remarks in Section IV.

II. DATA AND METHODOLOGY

A. Global forecast system (GFS) data and observations

Six-month (2013/08/01–2014/01/31) GFS forecasting products from the National Center for

Environmental Prediction (NCEP) were used as the initial and boundary conditions for the

WRF model with a 6-h interval. The horizontal resolution of all variables is 1.0� 1.0 deg, with

27 levels ranging from 1000 to 10 hPa.

The anemometers which are placed on the top of the nacelle behind the rotor are used for

collection of the wind data. The effects of the rotating blades and nacelle on the observed wind

can be taken into account by adjusting the relationship between the nacelle-based observations

and the measurements from the upwind meteorological tower.22 This would increase the cost

and is not widely adopted in practice. Alternatively, the study in Ref. 23 suggests that the

nacelle-based wind speed observation is a more reliable estimation to the target turbine site

than the measurement obtained from the meteorological tower with a distance away. Therefore,

in this study, the nacelle-based wind speed from 15 turbines (see in Figure 1) at hub-height

(80 m above ground) is utilized to validate the performance of the WRF model for the predic-

tion of hub-height wind speed at the wind farm in Awaji island, Japan. In addition, observations

of power output are also used to evaluate the reliability of the power prediction proposed in

this study. Both wind speed and power observational data are available every 10 min for the

six-month period from 1 August 2013 to 31 January 2014.

B. WRF model configurations

The meteorological model adopted in this work is the Advanced Research WRF (ARW) model

version 3.6 (WRFv3.6 hereafter), which is based on a fully compressible and non-hydrostatic

dynamic core.24 The WRFv3.6 is a limited-area mesoscale model, with a terrain-following

hydrostatic-pressure vertical coordinate, designed for operational forecasting as well as research.

The WRFv3.6 used in this study is the latest available version of WRF model which has been

FIG. 1. The network of observational sites for wind speed at Awaji island wind farm. Contours stand for the terrain

elevation.
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continuously developed by a broad community of researchers across the world. Nevertheless, to

our knowledge there are very limited studies of WRF model for the applications of wind power

forecasting in Japan.

In this study, the domain configuration of WRFv3.6 which follows the steps recommended

by Warner et al.25,26 includes a parent domain (D01) and three nested domains (D02, D03, and

D04) (Figure 2) with one-way interaction. The D01 is centered at 34.65�N and 134.635�E with

a 75� 73 mesh of 48 km resolution. The horizontal resolution of D02, D03, and D04 are 12 km

(97� 97 grid points), 3 km (101� 109 grid points), and 1 km (103� 109 grid points), respec-

tively. The model top is located at 50 hPa and there are 35 vertical stretched eta levels, 10 of

which are within the lowest 1 km. Initial and boundary conditions are all given by the GFS

dataset and no data assimilation or grid nudging was used in this study. The geographical data

for the land use and topography are obtained from the U.S. Geological Survey datasets and

have resolutions of 5 arc min for the parent domain, 2 arc min for D02, and 30 arc s (about

925 m � 925 m) for the nested D03 and D04. It should be noted that the aforementioned model

configuration allows the system to run operationally on workstations for routine real-case use.

The main physical options adopted include the WRF Single-Moment 6-class (WSM6)

microphysics parameterization,27 the Rapid Radiative Transfer Model (RRTM) scheme28 for

long-wave radiation with Dudhia’s scheme29 for shortwave radiation, the Kain-Fritsch convec-

tive parameterization,30 and the Noah land surface model (LSM).31 The specific information of

the planetary boundary layer (PBL) scheme we selected is discussed in Section III D.

The model prediction period is from 1 August to 31 January 2014 and the numerical results

are output at a 1 h interval. We re-initialize WRFv3.6 as a “cold-start” at 18:00 UTC each day

and each re-initialization runs for 30 h. Due to the cold start, there is typically a spin-up time

period of 6-h as recommended by Wang et al.24 before the model turns to a stable state.

Therefore, the forecasts during the initial 6 h of each run are excluded from the forecasting

data series used to compute the performance metrics.

C. The Kalman filter algorithm and 7-day running mean method

1. The Kalman filter algorithm

The Kalman filter is an estimation algorithm that operates recursively on streams of input

data (containing random variations) to produce a statistically optimal estimate of the underlying

FIG. 2. WRF domains and model topography: (a) D01, (b) D02, (c) D03, and (d) D04 are indicated by black frames. The

detailed terrain height (shaded with the gray bar in meter) of the D04 is shown in the panel (d).
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system state. It is widely used in various fields from radar and computer vision to meteorologi-

cal applications due to its adaptive, recursive, and optimal characteristics. The specific set of

mathematical equations can be found in Refs. 17, 19, and 32.

The implementation of the Kalman filter can be divided into two main steps: one is “time

update,” aiming to project forward the bias of the current state to estimate the forecasting bias

at the next time step; the other part is a “measurement update,” namely, incorporating a new

observation into the previous estimation to obtain a corrected estimate of the forecasting bias.

In general, the forecasting bias between the forecasts and measurements of a variable at

time t is related to the state at previous time t� dt

xtjt�dt ¼ xt�dtjt�2dt þ gt�dt; (1)

where xt is the true forecasting bias at time t, dt is a time lag, xtjt�dt is the priori state estimate

at time t, g is the white noise that has zero-mean, and the variance (r2
g;t) is uncorrected in time.

Although the real forecasting bias is unknown, it has certain relationships with the forecasting

errors (also called measurement bias) yt. That is, the forecasting errors consist of the forecasting

bias and a random error �t

yt ¼ xt þ �t ¼ xtjt�dt þ gt þ �t; (2)

where �t is normally distributed with zero-mean and variance r2
�;t. The source of random errors

�t comes mainly from uncertainties and errors in numerical models, as well as inaccuracy in ini-

tial and boundary conditions.

The Kalman filter gives the recursive estimation of the unknown forecasting bias xt based

on the bias estimation at previous time and the historical forecasting errors y

x̂tþdtjt ¼ x̂tjt�dt þ Ktðyt � x̂tjt�dtÞ; (3)

where the hat (^) notation indicates the estimation of the variable. Kt is the Kalman gain, which

is recursively calculated as follows:

Kt ¼
pt�dt þ r2

g;t

pt�dt þ r2
g;t þ r2

�;t

; (4)

where p is the expected mean square error

pt ¼ ðpt�dt þ r2
g;tÞð1� KtÞ: (5)

Given a reasonable initial guess of p0 and K0, as well as the model forecast Mt and obser-

vation time series, the Kalman Filter can recursively generate an estimate of forecast bias x at

tþ dt through Eqs. (1)–(5). Then, the model forecast can be corrected as follows:

Mkftþdt
¼ Mtþdt � x̂tþdtjt: (6)

It is worthwhile to note that the calculation of white noise r2
g;t and r2

�;t is crucial to the

implementation of Kalman filter procedure. According to Refs. 19 and 33, r2
�;t is a time-varying

quantity which can be calculated with the Kalman algorithm itself using Eqs. (3)–(5). The esti-

mation of r2
g;t is derived from the estimation of r2

�;t with a ratio r

r2
g;t ¼ rr2

�;t: (7)

The ratio r is a parameter reflecting the relative weighting of observation and forecasts. As r is

somewhat sensitive to different models and predicted variables, several tests have been carried

out to find the best values of r¼ 0.6 for wind speed and r¼ 0.15 for wind power forecasting,

respectively, in present study.
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2. 7-day running mean method

Stensrud and Skindlov34 showed that a simple bias correction method using the previous 7-

day mean bias correction can improve the direct model forecast of maximum temperature. This

method is easy to implement, and meanwhile has the ability of improving the raw predictions.

Therefore, it is chosen as a reference to validate the performance of Kalman filter algorithm for

correcting the raw prediction of wind speed in this study.

D. Power curve model

From the fluid mechanical definition, the power output P of a wind turbine is a non-linear

function of the wind speed and can be expressed as follows:

P ¼ 1

2
CpqAv3; (8)

where P is the power, Cp is the turbine coefficient of performance, and q is the air density which

depends on air pressure and temperature. A is the swept area of a turbine blade and v represents

the wind speed at the turbine site. The theoretical power curve of turbine No. 3, which is a

2.5 MW horizontal-axis wind turbine (HAWT) with three blades, is shown in Figure 3 (black

line and points). In Figure 3, the blue points represent the observed electrical power output

obtained for turbine No. 3 measured from routine operation. It is easily found that although

the overall trend shows an agreement with the theoretical manufacture power curve, there are

remarkable uncertainties and deviations from it. This is not surprising considering that there are

still other factors that affect the power output, such as the unresolvable sub-scale fluctuations,

wake effects, wind direction, as well as operation control.35 Consequently, the manufacturer

power curve cannot be directly used to predict wind power in real cases, and the approach fol-

lowed in this study is to build the empirical power model for each turbine based on 2-month

(from 1 August 2013 to 30 September 2013 with a 10-min interval) observed wind speed and

power data using a polynomial fit technique. The empirical power curve is expressed by

P0 ¼ a10v
10 þ a9v

9 þ � � � þ a1vþ a0; (9)

where v is the wind speed, P0 is the prediction of wind power, and a0; a1; � � �; a10 are the coeffi-

cients separately generated for different turbines. The empirical power curve of No. 3 turbine is

plotted in Figure 3 (red circles), which looks noticeably different from the manufacturer power

curve. It is also seen that there is an uncertainty between the observed wind speed and power

FIG. 3. The theoretical (black line and points), observed (blue point), and the tenth-order polynomial (red point) wind

power curve of No. 3 turbine.
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output, which might be attributed to other factors, such as variations of wind direction, air tem-

perature, as well as the effects of mechanical and operation control systems. Our main interest in

this study is to generate a power output prediction system as a function of wind speed.

E. System overview

We summarize the hybrid wind power prediction system described in Figure 4. The numer-

ical procedure mainly involves two steps, i.e., the surface wind prediction from the WRF model

and the post-processing of Kalman filter.

Given the large scale forecasting data and topographic information, the wind held predic-

tion over the target wind farm can be derived from the WRF model forecasts. After considering

the local geographic information, the forecasts of wind speed at hub height can be obtained by

linearly interpolating the WRF model outputs from the two nearest levels. The Kalman filter is

then generated based on the observations of wind speed and power output at the turbine sites,

which is used to correct the systematic bias and uncertainties in both WRFv3.6 and power

curve models, and thus to obtain an optimal prediction of power production.

III. RESULTS AND DISCUSSION

The statistical parameters introduced in Section III A will be used to evaluate the perform-

ance of the predicting system described in Sec. II. We have tuned the WRF model for the sur-

face wind prediction in the target region via a set of sensitivity tests of PBL parameterization

schemes in Section III B. The overall forecasting skill of WRFv3.6 model for predicting wind

speed is verified in Section III C. Finally, the performance of Kalman filtered wind speed and

power prediction is discussed in Section III D.

A. Verification metrics

Evaluation of the forecasting skills of the proposed model is conducted quantitatively with

various statistical verification metrics. In this study, the mean error (ME), root mean square

error (RMSE), and the Pearson product-moment correlation coefficient (CC) are adopted, which

are defined, respectively, as follows:

FIG. 4. A schematic diagram of the hybrid wind power forecasting system.
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ME ¼ 1

N

XN

i¼1

forei � obsið Þ; (10)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

forei � obsið Þ2

N

vuuut
; (11)

CC ¼

PN
i¼1

forei � f ore
� �

obsi � obs
� �

PN
i¼1

forei � f ore
� �2PN

i¼1

obsi � obs
� �2

" #1=2
; (12)

where i presents time point, N is the total number of verification time points, and fore and obs
are the predicted and observed values, respectively. In Eq. (12), the bar denotes the mean of

the corresponding variable.

B. Sensitivity experiments of PBL schemes

The PBL is the lowest part of the atmosphere in which turbulent motions dominate the

atmospheric flow. In atmospheric models, the turbulent effects are taken into account by PBL

parameterizations. The current WRFv3.6 model has 12 PBL schemes that might exhibit differ-

ent performances even for the same simulation region.36,37 Therefore, prior to applying the

WRFv3.6 model to the target wind farm, it is worthwhile to examine the prediction skills of

different PBL schemes for the low-level wind field. To this end, the sensitivity of five PBL

schemes, i.e., the Quasi-Normal Scale Elimination (QNSE),38 the Asymmetric Convective

Model version 2 (ACM2),39 the Mellor-Yamada-Janjic (MYJ),40 the Mellor-Yamada-Nakanishi-

Niino (MYNN),41 and the Yonsei University Scheme (YSU),42 is tested over 15-day (from 1

October to 15 October 2013) for predictions of wind speed. The setup of the numerical experi-

ments for this inter-comparison of PBL schemes is summarized in Table I.

Figure 5(a) illustrates the predicted diurnal variations of the predicted wind speed of No. 3

turbine at 80 m from the five sets of experiments with different PBL parameterization schemes,

referred to as QNSE, ACM2, MYJ, MYNN, and YSU, and the corresponding observations. All

the experimental runs capture the wind speed variations well and the sensitivity of PBL

schemes is more apparent in period 09:00–23:00 UTC than in period 00:00–08:00 UTC.

The forecasts from all experiments overestimate the wind speed during the whole period. The

largest bias (0.94 ms�l, shown in the third row of Table II) at No. 3 turbine site is observed in

the QNSE experiment, while the smallest bias (0.63 ms�1) is seen in the ACM2 prediction. The

RMSEs also indicate that the performances of the ACM2, MYJ, MYNN, and YSU schemes are

better than that of the QNSE scheme, and ACM2 has the smallest RMSE of 0.87 ms�l.

The correlation and normalized standard deviation (NSD) of each experiment are calculated

and summarized in a Taylor diagram,43 which provides a synthetically visual comparison in terms

of centered RMSE, correlation, and NSD. From Figure 5(b), although the NSD difference among

TABLE I. The five sets of numerical experiments for the inter-comparison of PBL schemes.

Experiment PBL scheme Land surface model Surface-layer scheme

QNSE Quasi-normal scale elimination Unified Noah LSM QNSE

ACM2 Asymmetric convective model Pleim-Xu Pleim-Xu

MYJ Mellor-Yamada-Janjic Unified Noah LSM Eta similarity

MYNN Mellor-Yamada-Nakanishi-Niino Unified Noah LSM MYNN

YSU Yonsei University Scheme Unified Noah LSM Monin Obukhov
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five experiments is probably not significant, advantage of ACM2 is still observed. Moreover,

regarding both NSD and correlation, the ACM2 prediction is the one closest to the observations.

Thus, the ACM2 scheme is chosen as the optimum PBL scheme for the prediction of wind speed

at the wind farm site of interest. We further substantiated this conclusion by examining the values

of ME and RMSE for other two turbines, i.e., No. 7 and No. 14 in Table II, which show that the

ACM2 scheme gives the best forecast for the local wind field of the target area.

C. Overall performance of WRFv3.6 model

Although the performance of WRFv3.6 does not appear highly sensitive to the PBL

schemes tested, the results of the experiments above partly demonstrate that the configuration

including the ACM2 PBL scheme with Pleim-Xu land surface model and Pleim-Xu surface-

layer scheme works best for the wind speed prediction at the wind farm site analyzed in this

study. With this configuration of the WRFv3.6 model, a six-month time series (i.e., from 00:00

UTC 2 August 2013 to 23:00 UTC 31 January 2014) of the low-level wind speed prediction

was generated following the procedure described in Section II B. In this section, No. 3 turbine

is first chosen as an example to show that the WRFv3.6 model is able to predict the wind speed

at hub-height for the target area with reasonably good accuracy. The conclusion is then con-

firmed by the consistent results obtained from other 14 turbines.

Figure 6 shows the comparison between predicted (black), observed (red), and bias (green)

of wind speed at No. 3 turbine site during the period from 00:00 UTC 2 August 2013 to 23:00

UTC 31 January 2014. The green dotted curve which lies close to the zero reference line

reveals that the predicted raw wind speed reproduces the observation with good accuracy.

FIG. 5. Comparisons of observations and forecasts of five sensitivity experiments shown in Table I at No. 3 turbine site. (a)

The diurnal variation of 15-day (1–15 October 2013) averaged wind speed at hub-height. The black line depicts the series

corresponding to the observations, whereas the colored lines correspond to the forecasts with different experimental setups.

(b) Taylor diagram shows normalized standard derivation and correlation of wind speed at hub-height for five experiments

referred to observation (REF). The number of samples is 360 (1 h interval from 1 October to 15 October 2013).

TABLE II. Error statistics of diurnal variation between WRFv3.6 forecasts and observations of wind speed at hub-height

for different experiments. The verification metrics are computed over the 1–15 October 2013 period at No. 3, No. 7, and

No. 14 wind turbine sites. The smallest values of ME and RMSE for each turbine are in boldface.

Experiment QNSE ACM2 MYJ MYNN YSU

Errors

Turbine ME RMSE ME RMSE ME RMSE ME RMSE ME RMSE

No. 3 0.94 1.16 0.63 0.87 0.75 0.99 0.90 1.13 0.88 1.09

No. 7 0.58 0.98 0.20 0.79 0.39 0.88 0.53 0.96 0.55 0.93

No. 14 1.42 1.68 1.08 1.30 1.21 1.49 1.33 1.62 1.38 1.60

013302-9 Che et al. J. Renewable Sustainable Energy 8, 013302 (2016)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  131.112.169.2 On: Wed, 24 Aug 2016

00:20:43



Although there are occasional large errors, in general the predicted wind speed coincides well

with the observation through all six months. Similar conclusions characterized by small value

of ME (�1.23) and RMSE (�2.84), as well as relatively large value of CC (�0.62) can be

drawn from the statistics listed in Table III (column 5).

Table III also exhibits error statistics for other 14 turbines to ensure that the reasonable

prediction for No. 3 turbine is not a success by chance. This table shows that only 3 out of 90

CC are smaller than 0.60, which indicates that the trend of predictions is in good accordance

with observations. For most of turbines, the ME varies from �1.45 ms�l to 2.00 ms�l, and the

smallest ME (0.03 ms�l) is found in December for No. l turbine. All predictions overestimate

the wind speed. Except for a few large values (bold in Table III), the RMSE retains a relatively

small value and does not change much through the six months for all turbines. All these results

substantiate that the WRFv3.6 model has reasonably good forecasting skill in predicting low-

level wind speed for the Awaji-island wind farm. However, the relatively large variation in

MEs and RMSEs still shows the possibility to further improve the prediction of wind speed by

using the Kalman filter as a post-processing approach.

D. Kalman filtered prediction

The Kalman filter procedure is applied independently to every prediction lead time. For

instance, WRFv3.6 raw predictions at 00:00 UTC are revised by the Kalman filter that is

updated by using the predictions and observations at the same time on the previous days

(dt¼ 24 h). The first 60 days (August and September) are chosen as a training period for imple-

menting the Kalman filter. The following discussions are all based on the statistic metrics com-

puted over the 4-month prediction period (from October 2013 to January 2014).

FIG. 6. Six-month series of the predicted raw (black) and observed (red) wind speed (ms�l) at hub-height and bias (green)

of No. 3 turbine. Panels from (a) to (f) stand for August, September, October, November, December 2013, and January

2014, respectively.
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Sections III D.1 and III D.2 present and discuss the improvement of the Kalman filter pre-

dictions for both wind speed and power in terms of the error quantifications, such as ME,

RMSE, and CC. Additionally, the results of the 7-day running mean (7-day hereafter) method

are also included for comparison.

1. Wind speed

A comparison of the 7-day method and the Kalman filter to correct the WRF prediction is

depicted in Figure 7. It presents hourly model raw forecasts (black line) and observed wind

speed at 80 -m of No. 3 turbine (red line) as well as the corrected predictions using the Kalman

filter (blue line) and 7-day method (green line) for the 10-day period, from 00:00 UTC 14 to

23:00 UTC 23 October 2013. Again, the WRFv3.6 model demonstrates the capability of pre-

dicting the local wind speed. Moreover, both the Kalman filter and 7-day method are able to

significantly improve the raw prediction of the WRF model; particularly, the systematic bias

has been largely reduced.

TABLE III. The monthly ME, RMSE, and CC calculated with the predictions and corresponding observations of wind

speed at hub-height of 15 turbines. The values of ME � 2.00, RMSE � 3.50, and CC< 0.60 are bold.

Month Statistics No. l No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 No.11 No. 12 No. 13 No. 14 No. 15

August ME 0.89 1.39 0.51 1.06 1.05 �1.45 1.00 0.94 1.89 1.07 1.15 1.24 1.28 1.31 0.54

RMSE 2.43 2.51 2.35 2.37 2.76 3.20 2.78 2.83 3.06 2.90 2.54 2.84 2.45 2.60 2.53

CC 0.70 0.62 0.71 0.68 0.68 0.54 0.66 0.68 0.64 0.67 0.61 0.65 0.67 0.70 0.73

September ME 0.68 0.82 0.25 0.66 0.24 1.19 0.46 0.80 1.05 1.11 1.04 0.72 0.70 0.76 0.49

RMSE 2.70 2.76 2.63 2.91 2.90 2.72 2.93 2.70 2.77 2.84 2.68 2.71 2.70 2.77 2.48

CC 0.71 0.72 0.73 0.58 0.68 0.67 0.68 0.70 0.69 0.72 0.73 0.73 0.70 0.68 0.52

October ME 1.10 0.91 1.23 1.43 0.93 1.71 1.37 1.68 1.97 2.36 2.17 1.35 1.34 2.01 1.38

RMSE 2.83 2.91 2.84 3.14 2.83 3.12 3.11 3.33 2.77 3.72 3.90 3.45 3.02 3.59 3.28

CC 0.72 0.71 0.74 0.67 0.74 0.68 0.67 0.65 0.74 0.63 0.60 0.75 0.72 0.63 0.66

November ME 0.54 0.68 0.62 0.79 1.01 1.27 0.35 0.99 1.14 1.28 1.12 0.92 0.89 1.04 0.45

RMSE 2.75 2.67 2.74 2.42 2.64 2.65 2.22 2.51 2.52 2.60 2.60 2.34 2.54 2.47 2.41

CC 0.70 0.74 0.68 0.78 0.75 0.78 0.81 0.78 0.79 0.77 0.85 0.80 0.78 0.80 0.78

December ME 0.03 0.47 0.87 0.79 1.28 1.78 0.77 1.05 1.42 1.24 1.16 1.06 1.15 1.45 0.88

RMSE 2.59 2.59 2.67 2.51 2.65 3.54 2.57 2.86 3.05 3.02 2.98 2.80 2.79 3.17 3.03

CC 0.72 0.73 0.72 0.75 0.75 0.66 0.75 0.70 0.68 0.70 0.70 0.70 0.72 0.71 0.74

January ME 0.34 0.61 0.84 0.80 0.89 1.63 1.23 1.14 1.37 1.60 1.47 1.05 1.14 1.53 0.71

RMSE 2.49 2.45 2.58 2.34 2.44 2.77 2.58 2.57 2.75 2.74 2.74 2.54 2.58 2.82 2.52

CC 0.72 0.71 0.66 0.74 0.70 0.70 0.69 0.72 0.69 0.70 0.72 0.76 0.70 0.70 0.71

FIG. 7. Hourly WRFv3.6 model raw forecasts (black) and corresponding observations (red) of wind speed at hub-height of

No. 3 turbine for the 10-day period from 00:00 UTC 14 October to 23:00 UTC 23 October 2013. The blue and green line

present the predictions corrected by the Kalman filter and 7-day method, respectively.
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When comparing the correction results of Kalman filter and the 7-day method, we see the

remarkable advantage of the Kalman filter in reducing the forecasting errors. This advantage is

further illustrated by the statistic parameters in Table IV. Compared to the 7-day method, the

Kalman filter shows much smaller RMSE and larger CC. This may be due in part to the fact

that the current Kalman filter can not only correct the systematical error but also part of sto-

chastic uncertainties, while the 7-day method has an effect barely on the systematic bias.

The ME, RMSE, and CC of the Kalman filter and 7-day method predictions with respect to

the raw WRFv3.6 prediction are shown in Figure 8 for the total 15 turbines in the Awaji-island

TABLE IV. Averaged ME, RMSE, and CC of No. 3 turbine over a 10-day period of 00:00 UTC 14–23:00 UTC 23

October, 2013.

Statistic quantity ME RMSE CC (%)

Approach

Predicted variable Raw KF 7-day Raw KF 7-day Raw KF 7-day

Wind speed (ms�1) 1.79 �0.02 0.05 2.97 1.58 2.62 69.21 85.42 71.11

Wind power (kW) 371.19 �62.43 — 762.94 443.27 — 64.26 75.53 —

FIG. 8. A comparison of the ME (a), RMSE (b), and CC (c) for wind speed at hub-height of the Kalman filter (solid gray

bar) and 7-day method (solid white bar) predictions with respect to the raw WRFv3.6 prediction (solid black bar) for the 15

turbines of the Awaji-island wind farm. The marked lines stand for the relative improvement of the Kalman filter (red) and

7-day method (blue) against the raw forecasts of WRFv3.6 model.
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wind farm. From Figure 8(a), it can be seen that most of the ME of raw forecast range from

0.28 ms�1 to 1.54 ms�1. Although the ME looks different for each turbine, both the Kalman fil-

ter and 7-day method can largely alleviate the systematic error tendency in the raw forecast of

the wind speed. The reduction of ME from the Kalman filter correction ranges from 92% to

99%, while that of the 7-day method ranges from 74% to 96%. The comparison of RMSE is

given in Figure 8(b). As expected, the Kalman filter reduces the 15-turbine mean RMSE by

22% which is much more significant compared to that of 7-day method (4%). Consistent to

RMSE, the CC displayed in Figure 8(c) further demonstrates that the Kalman filter algorithm is

superior than the 7-day method in improving wind speed forecast.

From the validations discussed above, we may conclude that (1) the raw forecasts of

WRFv3.6 model with a tuned PBL package are able to produce reasonably good prediction for

the wind speed at the hub height in Awaji-island wind farm site which is characterized by com-

plex topography, and (2) the Kalman filter, as a better post-processing method against 7-day

method, can significantly improve the forecasting skill for the surface wind at the target turbine

site considered in this study.

2. Wind power

In this section, the power curve model described in Section II D is first tested with the data-

set of No. 3 turbine over a 10-day period from 00:00 UTC 14 to 23:00 UTC 23, 2013. Then

the Kalman filtered wind speed is used as an input of the power curve model to investigate

whether improvement can be seen in the power output by using the corrected wind speed. The

results are concluded in Table IV and Figure 9.

Figure 9 shows a 10-day example for comparing the performances of raw forecast and the

Kalman filter prediction of wind power. The Kalman filter significantly improves the power out-

put prediction. The systematic overestimation of the raw wind power forecasts is consistently

reduced during the whole period. From Table IV, it can be seen that the power output from the

raw wind forecast is overestimated with an ME of 371.19 kW, which has been effectively

reduced down to �62.43 kW by using the Kalman filtered wind speed. Other two statistic quan-

tities, RMSE and CC, show consistent results revealing that the Kalman filtered wind field

effectively improves the power prediction. These results also indicate that given reliable wind

prediction the power curve model constructed from the historic data provides reasonable projec-

tion for wind power.

Furthermore, three-month datasets (November, December 2013, and January 2014) of the

total 15 turbines were used to validate the performance of Kalman filter in predicting the power

output for the whole farm site. Figure 10 shows ME, RMSE, and CC of the power predictions

with both raw wind speed and the Kalman filter corrected wind speed as the input of the power

curve model for each turbine. It is found that the Kalman filter predictions (Figure 10(a))

improved the power output predictions for all turbines. We also show the relative improvement

for each case (the right vertical axis in percentage), which reveals that the improvement brought

by the Kalman filter to each turbine is different from one another. The relative improvement in

FIG. 9. A comparison of the raw wind power forecast (black) and the Kalman filter corrected prediction (blue) against the

observed power output (red) for No. 3 turbine over the period from 00:00 UTC 14 to 23:00 UTC 23 October 2013.
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ME varies from 44% to 97% with an average of 83%. As shown in Figure 10(b), the RMSE of

the power forecasts for all 15 turbines is largely reduced by Kalman filter, with No. 13 being

the best, having the value of relative improvement over 36%. Regarding the CC parameter dis-

played in Figure 10(c), the Kalman filtered wind speed leads to an averaged improvement of

15% for all 15 turbines.

From all results shown above, it can be concluded that the accuracy of power output pre-

diction can be significantly improved when the Kalman filtered wind speed is used as the input

of power curve model Eq. (9).

In the power predictions discussed above, the Kalman filter is implemented to reduce the

systematical and random errors in the wind prediction of the WRFv3.6 model, which exhibit sig-

nificant improvement in power prediction. However, uncertainties still remain in the power curve

model as mentioned before. It motivates us to implement the Kalman filter further to reduce the

uncertainties in the power curve. To this end, we carried out four experiments to evaluate the

impact of Kalman filter for both wind speed prediction and power curve model as follows.

• Baseline: We use it as a controlled case, where the raw forecasts of wind speed from the WRF

model are directly used to calculate the power output by Eq. (9). The Kalman filter is not used

to correct either wind speed or power curve model by Eq. (9).
• KF-speed: The Kalman filter is used to correct the wind speed from the WRF model, and the

corrected wind speed is used to calculate the wind power by Eq. (9).
• KF-power: The raw forecast of wind speed of the WRF model is used as the input for the power

curve model by Eq. (9) and the Kalman filter is only applied to the power output.
• KF-speed and power: The Kalman filter is applied to the predictions of both wind speed and the

power curve model.

The results of the four cases are shown in Table V. The larger positive value of ME for

controlled case (baseline) indicates the overestimation of wind power. Having implemented the

FIG. 10. A comparison of the ME (a), RMSE (b), and CC (c) of the Kalman filter (solid white bar) and the raw power fore-

casts (solid black bar) for the 15 turbines of the Awaji-island wind farm. The red line stands for the relative improvement

of the Kalman filter against the raw forecasts of the power curve model.
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Kalman filter, the ME is largely reduced, especially for cases KF-speed, and KF-speed and

power showing 85% and 92% reductions in bias, respectively. Furthermore, case KF-speed and

power has got the most significant reduction in RMSE and improvement in CC. Compared with

the baseline case, the KF-power case demonstrates that the Kalman filter indeed makes signifi-

cant positive impact on error correction of wind power curve model. This conclusion is further

validated by the differences between the case KF-speed, and KF-speed and power presented in

Table V.

IV. SUMMARY

In this study, we have established a hybrid forecasting system for wind power prediction,

based on the mesoscale meteorological model WRFV3.6 and a Kalman filter post-processing

method. The system has been validated for the targeted wind farm in Awaji-island, Japan,

which is characterized by complex topographic features.

The global-scale GFS dataset is adopted as both initial and boundary conditions for

the regional-scale and high resolution WRFV3.6 model through a 4-level nesting refining the

horizontal grid resolution down to 1 km� 1 km for the target region. The model has been tuned,

and the ACM2 PBL and the corresponding parameterization schemes were chosen for predict-

ing the wind speed at hub height (80 m above ground) in the wind farm site. Compared to the

observed wind speed of 15 turbines in the target wind farm, from 1 August 2013 to 31 January

2014, the WRFV3.6 model shows good performance in forecasting the surface wind field.

The Kalman filter presented in this study is a linear and adaptive algorithm which can min-

imize both the systematical and random errors by recursively combining direct model outputs

with the most updated observations. It demonstrates the ability to improve the ME, RMSE, and

CC in both wind speed and power predictions based on the WRFv3.6 NWP model and the

empirical power curve model. As shown in Table V, Kalman filter significantly improves the

raw model prediction of power by 92%, 33%, and 15% in ME, RMSE, and CC, respectively.

Compared with other post-processing methods, such as MOS and 7-day method, Kalman filter

is able to provide more reliable prediction with a short training period and is more flexible to

adapt to any target prediction with available observation and forecasting model. However, as

other statistical correction methods, Kalman filter has limited ability to predict the sudden

changes in forecasting error.44 It should be also noted that extra initial tests are always needed

to successfully implement the Kalman filter presented in this study, since the correction effect

depends on the ratio r (r2
g;t=r

2
�;t) which is somewhat sensitive to different models and predicted

variables.

In spite of these, the wind power forecasting system presented in the paper can be expected

as an effective tool for short-term operational control for both single turbine and whole wind

farm in a target site. Having validated the system as a hybrid wind power forecasting system of

practical significance for the Awaji-island wind farm site, we are planning to adopt it to other

wind farm sites in Japan.

The present research has shown the promising performance of the proposed hybrid model

for wind power prediction under complex topographic conditions which feature almost all land-

based wind farms in Japan. It also indicates some new directions worthy of further investiga-

tions, for example, a computational fluid dynamic model with finer grid resolution coupled with

TABLE V. The ME, RMSE, and CC of inter-comparison among four experiments with different configurations of imple-

menting the Kalman filter. Shown are the average results for total 15 turbines.

Case Baseline KF-power Improvement (%) KF-speed Improvement (%) KF-speed & power Improvement (%)

ME (kW) 142.79 �65.52 54 �21.42 85 �11.27 92

RMSE (kW) 648.43 500.64 23 470.57 27 431.32 33

CC (%) 74.24 76.37 3 84.94 14 85.46 15
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the WRF model to directly resolve the topographic effects on the surface wind field, and more

reliable power curve models that include more factors and are thus able to remove the uncer-

tainties due to the processes not reflected in the current model.
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Research objectives

R/D in Wind energy systems

Small and medium 

scale wind turbine

• System refinement and improvement

of 150kW/25kW HAWT

• Load calculations 

of NREL 5MW reference wind turbine

Large and offshore 

scale wind turbine

• Integrated system for design and analysis 

of wind turbine systems

• Verification procedures

of offshore wind turbine design

• Development and testing 

of self-diagnosis system

• Reliability and durability testing 

of 5 kW VAWT 
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Technical blueprint on small scale wind turbine

2014 ~ 2016 2017 ~ 2018

R/D of 5kW

VAWT

Simplified load

calculations

Applications

in urban

Reliability and 

durability testing

Verification and 

validation

Noise reduction 

design
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Technical blueprint on large scale wind turbine

2014 ~ 2016 2017 ~ 2018

Tool development 

and validation

Development of 

Fault Diagnosis

Defect Detection of 

blades 

R/D of Int. 
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AeroDyn 8 m/s

AeroDyn 12 m/s

CFD 8 m/s

CFD 12 m/s

Load measurement

on the tower

Real-time CMS

Mobile detection device

Design evaluation 

guidelines for 

Taiwan strait
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� Development path of 25kW wind turbine� Development path of 25kW wind turbine

Testing and Verification Platform 

of INER 25kW and 150kW wind turbines-1/7

4

25 kW-1st

2005~2006

25 kW-2nd

2007~2010

Modified 25 kW-2nd

2011~2012 2013~now

Testing and Verification 

Platform 
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� 25kW specification� 25kW specification

5

IEC Standard
� IEC 61400-1: Design requirements

� IEC 61400-2: Design requirements for small wind turbines

� IEC 61400-12-1: Power performance measurements of 

electricity producing wind turbines

� IEC TS 61400-13: Measurement of mechanical loads

� IEC 61400-22: Conformity testing and certification

� IEC TS 61400-23: Full-scale structural testing of rotor blades

GL Guideline
� Guideline for the certification of wind turbines (2010)

CNS 15176

Testing and Verification Platform 

of INER 25kW and 150kW wind turbines-2/7

Standard IEC 61400-1

IEC class Class-IA

Blade number 3

Turbine type Up-wind

Rated output power 25 kW

Hub height 25 m

Tower type Monopile

Cut-in speed 4 m/s

Rated speed 12 m/s

Cut-out speed 22 m/s

Rated RPM 55~65 RPM

Pitch angle control
Active control: 0o ~ 90o

Yaw angle control Active control: ±180o

Rotating diameter 12.46m
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� Development path of 150kW wind turbine� Development path of 150kW wind turbine

6

25 kW-1st

2005~2006 2007~2008

150 kW HAWT -1st

2009~2010

150 kW HAWT -2nd

2011~2012 2013~2014

Testing and Verification Platform 

of INER 25kW and 150kW wind turbines-3/7
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� 150kW specification� 150kW specification

Standard IEC 61400-1

IEC class Class-IA

Blade number 3

Turbine type Up-wind

Rated output power 150 kW

Hub height 50 m

Tower type Frame

Cut-in speed 3 m/s

Rated speed 12 m/s

Cut-out speed 25 m/s

Rated RPM 45~50 RPM

Pitch angle control Active control: 5o ~ 85o

Yaw angle control Active control: ±180o

Rotating diameter 22.8m

Gear ratio 1：20

Electric generator induction generator

Testing and Verification Platform 

of INER 25kW and 150kW wind turbines-4/7
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� Measurement and Analysis of Acoustic Noise of 25kW wind turbine� Measurement and Analysis of Acoustic Noise of 25kW wind turbine

Hz 20 25 31.5 40 50 63 80 100 125 160 200

dB(A)-Pitch 05 20.9 25.3 28.7 31.4 33.8 36.4 35.4 37.8 50.2 37.7 43.2 

dB(A)-Pitch 80 24.9 23.3 27.4 34.5 37.7 38.6 41.6 44.6 51.4 47.5 47.3 

total dB(A) 51.79 @Pitch 05 total dB(A)44.48 @Pitch 80

Pitch 05

IEC 61400-11 & ISO 1996-2:2007 Annex D 
EPA Noise Regulations in low frequency (20-

200Hz) and overall noise level 

overall noise level (20-20kHz) (indoor)

• Overall in day and evening 

<50dB(A)

• Overall in night< 40dB(A)

• Or overall-background=-5dB(A)

(overall=wind+back)

Testing and Verification Platform 

of INER 25kW and 150kW wind turbines-5/7
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� Measurement and Analysis of Acoustic Noise of 25kW wind turbine� Measurement and Analysis of Acoustic Noise of 25kW wind turbine

9

Testing and Verification Platform 

of INER 25kW and 150kW wind turbines-6/7

Without 

VG

With 

VG
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� An experimental and numerical investigation on the 150kW wind turbine� An experimental and numerical investigation on the 150kW wind turbine

10

Testing and Verification Platform 

of INER 25kW and 150kW wind turbines-7/7
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� Path TAF laboratory� Path TAF laboratory

11

Small wind turbine design evaluation 

laboratory-1/4

Team established

2005~2008

Evaluation of 

development

2008~2009

IEC 61400-1 and -2

design evaluation

2009-2011 2012-2013

TAF Lab. approvedSWTDE lab.

2011-2012

Mechanical and systems engineering program

Supervisor：W. Sue

SWTDE lab.

INER, AEC
• ISO 9001、ISO 17025、ISO Guide 65�CNS 15176-2

• ISO 17025 specifies the general requirements for the competence to 

carry out tests and/or calibrations, including sampling. It covers 

testing and calibration performed using standard methods, non-

standard methods, and laboratory-developed methods.

Quality control Analysis group
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� Voluntary Product Certification(VPC) by BSMI� Voluntary Product Certification(VPC) by BSMI

International Certification 

Scheme

SWCC, MCS, JSWCC 

TUV-NEL, DNV, Intertek, 

ClassNK….

Penghu test site

(TERTC)

Qigu test site

(MIRDC)

Type Testing Reports

INER

CNS 15176-2 (2011,2013rev), -11, -12-1, 

CNS 15176-2-1 (2012)

US AWEA9.1(2009)

Japan JSWTA(2013)

IEC61400-2ed3(2013)

UK BWEA(2008)

VPC Taiwan

Governmental Incentive 

Programs 

12

Small wind turbine design evaluation 

laboratory-2/4
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Small wind turbine design evaluation 

laboratory-3/4

� TAF laboratory-Small wind turbine design evaluation� TAF laboratory-Small wind turbine design evaluation

• DNV evaluation

• TUV NORD evaluation • Hi-vawt Co.3kW VAWT

• EPISTAR Co. 4.8kW HAWT

• On US SWCC Consultants list
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Small wind turbine design evaluation

laboratory-4/4

� Load measurements of blades on VAWT
– Verification of Simple load calculations

– Strain dependence of wind speed and RPM

� Load measurements of blades on VAWT
– Verification of Simple load calculations

– Strain dependence of wind speed and RPM

Strain gauge 350Ω 

Anti-magnetic full-bridge

Strain gauge 350Ω

Anti-magnetic full-bridge

battery

Wireless 

transmitter

Wireless receiver 

module
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R/D of 5kW Vertical axis wind turbine-1/3

� Joint development -Passive pitch control of VAWT� Joint development -Passive pitch control of VAWT

• Simplified load calculations

• Numerical simulations

• Wind tunnel verification

• Dynamic load analysis
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R/D of 5kW Vertical axis wind turbine-2/3

� Numerical simulations and DOE design� Numerical simulations and DOE design
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� Joint development -Passive pitch control of VAWT� Joint development -Passive pitch control of VAWT

17

R/D of 5kW Vertical axis wind turbine-3/3
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� Micro-siting for forecasting wind energy and annual energy productionAEP� Micro-siting for forecasting wind energy and annual energy productionAEP

Wind energy assessment-WAsP-1/2

INER

~4 m/s

6.0~6.5 m/s

18
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150 kW

DS 3000

DS 3000@048

DS 3000@060

060

048

072

022/029/0

30

039

061 012

19

Turbine Height (m) Vmean(m/s) AEP(MWh)

150 kW 50 3.45 50

DS3000 6.08 1.16 0.137

DS3000@048 16 1.85 0.324

DS3000@060 41 3.15 1.378

Wind energy assessment-WAsP-2/2
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� Real-time CMS on 150kW wind turbine� Real-time CMS on 150kW wind turbine

20

R/D of large scale wind turbine 1/2
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� Defect detection of blades� Defect detection of blades

21

R/D of large scale wind turbine 1/2

Infrared thermography

Halogen lamp
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� Equivalent Fatigue Load and Rainflow Cycle Counting� Equivalent Fatigue Load and Rainflow Cycle Counting

Equivalent Model and Verification 

Design verification of wind turbine for Taiwan-1/2

Time Series Wind Input

X-Direction Mom.

Y-Direction Mom.

Damped oscillator

Base Acceleration

22
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Design verification of wind turbine for Taiwan-2/2

� Design load cases of NREL 5 MW reference wind turbine� Design load cases of NREL 5 MW reference wind turbine

23
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Technology Exchange

� 2016 IEA Wind Task 27 in Taiwan

� Visitor of Mr. Sasaki, ClassNK

� Workshop of small wind turbine

� Technical course by Prof. Ishihara, Uni. of Tokyo

� 2016 IEA Wind Task 27 in Taiwan

� Visitor of Mr. Sasaki, ClassNK

� Workshop of small wind turbine

� Technical course by Prof. Ishihara, Uni. of Tokyo

https://www.xsede.org/urban-insights
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Thank you 

for being here


