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HP ProLiant SL390s G7

CPU: Intel Xeon X5670 (Westmere-EP, 2.23GHz, 3.196GHz@Turbo boost}
X2Urwhk YUswheikb é 17, /—FASE 1237

GPU : NVIDIA Tesla K20% (GK110) % 3, GPU1 f@&720 1.31TFLOPS, VRAM 6GB

Memory : 58GB DDR3 1333MHz —28103G8B

S5D: J—F®ieD 120GB (60GB % 2) —8240GB (120GB % 2)

Network: 4X QDR InfiniBand x 2

2-6 ~ FEEET T KREE GSIC-TSUBAMER.S = 2 BB A FH 0o (5 [ T 8% 71-(5))

® 21 HERER

Feol | sREE AT AN

1 REI 4 JRITAR ~ U HARe 48

2 SRR TH T ARG THIRAY 73 S E B e s B it /048
B TSt

3 SR TR SRR AR /48 BT R T

RGN | SRR AR EAEE - TR (R AR ER
B AG E AR it

5 JES R T 48 TréaR pS B R 2488 CEF B = A H]
6 JEVHE 38 BB o T REEE: 2.5MW JEE S %58 BB s T
7 TR R S TK TSUBAME 2.5 AT EEAS r4A B SR R E R
8 THHRE EHE EER M 2 KK 25 (Kalman filter) BUERHEN L7 Data
assimilation)
THEREHE R WRF FE# & #2272 ME ~ RMSE 1 [A {5 IE# 2
10 OpenFOAM- OpenFOAM-CFD Egizgtil WRF Bies Lhi 252
CFD H@z8

DT ZETRF M 48 A R E it 2 BEEN S R4 - sF s CERH LA 8k 230 - 1R

7 2-1 (UEREIEY - SREAB T EHKRIREFB NG 2% R 4 DU B E
BT AT HBAE o
(&)1 BRI

JEE 2 R AN E R R MASRISERR S - B R R Z AR ) 20 HI 22 Rk v e R
W IO (A (R BRI T, = SRV SRS BRI F 922 DA N WS R s 2 o — Ryt & A R 772 S (pressure
difference)y 25 » HR S7HY 72 FLAA R RV 2R LR PR - 1 KRB T RIAR 1A AR5 B 22 @i
B o 55— By BR E U (tunneling effect) » EVEE T 22 B AV S22 A0k B AR R PR 5 -
RIE - FRIE EEY R B )RR T R VURE » r Rl ERAT -
1. 172 B Z(Planetary Winds) * 2B S #2 8 2 (KJg KR 2 R - Ba IR

(North-East Trade Winds) ~ 32 g Z=JE(North-East Trade Winds) ~ S5 75 P8 B4 (Temperate Westerlies)

FS5H



Rttt SR\ (Polar Easterlies) o 75 S0 B BEAF By IR 0V AR 2 48 5 R T Frrisedtl] - 2245
SRER > 1T 2R R A =L N R > R BBt RS T AR - It
HIERERS B2 AT B B S -

: X7 E Zx(Monsoon Winds) © [t B 27 RSN L 72 S 28 5l i [ Sk ] 1 SRR 3 R
S W R I TR (B 2R G0 A SRR T AL o PRI AR\ R R B S 26
%o TR o 35 Ry a7 2R VR R R () Bt > AR Sl ) Al BN IR B PR - 2R
AR R o I3 i Fy g% (R B R R R Ay - S R I

: SRIEBLR FJjEE 2 (Cyclone and Anti-cyclone Winds) * SRE e 5 B S —(EEEE L T
SRR R R R HHIPAIMREE 2K DU RERY 22 R PR [ R L ©
RIeEE g AN RE HESIIRA  WReEELRE o SRR R EHE EN KR A8 H
rh o SRJERR > U P SRR B 3 s R L Y AR R Y NET R H R Bl 2 B8R - s BRI A
EzERA NRE - TP RS BRI R R, -

JEERE Za(Local Winds) © & Hsih [ Y 22 R 2 BCR BT 8 2B/ INREERR 52 » B04E 4
(fohn winds) ~ 28 ~ LLE ~ FEFGE ~ R FEURfE U SE 0 7 M £ o RO U HHER A
RN > 2 B R A A A 22 SRR ST AR R > R PR (g e - 77 e R K
[EEE - EZTRER L - R EE AR UE - 5K 28220 B B AT
m] LLTETES » 3 Rt B > REIRE > 22 @2l et UTRR | LA o0 T Ay L& - A8 EHIZE
FRM RS SR > &aRAVGES L > B EES - A2 R B RGERER  F15
TKRBY - Z 1% e JE LRy R > (502 SROR S BN Al A R &
bR T B Z o INE A SR U 2R S B O I 2R R S S R VAR AR E 2 R T £ %5 - (H

TG R Y BR FR 1] 2 M2 3 350 P 25 B 1R R SR8 S /& (Atmosphere boundary layer, ABL) > #7%5
i85 B R IR RN S0 2 RIS E SRR ] %47 - IR & AT ABL 25 28 B g B TEDHI B A2
B EHIUPEE -

\nversion

-

Height, z

Horizontal distance, x
2-2-1 ~ HIER KRR 2 B g R ER (5 FH Atmospheric Science 2006, Wallace and Hobbs [& 9.1)

(2)-2 REHE & (Atmosphere boundary layer, ABL)

HBk R SR R g o] DURBE Y a8 i 2 77« 36— Fy EH U RSRUJE (free atmosphere, FA)ELSE

I FHAVIE T E (boundary layer) » Y FE A G2 & (Atmosphere boundary layer, ABL) » 41[&E 2-2-1
Fi7R © bt ABL fE S TAECE S R EREE RER > WIMIZEREE - ZRiTE - BERR -

Fe6H



IKITEE ~ FETEN ~ RAENTZEBLREENTZE - ABL T EWERLE 1 E/NEEAY R E 2 PR KRB,
REEXHEERAZ RfE - HEESELE 10m 2 2km 2~ fH » 495 EEERE 10%5] 20% - 18
EERY B HARRE FA - H2Z BIE RS 2-2-1 < KFEEFE ABL H1H ISR 4EfEe s
2-2-2 - RSAEFE ABL T2 H = @45 » 77l R & @ (mixed layer, ML) ~ /84 & (residual
layer, RL)EEE £ %2 57 /& (stable boundary layer) - fESEATHNERRH » A 4% HAFERYHE 5L (thin
boundary layer) H. 5 5 75 [ 1Y 2557 1 & (turbulence fluxes) A & # -

7% 2-2-1 ~ A= (free atmosphere, FA)E K 5738 FLJ& (Atmosphere boundary layer, ABL)

Property free atmosphere, FA Atmosphere boundary layer, ABL

Turbulence Mostly laminar. Almost continuously turbulent over
its whole depth.

Friction Small viscous dissipation. Strong drag against the earth” s
surface. Large energy dissipation.

Dispersion Small molecular diffusion. Rapid turbulent mixing in the
vertical and horizontal.

Winds Winds nearly geostrophic. Near logarithmic wind speed profile

in the surface layer.
Sub geostrophic, cross-isobaric flow

common.

Vertical Mean wind dominates. Turbulence dominates.

Transport

Thickness Less variable 8-18Km. Varies between 100m to 3km in time
Small time variations. and space.

Diurnal oscillations over land.

4 Free Atmosphere

¢ ot Zone Capping Inversion

Residual
Layer (RL)

L - — b
Day 1 Night 1 Day 2

} }

3 PM 3 AM
2-2-2 ~ R|EF & ABL 81 H IEIERAVAE S~ ==
(51F Stull, R. (2010). Meteorology for Scientists and Engineers, third edition)

(5)-3 IEFEH AT AT B R 52
FE H A I 5 1 R A (L R R LRSS - IR EE R R A B s B AN DI R 2
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JESZa At {7 B A SRR B )+ SOz R R i SRR B RS A HY SR o K T st it 3 ¥ 355
HIs 2 B e RS e BRI ITE - BT 2 RN e R S 2 R R EE - R A
AR E S B EE BLEE A2 H ARG S S Y 705 - BUR A B B2 i 50T
EREH S i RV 7% - HEsR EA AR E LR E R EE P I E R EREN -

Meroney(Meroney, RN. 1980. Wind-tunnel simulation of the flow over hills and complex terrain. J. of
wind engineering and industrial aerodynamics, 5(3-4):297-321) Neal 5z Stevenson Z A (Neal, D.,
Stevenson, D., and Lindley, D. 1981. A wind tunnel boundary layer simulation of wind flow over
complex terrain: Effect of terrain and model construction. Boundary-layer meteorology, 21(3):271-293)
3 A 175000 B 1/4000 BRI E 4R P8 R LR EZE - Bowen £23% (Bowen, A. 2003. Modeling
of strong wind flows over complex terrain at small geometric scales. J. of wind engineering and
industrial aerodynamics, 91(12):1859-1871)RIlEaR & (A 1/6000 ELBIHVEER A HEEE st &R -

I B B2 FR HAHREN 9T - (B ECRE RS e BB BT AR - DURER DU et Bk
KRB FE(Atmosphere boundary layer, ABL)¥R & » BUA RS e B R SRS T g i EUE 7 AR A]
RETR (L SEHE H AR ERE R 7% -

AT AR P 5 B07 B F7 22 777 (computational fluid dynamics, CED)iE &> {5 FI A Pt 18 5
i 2 JEBEREE U702 « B g Z {4 FAVEHE 77 A IS Reynolds-averaged Navier-Stokes(RANS),
Large-eddy Simulations B Detached-eddy simulation 2 777% © RANS EL#E B> (i FiNE RS
B HAAZEEER A P EESTENGTE - RIIEER AN —AE R A E E 7y
MrelEE i - WREATAAR LES J7 AL B Z AT RANS BB 7 M A o Aoy R I S S 5
REMERVAS S o (H2HY LES 2B IFVEEEE ~ M2 28 r a8l LES HYZR R4S HE L
SEE Y B AN RANS » (Rl RANS (RN E T T EBE S T BB S PGV ACOR B85 -

(54 JEHETRERIES

FH A ER B 2T R R - PR TEE PRI L RS R AR 2R AL 5 [ B A R 2N B I 95
i > DR 2 T P S A S BRI F UCHC L &R 1 Rl TR » —ARoER - JEBE TNl R 224 RE
TRHE g EEE - HIE A — L AR TEEE D SE BGA TR RS © BT TRAIE
TR L& S R LU PUSA -

1. fi%E HAFEER (Very-short-term forecasting) @ FHZ4 5885 1 /NEFLLIA ©

2. 9 HATES (Short-term forecasting) * FH 1 /NIGFEIE/ NG 2 fE] -

3. thHATE#ER(Medium-term forecasting) © HIE/ NI 1 FLLA -

4. EHATE#H Long-term forecasting) : 5 1 #HE—FLLE o

R 2-4-1 4B AR ] RUE TS U R T S8 BE A SRV B F - FEBR 0 28t TP A [ ] RUBERY
THIER 2 AR [FIRHIS I IE A - R S0 PR s U o E 2 3 ) R B e B R (R AT Ry 22 PE
% FITREHE A A AR E D R EUERCR S ¢ IR nT DL B E R & (R
kR RINTEHIEAT A DI B S ERE TIE - BHELT -

72 2-4-1 ~ BEEFRE R TS T & ) R A FER
Time-scale Range Applications
Very-short-term | Few minutes to lhour ahead Electricity market clearing

%8 H




Real-time grid operations
Regulation actions

Short-term 1 hour to several hours ahead Economic load dispatch planning
Load reasonable decisions
Operational security in electricity
market

Medium-term Several hours to 1 week ahead Unit commitment decisions
Reserve requirement decisions
Generator online or offline
decisions

Long-term 1 week to 1 year or more ahead Maintenance planning

Operation management

Optimal operating cost
Feasibility study for design of the
wind farm

(=)-5 E\ﬁ%fﬁﬁ&ﬁﬁ
RE THERIE R T2 A A BB E e 8 A — I MRV B & s i & S A

ﬁi‘ﬁ@\%@%ﬂ?ﬁxﬂﬁi%ﬂﬁﬁém H A FE2EER Y 775 A SR A (persistence method) ~ #7FHT
L% (physical approach) ~ 45t A(statistical technique) 1R &7 A (hybrid method) PUFE » /14840 F -

1. SFIE £ (persistence method)

AR E MR REETEAR AR EER - HEE T AR B N R & - R
JeEtERFER RAEEER TR - HABRLZAE Very-short-term 82 Short-term 7H#Hz b EEYERAT
7Z(physical approach) ~ 451 A (statistical technique)#ERfE

2. WFEIT LA (physical approach)

BETT AR AT B E SR S PR = (numerical weather prediction model, NWP) » E 2 HFHE
HEyYEE A EEE T HENREENETIAARR RS - WA DUBEE0 N F SR AYRETE B
AISEMTRAE - NWP 2 B E RV B A EE ROR [ ~ JEUZE ~ JEA] ~ BRD ) BLR R fE  R
T RETER H 1Y o SFE0T4 R NWP [ 1iT4] WRF(Weather research and forecasting)
RAMS(regional atmosphere modeling system)E2 MMS5(Fifth-Generation Penn state/NCAR mesoscale
model) % B LA AR b {5 A 7 E\AE TR R B At Rt -

3. #EtiE(statistical technique)

T NWP J577% » &ia AR AL kS GBS 2 RS TR - Rt RUR/DEFEIGER
EORBE A2 FRE MR RATEE o HoA O T B E A R A U R R E R L E R A TR
BUNRFHIRGEER > F 2Rl o] A& 77 Rl 7 5 =(time-series based models) S tHIAS4E RS2
(neural network based models, NN) DA FEF1HE R (time-series based models) R0y FEE )7 A RA
HE0]ERtE B P91 (auto regressive moving average, ARMA)ERFLANLT AR, - 411 H Bh[nlFfs
R S (auto regressive integrated moving average, ARIMA) ~ Z£fi- B @0l Er g 8 E i
( seasonal-ARMA) ~ 77 % B #f[alEtsEh V-9 =(fractional - ARMA)EE & SMIIE R B BBl 8
SEHREE(ARMA with exogenous input, ARMAX or ARX) o DLR A HAt S R 41040« 4aikva
JHl(linear predictions) ~ MKEaTEM(grey predictors) B2 555 - & (exponential smoothing) ° ARMA J57%

£ 9H



L% Torres £235 55 A SCRREEHHE 10 /NI THERAE R EE persistence method J8/ D&Y 20%aR7E

FRAR AR A NN A 28 25— B A HARY SR G B 22 Je i A Bl AV RBR (% - HI77AIEAR
FERG e N EERE A UER ’/\%?ﬂzﬁﬂﬁﬁ?$é§%@ﬁ§£ijji_§J;a*4%M/KEE®MEHETE§H§i?
BRI SERFEHIESK o {HA0[E] ARMA - & TR F 38 R A I NN A E R i T o
SEINVE HA ST AR > A0S A A RAS A A (feed-forward neural networks, FNNs) ~ 6@ JESZP}ER&
(multi-layer perceptron, MLP) ~ 4 B tH4X 4% £ (recurrent neural networks, RNNs) ~ 2[5 FEAS R
(radial basis function, RBF)E Adaline networks fHZSAGRE £

b7 _EHLAY A Fare AR E WL IS5 0 > 400 fuzzy logic model ~ wavelet transform ~ spacial
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SEMERS R R E(ETERIH AT - 40 ANFIS JAHIESE S ANN E fuzzy logic FY7574 > AGEkThE
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775 B A Mg S g1 -
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Model name Hydrostatic or Global or Owner
Non-hydrostatic Regional model
ECMWF Non-hydrostatic Global European union
GEM Hydrostatic Global Canada
UKMET Non-hydrostatic Global/Regional United kingdom
NOGAPS Non-hydrostatic Global Navy
T639 Non-hydrostatic Global China
MM5 Non-hydrostatic Global PSU
MSM Non-hydrostatic Global Japan
GSM Non-hydrostatic Global Japan
NAM Non-hydrostatic Global NCEP
WRF Non-hydrostatic Global NCEP
GFS Non-hydrostatic Global NCEP
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(Z)-8 WRF RETHHIEA SRR
WRF #Z 0 R B & F F 21T BR%E ~ Euler non-hydrostatic B hydrostatic #2=, » Wi 2 FEER 3
P& Runge-Kutta HFREIRR 3 BRI » 1 EE EBLKSE 7 [a) Y 22 RS AT H 2 FEE R E 6 FE ¥R &R -
AerEET PR Arakawa C-grid SEREEAEFS (staggering grid) © REAERFRIFRI 18 77 K 2 RIE 2
IR AT
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3. &I 4H (Surface layer)# land-=surface model : stE i F > FEERE « 35 Ha (4L
(Exchange coefficient) ~ & B o
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AREE T TR 2 BFdo 2 NWP J3 /AR B it HERFH Y38 B & Weather
Research and Forecasting Model (WRF)43f#kae - 98T H AR B B JE S (Awaji wind farm)
A E I TR ES BE AR o SR PSR R AT ER A Warnar 225 e AV o=t > BRA—(EC
s R = (E TSR E H one-way 5T SIS A Y IL4R 34.05 FEEARAK 134.635
& H R 75x73 st RS 2 18 N HEERE - TatEEIE B A 97x97 Z 12km 48#% ~ 101x109 Z
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(BT Z SR AENTRE By S 957 (Are minute) ~ 2 51457 ~ 30 JIFP(Arc second)Ei 30 JLFD

e B A RS B B PRI IR T R 2013 2 8 H 1 HE( 2014 4F 1 H 31 HiGERA 1 /)N
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ERFEIDUZS R EE 24 /NFTHE T o R ERFEHERER TR C RERT 18 /NEFHYRE S
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(Z)-11 Kalman filter <5 = )&% 238 Data assimilation BFHEME T4

REE TN am NWP J77E B TR (i B f S0 R0R7 28 K Data assimilation E}HE{E 5
TR EE R TN - RH SR 282 150 4EAT Rudolf E. Kalman FradfE - HERAHIEEE(E
EEENE R ER AR DR - LA ERENE S - BIEE - &fEL
Pl NS E R 2 - RHRER B EUG 28 B THE AIER R f 2 808 25 [ WRF THHR YRR
7= DUEAS SORE TR TEOR] -

R SR SR HVE R E T BT ER o S — RIS (time update) » FZFHBRAHY
R AR NI EIVERAE - £ m?%%ﬁ@%(measurement update) » BRFHEEEHIE R
EIEBERITERE R @EE%%E’]?@%’L S LAY BB 0] 275 R 2 RN as HHRE SRR <

Data assimilation ERHEMEREERH = H T E 0704 © LERAE Y& (prior information)
HIBHRE 245 - 2 SV AV E FEIE SR EE - 3. B EANATEE R - sRA0nY AT S s ] 2 Ra

(XD)-12 TSR RE 775

RIS B VP AE F WRE THHR G E B 1% - A R S0 as0IE IE DUE R R FEATTHHR
GHOR  HEBEREE MG AT =REE TR T2 70 Al R 293575 (mean error, ME) ~ M 5HRER
(root mean square error, RMSE) ~ Pearson ﬂQIEf/%Q%Z(Pearson product moment correlation coefficient, CC)

EEE &5 % (index of agreement, 1A) » EFEU N ARBHTEE L-(—)EL(D)):
= Z fore; — obs;)
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RMSE = J
N
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An integrated wind-forecast system based on the weather
research and forecasting model, Kalman filter, and data
assimilation with nacelle-wind observation
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Department of Energy Sciences, Tokyo Institute of Technology, 4259 Nagatsuta Midori-ku,
Yokohama 226-8502, Japan

(Received 16 May 2016; accepted 18 October 2016; published online 27 October 2016)

To forecast wind speed at hub-height is a challenging task for wind energy applica-
tion, especially in Japan where the terrain feature is very complex and large fluctua-
tions are observed in surface wind field. In this study, an integrated system to predict
the hub-height wind speed has been developed by combining data assimilation and
Kalman filter with the high resolution Weather Research and Forecasting (WRF)
model. Assimilating the nacelle wind data (quality-controlled) and the Kalman filter
algorithm effectively improves accuracy of the WRF model forecast by optimizing
initial condition and post-processing the model output, respectively. It is found that
the WRF model forecasts can be markedly improved after assimilating the nacelle
wind data through the Gridpoint Statistical Interpolation analysis system, with the
relative improvements of 34.3%, 23.9%, and 8.8% in ME (mean error), RMSE (root
mean square error), and IA (index of agreement), respectively. The implementation
of the Kalman filter can significantly reduce ME and RMSE while increases the
value of TA as well. Further improvement can be achieved if the Kalman filter and
nacelle wind data assimilation are implemented simultaneously. It is observed that
the role of the Kalman filter is more dominant for the wind band of rated out speeds,
while data assimilation is effective in reducing the random errors and becomes more
important in rare or extreme weather conditions. Both data assimilation and Kalman
filter modules apply the nacelle wind data which is routinely available, so the system
can be easily adopted in different wind farm sites for operational use. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4966693]

I. INTRODUCTION

The short-term wind energy estimation relies heavily on the low-level wind forecasts
derived from the numerical weather prediction (NWP) model. As documented by Landberg and
Watson,' Costa et al.,* recent progresses in forecast skills of NWP models make it possible to
provide more reliable predictions of surface wind field which is essential for wind energy man-
agement. However, the current NWP models are still far from a mature stage and particularly
large errors are found in the prediction of the surface wind forecasts, which has motivated con-
tinuous efforts to improve the NWP models themselves.** The encouraging results in these
works suggest that more reliable forecasts can be made by using more advanced and sophisti-
cated numerical models which are generally believed to possess dynamic cores with less
assumptions and accurate numerics, refined parameterization packages for physical processes
that directly affect the phenomena of interests. Unfortunately, other factors beside the model
inaccuracy, such as the uncertainties in observations and the chaotic nature of atmosphere, also
prevent the outputs of deterministic NWP models being directly usable to many applications.
Thus, other approaches are found to be more effective in improving the forecasts of the given
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numerical models. For example, efforts have been made to use the available observations which
are always regarded as the more reliable representation of the real atmosphere.

Some existing studies’’ indicate that post-processing statistical methods that evaluate and
correct the model outputs against the observations, for example, Model Output Statistics (MOS)
and Kalman filter, are very effective and demonstrate significant capability of reducing errors in
the outputs of numerical models. Another effective method is data assimilation (DA) to gener-
ate the initial conditions (known as the “analysis”) as close as possible to the real atmosphere®
for the NWP models in use to improve their forecasting skill. In this work, we develop and
evaluate a DA component for a forecast system of local surface wind field,” which is based on
the Weather Forecasting and Research (WRF) model and Kalman filter.

For operational wind farms, the conventional observations include upwind meteorological
(MET) tower measurement and nacelle wind data. In general, the measurements from an MET
tower at a wind farm site cannot accurately reflect the real wind field around the turbines which
are located at different locations away from the MET tower, particularly when the terrain of a
wind farm is complex. Instead, the nacelle-mounted anemometer which is placed on the top of
nacelle behind the rotor can provide the routine data of wind speed and direction for each turbine.
Although the wind observation of the nacelle-mounted anemometer is always affected by the
design/shape of the wind turbine and nacelle, as well as the operation condition of the tur-
bine,'™!'" some studies still show that nacelle-based wind speed observation, after proper calibra-
tion and data quality control, is more representative to the wind behavior (e.g., wind disturbance)
experienced by the wind turbines in a wind farm than that from an upwind MET tower.'*'"? In
this study, we have developed and evaluated a DA module to assimilate the nacelle-based wind
data for a surface wind forecast system we developed previously.” The DA module has been con-
structed by using the WRF model and the Gridpoint Statistical Interpolation (GSI) analysis sys-
tem developed by the National Centers for Environmental Prediction (NCEP) Environmental
Modeling Center (EMC).

Being a continuation of our existing work® to establish a practical prediction system of sur-
face wind and power generation for wind farms in Japan, we have developed the data assimila-
tion module as another key technique and integrated it to the WRF model in addition to the
Kalman filter post-processing tool. Both DA and Kalman filter make use of the nacelle-based
wind data which are available for common wind farms, and thus the system can be easily
adopted for operations on different sites.

The rest of the paper is organized as follows: the details of methodology, data, and experi-
ment design are described in Section II. The performance of the DA technique based on the
nacelle wind data and Kalman filter is presented in Section III. Section IV summarizes the
results and provides several concluding remarks.

Il. METHODOLOGY AND DATA
A. The forecasting model and GSI assimilation system

The Advanced Research WRF (ARW) model version 3.6, which is a limited-area meso-
scale model based on a fully compressible and non-hydrostatic dynamic core,'* is used in this
study. The initial and boundary conditions used to drive the WRF model are taken from the
NCEP Global Forecast System (GFS) real-time forecasts, which are gridded to a horizontal res-
olution of 0.5 x 0.5°.

The domain configuration of the WRF model which follows the steps recommended by
Warner et al.'> is shown in Figure 1, including a parent domain (DO1) and three nested
domains (D02, D03, and DO04) with horizontal resolution of 24.0km, 6.0km, 1.5km, and
0.5km, respectively. There are 35 vertically stretched eta levels, 10 of which are within the
lowest 1km used for all domains and the top level is located at 50 hPa. The topographic data
are obtained from the U.S. Geological Survey (USGS) global 30arc-s elevation (GTOPO30)
dataset for all domains except that the topography height of D04 is replaced with a 50 m reso-
lution data obtained from the Geospatial Information Authority of Japan to furnish the local
real observation information during the GSI DA processing. The longwave and shortwave
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FIG. 1. Four nested domains (a) DO1, (b) D02, (c) D03, and (d) D04 and model topography. The detailed terrain height
(shaded with the gray bar in meter) of the D04 is shown in panel (d). The red triangles indicate the locations of the 15 tur-
bines in a wind farm in south Awaji Island, Japan. Wind speed and direction are measured on the nacelle top of each
turbine.

radiation schemes are based on the studies of Mlawer er al.'® and Dudhia,'” respectively. The
WRF Single-Moment 6-class (WSM6) microphysics parameterization scheme,'® the Kain-
Fritsch convective parameterization scheme,'® and the Noah land surface model (LSM)20 are
used in the four domains. With respect to the planetary boundary layer (PBL) scheme, the
Asymmetric Convective Model version 2 (ACM2)*! is adopted based on the sensitivity experi-
ments in our previous study.’

One of the biggest limitations of WRF wind forecasts at hub-height is the difficulty in
obtaining accurate information on the current state of the atmosphere, which can be partly solved
by using the DA technique based on the available observations. In this study, the GSI analysis
system, which is capable of assimilating a diverse set of observations, is integrated with the
WRF-ARW mesoscale system. More specifically, this paper will implement the GSI 3DVar
(three-dimensional variational data assimilation) system using the nacelle wind data to improve
the hub-height wind forecasts.

The underlying idea of 3DVar data assimilation is to find the analysis increment x’ of phys-
ical variable x by minimizing the cost function that measures the distance between the back-
ground forecast and observation.® The cost function J(x') is defined by

JW) = 3 (B () 45 (1 — )R (¢~ ), (1)

where By and R are the static background and observation error covariance matrices, respec-
tively; y' is the innovation vector; and H is the linearized observation operator. More detailed
description and information of the GSI system can be found on the GSI website (http://
www.dtcenter.org/com-GSI/users).

B. Observational data

Same as in our previous work, the target region (shown in Figure 1) is the wind farm
located in south Awaji Island, Japan, where 15 wind turbines (see in Figure 1(d)) have been
installed. All wind turbines (General Electric GE2.5) have a rated capacity of 2.5 MW and the
power curve is displayed in Figure 7. The rotor diameter of the turbines is 84 m and the tower
height is 80 m. The nacelle wind for each turbine is measured by the anemometers placed on
the top of the nacelle behind the rotor. After the conventional quality control, the observed
wind data are input into the GSI DA system for wind prediction and used to evaluate the fore-
cast results as well. The wind data (speed and direction) are available every 10 min for one
month period from 1 January to 31 January 2016.
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In general, the nacelle-based wind data are always used by wind farm operators directly for
the turbine control (e.g., to determine the cut-in/cut-out speeds). Nevertheless, the quality of the
nacelle wind observations needs to be evaluated before assimilating the data into the NWP
models, so as to avoid the degradation of forecasting skill due to the assimilation of a few bad
data points, which might even outweigh the benefits of assimilating many other good data
points. Thus, we, in this study, implement the standards addressed in the technical report of
National Oceanic and Atmospheric Administration (NOAA) Earth Systems Research
Laboratory (ESRL)** to flag out the unreasonable data points for each turbine separately.

C. The Kalman filter algorithm

The primary Kalman filter is a recursive algorithm to estimate a signal from noisy measure-
ments. In this study the Kalman filter is used in predictor mode, to reduce the uncertainties in
wind speed forecasts at hub-height by using the information of the most recent forecasts and
observations. Though a number of studies have already demonstrated that the Kalman filter can
improve the raw forecasts of the NWP model, we still intend to understand its performance in
eliminating the errors in high resolution (i.e., 500 m for D04 of the WRF model in the present
configuration) wind speed forecasts at hub-height and then to investigate whether it has advan-
tages to the DA technique. Here, only the main equations are given as below and the more
detailed description of the Kalman filter algorithm can be found in Refs. 6 and 23.

Considering the state of the unknown process at time #, the bias between the forecasts and
the true (unknown) is related to the state at previous time ¢ — ¢

Xele—or = Xe—odi—20t T Hi—ot> )

where 6t is a time lag, x, is the true forecasting bias at time ¢, x,,_s is the a priori state esti-
mate at time #,  is the white noise that has zero-mean, and the variance (ag /) uncorrected in
time. Then the forecasting errors y, can be written as

Yo =X+ & = Xyp—gr + 1, + &y (3)

where a random error ¢, is normally distributed with zero-mean and variance ¢Z,. The uncer-
tainties and errors in numerical models and inaccuracy in initial and boundary conditions are
the main sources of &,.

Given a reasonable initial guess of the expected mean square error p and Kalman gain K (i.e.,
po and Kj), the Kalman filter can recursively generate an estimate of forecast bias x at f+ ot
through the equations shown below

XH’&I‘I = fct|176t +K; (Yr - Xf\ffb‘t)
Di—st + O%J
K= 2
Di—ot + Oyt + 0y,

Pr = (ptfét + Giﬁ,)(l - Kt)7
where the hat (") notation indicates the estimation of the variable. The white noise, aé, and ag‘t,
which are crucial to the implementation of the Kalman filter procedure, are calculated via the
same procedure by Delle Monache ez al.®

D. Experiment design

Four experiments (shown in Table I) were carried out to investigate how assimilating the
nacelle wind data and using the Kalman filter algorithm influence the performance of WRF wind
forecasts at hub-height, and to understand the priority of those two procedures. In the first experi-
ment (Casel), only GFS data were used to obtain the raw wind speed forecasts by re-initializing
the WRF model as a “cold-start” at 12:00 UTC each day. In each re-initialization runs for 30 h,
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TABLE 1. The four sets of experiments for evaluating the impact of data assimilation and Kalman filer. The “WRF,”
“GSI_DA,” and “KF” with “+” represent the use of WRF model, GSI analysis system, and Kalman filter, respectively.

Experiment Casel Case2 Case3 Case4
WRF + + + +
GSI_DA + +
KF + +

the initial 6 h (spin-up time) were excluded from the forecasting data series. The second experi-
ment (Case2) was conducted to evaluate the impact of assimilating the nacelle wind data with
cyclic mode, in comparison with the results of Casel. As displayed schematically in Figure 2, the
final analysis field at 18:00 UTC each day was cyclically assimilated three times with a 6-h inter-
val. Using this analysis field as initial condition, the wind speed forecasts of continued 24 h were
obtained. We designed the experiment of Case3 to evaluate the contribution of the Kalman filter
algorithm for improving the raw forecasts of Casel based on the available nacelle wind speed
observations. Finally, the experiment of Case4 was carried out to compare the contributions of
the DA technique and the Kalman filter algorithm in improving the wind speed forecasts.

To compare the difference in these experiments quantitatively, the following set of statisti-
cal metrics is used.

Mean error (ME):

N
ME = }VZ(fore,» — obs;), 5)

i=1

where i is the time point and N is the total number of verification time points. fore and obs rep-
resent the predicted and observed values, respectively.
Root mean square error (RMSE):

(fore; — obs;)*

RMSE = \| =} ) 6
N (6)

M=

Index of agreement (IA):

(fore; — 0bs,~)2
IA=1- =l , @)
([fore; — obs| + |obs; — %DZ

M=

M=

1

Il
=

GSI cyclic mode WRF forecasting
—6h—— 6h—6h
j«—— 18h 24h
00:00UTC 18:00 UTC 18:00 UTC
GSI cyclic mode WREF forecasting
—6h—— 6h—6h
l«—— 18h >ie 24h >|
00:00UTC 18:00 UTC 18:00 UTC

FIG. 2. The schematic of implementing GSI system in cyclic mode. The white boxes stand for the total assimilation time
of 18 h with an interval of 6 h, while the gray boxes represent the forecasting length (24 h) of WRF model after assimilating
the nacelle wind data.
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where obs denotes the mean of observations. The value of IA, which indicates the agreement
between the observations and forecasts, ranges from O to 1. A larger IA value means better
agreement.

Pearson product-moment correlation coefficient (CC):

N
Z (fore; — fore) (obs; — obs)
cC = —

. . vl @®)
Z (forei —fo;e 2 Z obs; — obs 2
i=1 i=1

where fore indicates the average of forecasts.

lll. RESULTS

In this section, first the overall result of comparison between the raw wind speed forecasts
of the WRF model and the forecasts with DA is presented based on the statistical parameters
introduced in Section II. Then the role of the DA technique and the Kalman filter algorithm in
improving the raw wind speed forecasts of the WRF model will be investigated. It is noted that
all of the statistics and discussions are based on the 15-turbine averaged data unless otherwise
specifically stated.

A. Impact of assimilation on the hub-height wind forecasts for the experiment period

Figure 3(a) illustrates the comparison between raw forecasts (black), observations (red) and
the forecasts with DA (blue) of wind speed, which are represented with “Casel,” “Obs,” and
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FIG. 3. (a) One month series of the raw wind speed forecasts (black), the forecasts with assimilation (blue), and the corre-
sponding observations (red). (b) The comparison of the RMSE of wind speed using data assimilation (solid white bar) with
respect to the raw forecasts (solid black bar) for the 15 turbines individually. The marked red line stands for the relative
improvement due to the data assimilation. The period is from 18:00 UTC 1 January to 23:00 UTC 31 January 2016.
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“Case2,” respectively, during the experiment period from 18:00 UTC 2 January to 23:00 UTC 31
January 2016. It can be seen that the raw wind speed forecasts (Casel) reproduces the observation
with relatively good accuracy, though there are occasional large errors, especially when the
observed wind speed is larger than 15ms™'. It is also easy to find that the blue line lies closer to
the red line than the black one during almost the whole period, which implies that the forecasts of
wind speed with DA are remarkably improved in comparison with the forecasts without DA
(Casel). Obviously, the evidence from Figure 3(a) also shows that the forecasting skill of wind
ridge is largely increased after assimilating the nacelle wind data, though the contribution of DA
for other periods is relatively slighter or even not clear in some cases. This might be attributed to
the WRF model itself whose forecasting ability of large wind speed at hub-height is inferior to
that of regular wind speed (e.g., ranging from 4ms™' to 15ms™'). It reveals that implementing
DA with the nacelle wind data can significantly improve the forecasting skill of the WRF model
in extreme weather conditions. The values of ME, RMSE, IA, and CC are listed in Table II to
quantify the effects of assimilating nacelle wind data into the WRF model, in comparison with the
raw forecasts. Examining the second column, the positive values of ME indicate that both cases
overestimate the wind speed in the whole period (nearly one month). Compared to the raw fore-
casts (Casel), the ME in case 2 is reduced by 34.3% where the nacelle wind data is assimilated.
Regarding RMSE, the value of Case2 is much smaller compared to Casel, with a relative error
reduction of 23.9%. Similarly, both IA and CC are increased when assimilation is implemented.

In addition to the 15-turbine average results shown above, we also examined the impact of
the data assimilation on each individual turbine. Figure 3(b) illustrates the comparison of the
RMSE between the raw wind speed forecasts and the forecasts with data assimilation for 15
turbines separately. It is found that forecasting skills of wind speed are improved by assimilat-
ing the nacelle wind data for all 15 turbines. The relative improvement in RMSE varies from
19.5% to 25.9% with an average of 21.5%.

Figure 4 displays the 30-case mean (30 days) forecasts of Casel, Case2 and observations
during the 24-h forecasting length. Apparently, the overestimation of wind speed is found no
matter whether the nacelle wind data is assimilated or not. However, this systematic discrep-
ancy has been significantly corrected by using the DA technique. The relative decrease of
RMSE (36.4%) further demonstrates the large impact of assimilating the nacelle wind data in
reduction of the systematic bias in WRF model.

From the above discussions, we may conclude that assimilating the nacelle wind data can
substantially improve the accuracy of WRF model in forecasting the hub-height wind field in
the target wind farm site of interest.

B. Verification of Kalman filter and the difference compared to DA

Having confirmed the effect of assimilating the nacelle wind data on improving the raw
wind forecasts at hub-height, we further evaluated the integrated forecasting system which uses
the Kalman filter as another key technique to improve the prediction. To this end, we conducted
other two experiments, i.e., Case3 and Case4, to include the Kalman filter as another module.
In order to implement the Kalman filter properly, the first 15 days are chosen as a training
period and thus the following discussions are all based on the forecasts and corresponding
observations of the second half 15 days. Figure 5 displays the statistical parameters that quan-
tify the performance of the integrated prediction system and the contributions of its different
components in forecasting the hub-height wind under configurations of the four test cases.

TABLE II. The monthly mean ME, RMSE, and CC calculated with the forecasts (with or without assimilating the nacelle
wind data) and the corresponding observations of wind speed at hub-height.

Experiment ME (ms ") RMSE (ms ™) 1A CC
Casel 2.54 3.51 0.80 0.83
Case2 1.67 2.67 0.87 0.84
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FIG. 4. Comparison between the hub-height wind speed forecasts with (blue) and without (black) assimilating the nacelle
wind data based on the corresponding observations (red), during the 24 h forecasting period (30-day averaged).

As observed above, the ME and RMSE of Case2 are largely reduced compared to Casel,
while the values of IA and CC are increased, which shows the large improvement due to assim-
ilating the nacelle wind data.

The effects of implementing the Kalman filter to the raw forecasts of the WRF model are
also examined by comparing the results of Casel and Case3 in Figure 5. It seems that the bias
(Figure 5(a)) in the raw forecasts can be largely revised and meanwhile the random errors
(Figure 5(b)) can be partly reduced as well. Furthermore, the values of IA and CC of Case3
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become larger after using the Kalman filter compared to those of Casel. All of these results
demonstrate that the Kalman filter as a post-processing method can significantly improve the
forecasting skill of hub-height wind speed.

Figure 5 also illustrates the difference between DA and Kalman filter when one compares
among the results of Case2, Case3, and Case4. For Case4, in which the DA is used to improve
the initial condition and then the Kalman filter is adopted to post-process the forecasts, the
RMSE is further reduced and the values of IA and CC are larger than both Case 2 and Case3,
while the value of ME is nearly same. This implies that combining the Kalman filter and the
nacelle wind data assimilation can provide the best forecasts and the role of the Kalman filter
is more important in calibrating the systematic bias. On the contrary, comparing the RMSE and
IA of Case3 and Case4 suggests that assimilation of nacelle wind data shows better perfor-
mance against the Kalman filter in revising random uncertainties. However, if we consider the
differences represented by all four statistic parameters of Case2 and Case3 synthetically, the
Kalman filer shows the priority over DA for wind speed forecasts at hub-height.

To further evaluate the improvements of assimilating the nacelle wind data and Kalman fil-
ter, we show in Figures 6(a)-6(c) the ME, RMSE, and ITA at different forecasting periods (i.e.,
0-12 h and 12-24 h). In regard to the raw forecasts (Casel), the forecasting skill at period of
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FIG. 6. The statistical parameters of the hub-height wind speed forecasts for four cases in different forecasting periods
((a)—(c)) and different wind speed bands ((d)—(f)). Same as in Figure 5, the evaluation period is 15 days from 16 to 31

January 2016.
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FIG. 7. The theoretical wind power curve for a 2.5 MW turbine used in this study and the corresponding cut-in, rated output
and cut-out speed.

0-12 h is slightly higher than the period of 12-24 h. The same conclusion can be drawn for the
forecasts with data assimilation (Case2) where the errors in the raw forecasts have been largely
reduced after assimilating the nacelle wind data. As same as shown in the Figures 5(a), 5(b),
and 5(d), the Kalman filter (Case3 and Case4) can significantly improve the model forecasts
under the situations with or without DA for different forecasting periods. Comparing the values
of ME, RMSE and IA of Case3 and Case4 during different periods, we observe that the impact
of DA is more apparent compared to the Kalman filter in the period of 12-24 h, due to the dif-
ference between Case3 and Case4 during 12-24 h is larger than that in the period of 0-12 h.

In practice, the simplest way to obtain the wind energy forecasts of a specific turbine is to
use the designed (or theoretical) power curve provided by the turbine manufacturer, which is
usually a function of the mean hub-height wind speed. In this study, the target wind farm con-
sists of 15 2.5 MW horizontal-axis turbines and the corresponding power curve is shown in
Figure 7. As displayed, the value of cut-in (4ms™ "), rated output (15ms ') and cut-out speed
(25ms™') is crucial to power management in routine operations. Therefore, the forecasts of
04, 4-15 and 15-25ms ™" wind speed bands are further validated. The results are displayed in
Figures 6(d)-6(f). Apparently, almost all of the ME and RMSE of the raw forecasts (Casel) are
reduced by applying both DA and the Kalman filter, meanwhile the value of IA is increased. In
addition, the smallest value of ME and RMSE and the largest IA in the band of 4-15 ms ! indi-
cate that it is easier to obtain relatively accurate hub-height wind speed forecasts in the interval
of 4-15ms™" compared to other wind speed bands. When the wind speed is larger than
15ms™" which is the rare case in the experiment period, the performance of the system
becomes worse (with small IA), and DA shows more significant effect in comparison with the
Kalman filter. It suggests that the DA technique can be more effective in correcting the forecast
under rare or extreme weather conditions.

Overall, the forecasts are remarkably improved after assimilating the nacelle wind data
(Case2) or using the Kalman filer (Case3). The largest improvement is found when the two
techniques are combined (Case4). It seems that the role of the Kalman filter is more dominated
as the difference between Case3 and Case4 is much smaller than that between Casel and
Case2, while DA becomes more important in rare or extreme weather conditions.

IV. SUMMARY

We have developed a practical forecasting system for surface wind and power output by
integrating data assimilation and Kalman filter into the WRF model. Both data assimilation and
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Kalman filter modules make use the nacelle wind data which is routinely available, so the sys-
tem can be easily adopted in different wind farm sites for operational use. Due to the complex
topographic features, the surface wind field in Japan region is significantly fluctuating and more
difficult to predict, the present system employs data assimilation and Kalman filter to eliminate
the uncertainties from two aspects, i.e., the data assimilation improves the accuracy in initial
conditions and Kalman filter provides a posterior correction to the raw model output, and thus
can be expected as a promising tool in real-case operations.

The system has been validated using the data of a wind farm in Awaji Island, Japan. The
wind speed forecasts at hub-height have been substantially improved by data assimilation to
refine the initial wind field for WRF model, i.e., the ME and RMSE errors in WRF prediction
were reduced by 34.3% and 23.9%, respectively, while IA has been improved by 8.8% due to
the DA technique. On the other hand, the Kalman filter, as a post-processing method, is able to
provide more reliable wind forecasts with a short training period (15-day in this study). By
using both Kalman filter and nacelle wind data assimilation, the raw forecasts can be further
improved. Detailed evaluation indicates that the role of the Kalman filter is more dominant for
the wind band of rated out speeds, while data assimilation becomes more important in rare or
extreme weather conditions.
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The rapid development of wind energy in Japan and the associated high
uncertainties and fluctuations in power generation present a big challenge for both
wind power generators and electric grids. Accurate and reliable wind power
predictions are necessary to optimize the integration of wind power into existing
electrical systems. In this study, a hybrid forecasting system of wind power
generation was developed by integrating the Kalman filter (KF) with the high
resolution Weather Research and Forecasting (WRF) model as well as an empirical
formula of wind power output (power curve). The system has been validated with
observations including wind speed and power output over a six-month period for
15 turbine sites at a wind farm in Awaji-island, Japan. The results show that the
tuned WRF model is able to provide hub-height wind speed prediction for the
target area with reliability to some extent. The predicted wind field can be substan-
tially improved by the Kalman filter as a post-processing procedure. The 15-turbine
averaged improvements of mean error, root mean square error, and correlation
coefficient are 97%, 22%, and 10%, respectively. Meanwhile, the Kalman filter
also demonstrates a promising capability of reducing the uncertainties in the power
curve model. Systematic validations regarding both wind speed and power output
were carried out against the observations for the target wind farm, which show that
the hybrid power forecasting system presented in this paper can be an effective and
practical tool for short-term predictions of wind speed and power output in Japan
area. © 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940208]

1. INTRODUCTION

The recent assessments of the World Energy Council have reported the difficulties that
Japan is facing in lieu of the shortage of energy caused by the complete shutdown of nuclear
plants after the Fukushima accident.! In order to compensate for the loss of the nuclear power
generation, extra fossil resources are currently imported, which has led to the rise of electricity
cost and to an increase of the fossil fuel emissions. As an alternative to the traditional fossil-
energy resources, renewable energy has been the focus of recent developments as a long-term
and sustainable solution. In particular, wind energy has shown tremendous potential in terms of
economic and environmental effects.

Global wind energy capacity has been doubling nearly every three and a half years since
1990, due to its clean, renewable, and sustainable characteristics. However, wind makes up
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only 0.44% of the total power supply in Japan® where the development of wind energy is
limited by a number of factors, such as complex geographic features, high population density,
and the government policy.” Among them, the topographical complexity may be an important
reason that complicates wind flow, and thus causes greater fluctuation in power output, which
makes the integration of wind power into the electric power grids more challenging than for
other regions. An effective solution to stabilize the wind power output is to make use of supple-
mentary electric sources/sinks through active operations before delivering the power to the grid
systems. In order to optimize the operation plan, accurate predictions of both the wind speed
and wind power for the targeted turbines and wind farms are of crucial importance.”*

A number of studies have proposed several methods and models to predict wind speed,
which can be grouped into two broad categories:” statistical and physical. Statistical approaches
explore relationships between future and current state (observed data), and include techniques as
artificial neural network®’ and auto-regressive moving average.® They can provide accurate wind
speed forecasts over short time scales with limited computational requirements. However, the
forecasting skill of these techniques degrades quickly with increasing forecasting lead time.’
Physical-based models, often based on numerical weather prediction (NWP), on the other hand
do not have this drawback. NWP models project the real atmosphere state based on an approxi-
mation of known physical laws, and result in more accurate and reliable estimates for longer time
horizons (from hours to several days). Different limited-area NWP models, such as Weather
Research and Forecasting (WRF), Regional Atmospheric Modeling System (RAMS), and Fifth-
Generation Penn State/NCAR Mesoscale Model (MMS5), have been used for wind energy resource
assessment by various researchers.'™'! However, to a large extent the wind forecasts derived
from NWP models are affected by errors stemming from uncertainties in initial/boundary condi-
tions, simplifications in physics, and numerical approximations.'? Great efforts have been devoted
to reduce these uncertainties by improving data quality'® and developing more accurate numerical
models with improved dynamic cores and more sophisticated physical parameterizations.'* '3

Although efforts to improve NWP models have led to substantial progress in the accuracy
of deterministic predictions, it cannot be expected to eliminate all uncertainties in real-case
applications, which result in deviations between the NWP output and the real atmospheric state.
An effective way to reduce the uncertainties of the NWP models is by implementing post-
processing methods to revise or correct the NWP model outputs based on their past performan-
ces. Typical and widely used post-processing methods include Model Output Statistics (MOS)'®
and Kalman Filter (KF).'”"'” The Kalman filter is a popular algorithm due to the simplicity of
the algorithm, the moderate computational costs, and the short training period required. It has
been applied successfully for wind energy modeling to produce more accurate predictions. The
works by Louka ef al.?® and Al-Hamadi and Soliman®' clearly demonstrated that the forecasting
errors of both wind power and electric load can be effectively reduced with the Kalman filter.
They have shown that combining NWP models and statistical post-processing into a tuned pre-
diction system can further improve wind speed and power forecasts. Unfortunately, to the best
knowledge of the authors, there is no report in literature on any practice to establish such a pre-
diction system for wind farm sites in Japan.

The purpose of this study is to develop a wind power prediction system for the Awaji-
island wind farm in Japan as an effort to facilitate the short-term wind power forecast in Japan
area. The system is mainly based on the high resolution WRF model and the Kalman filter. The
power curve model adopted in this system is constructed based on a polynomial fit technique
using the historical data of the observed wind speed at hub-height and power output. We first
evaluate the forecasting ability of the WRF and power curve model separately as the basic
components of the hybrid prediction system, to show that they are able to provide reasonably
reliable forecasting results in the target site which has complex geographic environment very
typical in Japan. Then the forecasting skill of the hybrid system has been further improved by
implementing the Kalman filter to the WRF model and the power curve model. The capability
of the system for predicting the real-case wind power outputs in the target farm has been vali-
dated over a four-month period.
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The rest of the paper is organized as follows: the details of datasets and methodology are
described in Section II. Section III mainly analyzes the performance of the hybrid approach for
the predictions of wind speed and power. The paper ends with concluding remarks in Section IV.

1l. DATA AND METHODOLOGY
A. Global forecast system (GFS) data and observations

Six-month (2013/08/01-2014/01/31) GFS forecasting products from the National Center for
Environmental Prediction (NCEP) were used as the initial and boundary conditions for the
WRF model with a 6-h interval. The horizontal resolution of all variables is 1.0 x 1.0 deg, with
27 levels ranging from 1000 to 10 hPa.

The anemometers which are placed on the top of the nacelle behind the rotor are used for
collection of the wind data. The effects of the rotating blades and nacelle on the observed wind
can be taken into account by adjusting the relationship between the nacelle-based observations
and the measurements from the upwind meteorological tower.”* This would increase the cost
and is not widely adopted in practice. Alternatively, the study in Ref. 23 suggests that the
nacelle-based wind speed observation is a more reliable estimation to the target turbine site
than the measurement obtained from the meteorological tower with a distance away. Therefore,
in this study, the nacelle-based wind speed from 15 turbines (see in Figure 1) at hub-height
(80m above ground) is utilized to validate the performance of the WRF model for the predic-
tion of hub-height wind speed at the wind farm in Awaji island, Japan. In addition, observations
of power output are also used to evaluate the reliability of the power prediction proposed in
this study. Both wind speed and power observational data are available every 10 min for the
six-month period from 1 August 2013 to 31 January 2014.

B. WRF model configurations

The meteorological model adopted in this work is the Advanced Research WRF (ARW) model
version 3.6 (WRFv3.6 hereafter), which is based on a fully compressible and non-hydrostatic
dynamic core.”* The WRFv3.6 is a limited-area mesoscale model, with a terrain-following
hydrostatic-pressure vertical coordinate, designed for operational forecasting as well as research.
The WRFv3.6 used in this study is the latest available version of WRF model which has been

34.32N
34.30N[
Q
34.28N L
134.65E 134.69E

FIG. 1. The network of observational sites for wind speed at Awaji island wind farm. Contours stand for the terrain
elevation.
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continuously developed by a broad community of researchers across the world. Nevertheless, to
our knowledge there are very limited studies of WRF model for the applications of wind power
forecasting in Japan.

In this study, the domain configuration of WRFv3.6 which follows the steps recommended
by Warner et al.??® includes a parent domain (DO1) and three nested domains (D02, D03, and
DO04) (Figure 2) with one-way interaction. The D01 is centered at 34.65°N and 134.635°E with
a 75 x 73 mesh of 48 km resolution. The horizontal resolution of D02, D03, and D04 are 12 km
(97 x 97 grid points), 3km (101 x 109 grid points), and 1km (103 x 109 grid points), respec-
tively. The model top is located at S0hPa and there are 35 vertical stretched eta levels, 10 of
which are within the lowest 1km. Initial and boundary conditions are all given by the GFS
dataset and no data assimilation or grid nudging was used in this study. The geographical data
for the land use and topography are obtained from the U.S. Geological Survey datasets and
have resolutions of 5arc min for the parent domain, 2arc min for D02, and 30arc s (about
925m x 925m) for the nested D03 and DO04. It should be noted that the aforementioned model
configuration allows the system to run operationally on workstations for routine real-case use.

The main physical options adopted include the WRF Single-Moment 6-class (WSM6)
microphysics parameterization,”’ the Rapid Radiative Transfer Model (RRTM) scheme®® for
long-wave radiation with Dudhia’s scheme?’ for shortwave radiation, the Kain-Fritsch convec-
tive parameterization,’® and the Noah land surface model (LSM).*' The specific information of
the planetary boundary layer (PBL) scheme we selected is discussed in Section III D.

The model prediction period is from 1 August to 31 January 2014 and the numerical results
are output at a 1 h interval. We re-initialize WRFv3.6 as a “cold-start” at 18:00 UTC each day
and each re-initialization runs for 30 h. Due to the cold start, there is typically a spin-up time
period of 6-h as recommended by Wang er al.>* before the model turns to a stable state.
Therefore, the forecasts during the initial 6 h of each run are excluded from the forecasting
data series used to compute the performance metrics.

C. The Kalman filter algorithm and 7-day running mean method

1. The Kalman filter algorithm

The Kalman filter is an estimation algorithm that operates recursively on streams of input
data (containing random variations) to produce a statistically optimal estimate of the underlying
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FIG. 2. WRF domains and model topography: (a) DO1, (b) D02, (c) D03, and (d) D04 are indicated by black frames. The
detailed terrain height (shaded with the gray bar in meter) of the D04 is shown in the panel (d).
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system state. It is widely used in various fields from radar and computer vision to meteorologi-
cal applications due to its adaptive, recursive, and optimal characteristics. The specific set of
mathematical equations can be found in Refs. 17, 19, and 32.

The implementation of the Kalman filter can be divided into two main steps: one is “time
update,” aiming to project forward the bias of the current state to estimate the forecasting bias
at the next time step; the other part is a “measurement update,” namely, incorporating a new
observation into the previous estimation to obtain a corrected estimate of the forecasting bias.

In general, the forecasting bias between the forecasts and measurements of a variable at
time ¢ is related to the state at previous time ¢t — ¢

Xele—or = X—odi—20t + Ni—or> (1

where x; is the true forecasting bias at time ¢, J¢ is a time lag, x,_s is the priori state estimate
at time 7, 17 is the white noise that has zero-mean, and the variance (0,1 /) 1s uncorrected in time.
Although the real forecasting bias is unknown, it has certain relationships with the forecasting
errors (also called measurement bias) y,. That is, the forecasting errors consist of the forecasting
bias and a random error ¢,

Ve =X+ € = X5 TN T &, (2)

where ¢, is normally distributed with zero-mean and variance ¢?,. The source of random errors
€¢; comes mainly from uncertainties and errors in numerical models, as well as inaccuracy in ini-
tial and boundary conditions.

The Kalman filter gives the recursive estimation of the unknown forecasting bias x, based
on the bias estimation at previous time and the historical forecasting errors y

-)2[+(5t|t = Xz\rfét + Ki(yr — )21\175[); 3)

where the hat (") notation indicates the estimation of the variable. K, is the Kalman gain, which
is recursively calculated as follows:

K, Pt @)
Di-or T 03,3, + Uz}, ’
where p is the expected mean square error
pi= (st o,,)(1 —K). 5)

Given a reasonable initial guess of py and K, as well as the model forecast M, and obser-
vation time series, the Kalman Filter can recursively generate an estimate of forecast bias x at
t + ot through Egs. (1)—(5). Then, the model forecast can be corrected as follows:

Mkf!+m = Mt+(5t - XH_()'[‘,. (6)

It is worthwhile to note that the calculation of white noise ‘7;7; and a is crucial to the
implementation of Kalman filter procedure. According to Refs. 19 and 33, (7 1s a time-varying
quantity Wthh can be calculated with the Kalman algorithm itself using Eqs (3)—(5). The esti-

mation of 6,1 , is derived from the estimation of GEJ with a ratio r
ol =ro’,. @)

The ratio r is a parameter reflecting the relative weighting of observation and forecasts. As r is
somewhat sensitive to different models and predicted variables, several tests have been carried
out to find the best values of r=0.6 for wind speed and r=0.15 for wind power forecasting,
respectively, in present study.
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2. 7-day running mean method

Stensrud and Skindlov®* showed that a simple bias correction method using the previous 7-
day mean bias correction can improve the direct model forecast of maximum temperature. This
method is easy to implement, and meanwhile has the ability of improving the raw predictions.
Therefore, it is chosen as a reference to validate the performance of Kalman filter algorithm for
correcting the raw prediction of wind speed in this study.

D. Power curve model

From the fluid mechanical definition, the power output P of a wind turbine is a non-linear
function of the wind speed and can be expressed as follows:

P= % LPAU?, ®)
where P is the power, C,, is the turbine coefficient of performance, and p is the air density which
depends on air pressure and temperature. A is the swept area of a turbine blade and v represents
the wind speed at the turbine site. The theoretical power curve of turbine No. 3, which is a
2.5MW horizontal-axis wind turbine (HAWT) with three blades, is shown in Figure 3 (black
line and points). In Figure 3, the blue points represent the observed electrical power output
obtained for turbine No. 3 measured from routine operation. It is easily found that although
the overall trend shows an agreement with the theoretical manufacture power curve, there are
remarkable uncertainties and deviations from it. This is not surprising considering that there are
still other factors that affect the power output, such as the unresolvable sub-scale fluctuations,
wake effects, wind direction, as well as operation control.”> Consequently, the manufacturer
power curve cannot be directly used to predict wind power in real cases, and the approach fol-
lowed in this study is to build the empirical power model for each turbine based on 2-month
(from 1 August 2013 to 30 September 2013 with a 10-min interval) observed wind speed and
power data using a polynomial fit technique. The empirical power curve is expressed by

P’ :a10010+09U9+-'~+a10+a0, ©))

where v is the wind speed, P’ is the prediction of wind power, and ag,ay, - - -,a;o are the coeffi-
cients separately generated for different turbines. The empirical power curve of No. 3 turbine is
plotted in Figure 3 (red circles), which looks noticeably different from the manufacturer power
curve. It is also seen that there is an uncertainty between the observed wind speed and power

30007 Wind Power Curve
black- Theoretical Value

blue- Observation
red- Polyfit Value

25001
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Power (Kw)

1000r
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FIG. 3. The theoretical (black line and points), observed (blue point), and the tenth-order polynomial (red point) wind
power curve of No. 3 turbine.
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output, which might be attributed to other factors, such as variations of wind direction, air tem-
perature, as well as the effects of mechanical and operation control systems. Our main interest in
this study is to generate a power output prediction system as a function of wind speed.

E. System overview

We summarize the hybrid wind power prediction system described in Figure 4. The numer-
ical procedure mainly involves two steps, i.e., the surface wind prediction from the WRF model
and the post-processing of Kalman filter.

Given the large scale forecasting data and topographic information, the wind held predic-
tion over the target wind farm can be derived from the WRF model forecasts. After considering
the local geographic information, the forecasts of wind speed at hub height can be obtained by
linearly interpolating the WRF model outputs from the two nearest levels. The Kalman filter is
then generated based on the observations of wind speed and power output at the turbine sites,
which is used to correct the systematic bias and uncertainties in both WRFv3.6 and power
curve models, and thus to obtain an optimal prediction of power production.

Ill. RESULTS AND DISCUSSION

The statistical parameters introduced in Section III A will be used to evaluate the perform-
ance of the predicting system described in Sec. II. We have tuned the WRF model for the sur-
face wind prediction in the target region via a set of sensitivity tests of PBL parameterization
schemes in Section III B. The overall forecasting skill of WRFv3.6 model for predicting wind
speed is verified in Section III C. Finally, the performance of Kalman filtered wind speed and
power prediction is discussed in Section IIID.

A. Verification metrics

Evaluation of the forecasting skills of the proposed model is conducted quantitatively with
various statistical verification metrics. In this study, the mean error (ME), root mean square
error (RMSE), and the Pearson product-moment correlation coefficient (CC) are adopted, which
are defined, respectively, as follows:

Global Model Data &
High Resolution Terrain

Numerical Weather Prediction
WRFv3.6 model

1

NWP Model Output ,
downscaled wind speed forecasts |

1
Observed Wind Speed

Wind Field Interpolation
from WRF output to target point
Kalman Filter
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1
FIG. 4. A schematic diagram of the hybrid wind power forecasting system.
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N

1
ME = N;(fore,» — obs;), (10)
N 2
> (fore; — obs;)
RMSE = \| =2 : (11)

N

(foref —]W) (Obsi - %)

M=

Il
-

CC=

(fore,- —]W)z (obs,- — %)2

i=1 i=1

M=

where i presents time point, N is the total number of verification time points, and fore and obs
are the predicted and observed values, respectively. In Eq. (12), the bar denotes the mean of
the corresponding variable.

B. Sensitivity experiments of PBL schemes

The PBL is the lowest part of the atmosphere in which turbulent motions dominate the
atmospheric flow. In atmospheric models, the turbulent effects are taken into account by PBL
parameterizations. The current WRFv3.6 model has 12 PBL schemes that might exhibit differ-
ent performances even for the same simulation region.’®*’ Therefore, prior to applying the
WRFv3.6 model to the target wind farm, it is worthwhile to examine the prediction skills of
different PBL schemes for the low-level wind field. To this end, the sensitivity of five PBL
schemes, i.e., the Quasi-Normal Scale Elimination (QNSE),*® the Asymmetric Convective
Model version 2 (ACM2),* the Mellor-Yamada-Janjic (MYJ),*® the Mellor-Yamada-Nakanishi-
Niino (MYNN),41 and the Yonsei University Scheme (YSU),42 is tested over 15-day (from 1
October to 15 October 2013) for predictions of wind speed. The setup of the numerical experi-
ments for this inter-comparison of PBL schemes is summarized in Table 1.

Figure 5(a) illustrates the predicted diurnal variations of the predicted wind speed of No. 3
turbine at 80 m from the five sets of experiments with different PBL parameterization schemes,
referred to as QNSE, ACM2, MYJ, MYNN, and YSU, and the corresponding observations. All
the experimental runs capture the wind speed variations well and the sensitivity of PBL
schemes is more apparent in period 09:00-23:00 UTC than in period 00:00-08:00 UTC.
The forecasts from all experiments overestimate the wind speed during the whole period. The
largest bias (0.94 ms ', shown in the third row of Table II) at No. 3 turbine site is observed in
the QNSE experiment, while the smallest bias (0.63 ms~!) is seen in the ACM2 prediction. The
RMSE:s also indicate that the performances of the ACM2, MYJ, MYNN, and YSU schemes are
better than that of the QNSE scheme, and ACM2 has the smallest RMSE of 0.87 ms .

The correlation and normalized standard deviation (NSD) of each experiment are calculated
and summarized in a Taylor diagram,*> which provides a synthetically visual comparison in terms
of centered RMSE, correlation, and NSD. From Figure 5(b), although the NSD difference among

TABLE 1. The five sets of numerical experiments for the inter-comparison of PBL schemes.

Experiment PBL scheme Land surface model Surface-layer scheme
QNSE Quasi-normal scale elimination Unified Noah LSM QNSE
ACM2 Asymmetric convective model Pleim-Xu Pleim-Xu

MY]J Mellor-Yamada-Janjic Unified Noah LSM Eta similarity
MYNN Mellor-Yamada-Nakanishi-Niino Unified Noah LSM MYNN

YSU Yonsei University Scheme Unified Noah LSM Monin Obukhov
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FIG. 5. Comparisons of observations and forecasts of five sensitivity experiments shown in Table I at No. 3 turbine site. (a)
The diurnal variation of 15-day (1-15 October 2013) averaged wind speed at hub-height. The black line depicts the series
corresponding to the observations, whereas the colored lines correspond to the forecasts with different experimental setups.
(b) Taylor diagram shows normalized standard derivation and correlation of wind speed at hub-height for five experiments
referred to observation (REF). The number of samples is 360 (1 h interval from 1 October to 15 October 2013).

five experiments is probably not significant, advantage of ACM?2 is still observed. Moreover,
regarding both NSD and correlation, the ACM2 prediction is the one closest to the observations.
Thus, the ACM2 scheme is chosen as the optimum PBL scheme for the prediction of wind speed
at the wind farm site of interest. We further substantiated this conclusion by examining the values
of ME and RMSE for other two turbines, i.e., No. 7 and No. 14 in Table II, which show that the
ACM2 scheme gives the best forecast for the local wind field of the target area.

C. Overall performance of WRFv3.6 model

Although the performance of WRFv3.6 does not appear highly sensitive to the PBL
schemes tested, the results of the experiments above partly demonstrate that the configuration
including the ACM2 PBL scheme with Pleim-Xu land surface model and Pleim-Xu surface-
layer scheme works best for the wind speed prediction at the wind farm site analyzed in this
study. With this configuration of the WRFv3.6 model, a six-month time series (i.e., from 00:00
UTC 2 August 2013 to 23:00 UTC 31 January 2014) of the low-level wind speed prediction
was generated following the procedure described in Section IIB. In this section, No. 3 turbine
is first chosen as an example to show that the WRFv3.6 model is able to predict the wind speed
at hub-height for the target area with reasonably good accuracy. The conclusion is then con-
firmed by the consistent results obtained from other 14 turbines.

Figure 6 shows the comparison between predicted (black), observed (red), and bias (green)
of wind speed at No. 3 turbine site during the period from 00:00 UTC 2 August 2013 to 23:00
UTC 31 January 2014. The green dotted curve which lies close to the zero reference line
reveals that the predicted raw wind speed reproduces the observation with good accuracy.

TABLE II. Error statistics of diurnal variation between WRFv3.6 forecasts and observations of wind speed at hub-height
for different experiments. The verification metrics are computed over the 1-15 October 2013 period at No. 3, No. 7, and
No. 14 wind turbine sites. The smallest values of ME and RMSE for each turbine are in boldface.

Experiment QNSE ACM2 MY]J MYNN YSU
Errors

Turbine ME RMSE ME RMSE ME RMSE ME RMSE ME RMSE

No. 3 0.94 1.16 0.63 0.87 0.75 0.99 0.90 1.13 0.88 1.09

No. 7 0.58 0.98 0.20 0.79 0.39 0.88 0.53 0.96 0.55 0.93

No. 14 1.42 1.68 1.08 1.30 1.21 1.49 1.33 1.62 1.38 1.60
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FIG. 6. Six-month series of the predicted raw (black) and observed (red) wind speed (ms ") at hub-height and bias (green)
of No. 3 turbine. Panels from (a) to (f) stand for August, September, October, November, December 2013, and January
2014, respectively.

Although there are occasional large errors, in general the predicted wind speed coincides well
with the observation through all six months. Similar conclusions characterized by small value
of ME (<1.23) and RMSE (<2.84), as well as relatively large value of CC (>0.62) can be
drawn from the statistics listed in Table III (column 5).

Table IIT also exhibits error statistics for other 14 turbines to ensure that the reasonable
prediction for No. 3 turbine is not a success by chance. This table shows that only 3 out of 90
CC are smaller than 0.60, which indicates that the trend of predictions is in good accordance
with observations. For most of turbines, the ME varies from —1.45 ms ™' to 2.00 msfl, and the
smallest ME (0.03ms ™) is found in December for No. 1 turbine. All predictions overestimate
the wind speed. Except for a few large values (bold in Table III), the RMSE retains a relatively
small value and does not change much through the six months for all turbines. All these results
substantiate that the WRFv3.6 model has reasonably good forecasting skill in predicting low-
level wind speed for the Awaji-island wind farm. However, the relatively large variation in
MEs and RMSEs still shows the possibility to further improve the prediction of wind speed by
using the Kalman filter as a post-processing approach.

D. Kalman filtered prediction

The Kalman filter procedure is applied independently to every prediction lead time. For
instance, WRFv3.6 raw predictions at 00:00 UTC are revised by the Kalman filter that is
updated by using the predictions and observations at the same time on the previous days
(dt =24 h). The first 60 days (August and September) are chosen as a training period for imple-
menting the Kalman filter. The following discussions are all based on the statistic metrics com-
puted over the 4-month prediction period (from October 2013 to January 2014).
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TABLE III. The monthly ME, RMSE, and CC calculated with the predictions and corresponding observations of wind
speed at hub-height of 15 turbines. The values of ME > 2.00, RMSE > 3.50, and CC < 0.60 are bold.

Month Statistics No. 1 No. 2 No. 3 No. 4 No.5 No. 6 No. 7 No. 8 No. 9 No. 10 No.11 No. 12 No. 13 No. 14 No. 15

August ME 089 1.39 051 1.06 1.05 —1.45 1.00 094 1.89 1.07 1.15 124 128 131 0.54
RMSE 243 251 235 237 276 320 278 283 3.06 290 254 284 245 260 253
CC 0.70 0.62 0.71 0.68 0.68 0.54 0.66 0.68 0.64 0.67 0.61 0.65 0.67 0.70 0.73
September ME  0.68 0.82 0.25 0.66 0.24 1.19 046 0.80 1.05 1.11 1.04 072 0.70 0.76 0.49
RMSE 270 276 2.63 291 290 272 293 270 277 284 268 271 270 277 248
CcC 071 0.72 0.73 0.58 0.68 0.67 0.68 0.70 0.69 0.72 0.73 0.73 0.70 0.68 0.52
October ME 1.10 091 123 143 093 171 137 1.68 197 236 217 135 134 201 138
RMSE 2.83 291 2.84 3.14 283 3.12 3.11 333 277 3.72 390 345 3.02 359 328
CC 0.72 071 0.74 0.67 0.74 0.68 0.67 0.65 0.74 0.63 0.60 0.75 0.72 0.63 0.66
November ME 0.54 0.68 0.62 0.79 1.01 127 035 099 1.14 128 1.12 092 0.89 1.04 045
RMSE 275 2.67 274 242 2.64 2.65 222 251 252 260 260 234 254 247 241
CC 0.70 0.74 0.68 0.78 0.75 0.78 0.81 0.78 0.79 0.77 085 080 0.78 0.80 0.78
December ME  0.03 047 087 0.79 128 1.78 0.77 1.05 142 124 116 106 1.15 145 0288
RMSE 2.59 259 267 251 2.65 3.54 257 286 3.05 3.02 298 280 279 3.17 3.03
cC 072 073 0.72 0.75 0.75 0.66 0.75 0.70 0.68 0.70 0.70 0.70 0.72 0.71 0.74
January ME 034 0.61 0.84 080 089 1.63 123 1.14 137 160 147 105 1.14 153 0.71
RMSE 249 245 258 234 244 277 258 257 275 274 274 254 258 282 252
CcC 072 0.71 0.66 0.74 0.70 0.70 0.69 0.72 0.69 0.70 0.72 0.76 0.70 0.70 0.71

Sections IIID.1 and IIID.2 present and discuss the improvement of the Kalman filter pre-
dictions for both wind speed and power in terms of the error quantifications, such as ME,
RMSE, and CC. Additionally, the results of the 7-day running mean (7-day hereafter) method
are also included for comparison.

1. Wind speed

A comparison of the 7-day method and the Kalman filter to correct the WRF prediction is
depicted in Figure 7. It presents hourly model raw forecasts (black line) and observed wind
speed at 80-m of No. 3 turbine (red line) as well as the corrected predictions using the Kalman
filter (blue line) and 7-day method (green line) for the 10-day period, from 00:00 UTC 14 to
23:00 UTC 23 October 2013. Again, the WRFv3.6 model demonstrates the capability of pre-
dicting the local wind speed. Moreover, both the Kalman filter and 7-day method are able to
significantly improve the raw prediction of the WRF model; particularly, the systematic bias
has been largely reduced.

30 T T T T T

n

o
T

38

20
1

n
o

Wind speed (m/s)
s o

[8)]

40 80 120 160 200 240
Time (hour)

FIG. 7. Hourly WRFv3.6 model raw forecasts (black) and corresponding observations (red) of wind speed at hub-height of
No. 3 turbine for the 10-day period from 00:00 UTC 14 October to 23:00 UTC 23 October 2013. The blue and green line
present the predictions corrected by the Kalman filter and 7-day method, respectively.



013302-12 Che et al. J. Renewable Sustainable Energy 8, 013302 (2016)

TABLE 1IV. Averaged ME, RMSE, and CC of No. 3 turbine over a 10-day period of 00:00 UTC 14-23:00 UTC 23
October, 2013.

Statistic quantity ME RMSE CC (%)
Approach

Predicted variable Raw KF 7-day Raw KF 7-day Raw KF 7-day

Wind speed (ms ") 1.79 —0.02 0.05 2.97 1.58 2.62 69.21 85.42 71.11

Wind power (kW) 371.19 —62.43 — 762.94 443.27 — 64.26 75.53 —

When comparing the correction results of Kalman filter and the 7-day method, we see the
remarkable advantage of the Kalman filter in reducing the forecasting errors. This advantage is
further illustrated by the statistic parameters in Table IV. Compared to the 7-day method, the
Kalman filter shows much smaller RMSE and larger CC. This may be due in part to the fact
that the current Kalman filter can not only correct the systematical error but also part of sto-
chastic uncertainties, while the 7-day method has an effect barely on the systematic bias.

The ME, RMSE, and CC of the Kalman filter and 7-day method predictions with respect to
the raw WRFv3.6 prediction are shown in Figure 8 for the total 15 turbines in the Awaji-island
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FIG. 8. A comparison of the ME (a), RMSE (b), and CC (c) for wind speed at hub-height of the Kalman filter (solid gray
bar) and 7-day method (solid white bar) predictions with respect to the raw WRFv3.6 prediction (solid black bar) for the 15
turbines of the Awaji-island wind farm. The marked lines stand for the relative improvement of the Kalman filter (red) and
7-day method (blue) against the raw forecasts of WRFv3.6 model.



013302-13 Che et al. J. Renewable Sustainable Energy 8, 013302 (2016)

wind farm. From Figure 8(a), it can be seen that most of the ME of raw forecast range from
0.28ms ™' to 1.54ms ™. Although the ME looks different for each turbine, both the Kalman fil-
ter and 7-day method can largely alleviate the systematic error tendency in the raw forecast of
the wind speed. The reduction of ME from the Kalman filter correction ranges from 92% to
99%, while that of the 7-day method ranges from 74% to 96%. The comparison of RMSE is
given in Figure 8(b). As expected, the Kalman filter reduces the 15-turbine mean RMSE by
22% which is much more significant compared to that of 7-day method (4%). Consistent to
RMSE, the CC displayed in Figure 8(c) further demonstrates that the Kalman filter algorithm is
superior than the 7-day method in improving wind speed forecast.

From the validations discussed above, we may conclude that (1) the raw forecasts of
WRFv3.6 model with a tuned PBL package are able to produce reasonably good prediction for
the wind speed at the hub height in Awaji-island wind farm site which is characterized by com-
plex topography, and (2) the Kalman filter, as a better post-processing method against 7-day
method, can significantly improve the forecasting skill for the surface wind at the target turbine
site considered in this study.

2. Wind power

In this section, the power curve model described in Section II D is first tested with the data-
set of No. 3 turbine over a 10-day period from 00:00 UTC 14 to 23:00 UTC 23, 2013. Then
the Kalman filtered wind speed is used as an input of the power curve model to investigate
whether improvement can be seen in the power output by using the corrected wind speed. The
results are concluded in Table IV and Figure 9.

Figure 9 shows a 10-day example for comparing the performances of raw forecast and the
Kalman filter prediction of wind power. The Kalman filter significantly improves the power out-
put prediction. The systematic overestimation of the raw wind power forecasts is consistently
reduced during the whole period. From Table IV, it can be seen that the power output from the
raw wind forecast is overestimated with an ME of 371.19kW, which has been effectively
reduced down to —62.43kW by using the Kalman filtered wind speed. Other two statistic quan-
tities, RMSE and CC, show consistent results revealing that the Kalman filtered wind field
effectively improves the power prediction. These results also indicate that given reliable wind
prediction the power curve model constructed from the historic data provides reasonable projec-
tion for wind power.

Furthermore, three-month datasets (November, December 2013, and January 2014) of the
total 15 turbines were used to validate the performance of Kalman filter in predicting the power
output for the whole farm site. Figure 10 shows ME, RMSE, and CC of the power predictions
with both raw wind speed and the Kalman filter corrected wind speed as the input of the power
curve model for each turbine. It is found that the Kalman filter predictions (Figure 10(a))
improved the power output predictions for all turbines. We also show the relative improvement
for each case (the right vertical axis in percentage), which reveals that the improvement brought
by the Kalman filter to each turbine is different from one another. The relative improvement in
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FIG. 9. A comparison of the raw wind power forecast (black) and the Kalman filter corrected prediction (blue) against the
observed power output (red) for No. 3 turbine over the period from 00:00 UTC 14 to 23:00 UTC 23 October 2013.
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FIG. 10. A comparison of the ME (a), RMSE (b), and CC (c) of the Kalman filter (solid white bar) and the raw power fore-
casts (solid black bar) for the 15 turbines of the Awaji-island wind farm. The red line stands for the relative improvement
of the Kalman filter against the raw forecasts of the power curve model.

ME varies from 44% to 97% with an average of 83%. As shown in Figure 10(b), the RMSE of
the power forecasts for all 15 turbines is largely reduced by Kalman filter, with No. 13 being
the best, having the value of relative improvement over 36%. Regarding the CC parameter dis-
played in Figure 10(c), the Kalman filtered wind speed leads to an averaged improvement of
15% for all 15 turbines.

From all results shown above, it can be concluded that the accuracy of power output pre-
diction can be significantly improved when the Kalman filtered wind speed is used as the input
of power curve model Eq. (9).

In the power predictions discussed above, the Kalman filter is implemented to reduce the
systematical and random errors in the wind prediction of the WRFv3.6 model, which exhibit sig-
nificant improvement in power prediction. However, uncertainties still remain in the power curve
model as mentioned before. It motivates us to implement the Kalman filter further to reduce the
uncertainties in the power curve. To this end, we carried out four experiments to evaluate the
impact of Kalman filter for both wind speed prediction and power curve model as follows.

» Baseline: We use it as a controlled case, where the raw forecasts of wind speed from the WRF
model are directly used to calculate the power output by Eq. (9). The Kalman filter is not used
to correct either wind speed or power curve model by Eq. (9).

» KF-speed: The Kalman filter is used to correct the wind speed from the WRF model, and the
corrected wind speed is used to calculate the wind power by Eq. (9).

» KF-power: The raw forecast of wind speed of the WRF model is used as the input for the power
curve model by Eq. (9) and the Kalman filter is only applied to the power output.

» KF-speed and power: The Kalman filter is applied to the predictions of both wind speed and the
power curve model.

The results of the four cases are shown in Table V. The larger positive value of ME for
controlled case (baseline) indicates the overestimation of wind power. Having implemented the
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TABLE V. The ME, RMSE, and CC of inter-comparison among four experiments with different configurations of imple-
menting the Kalman filter. Shown are the average results for total 15 turbines.

Case Baseline KF-power Improvement (%) KF-speed Improvement (%) KF-speed & power Improvement (%)
ME (kW) 142.79  —65.52 54 —21.42 85 —-11.27 92
RMSE (kW) 648.43  500.64 23 470.57 27 431.32 33
CC (%) 74.24 76.37 3 84.94 14 85.46 15

Kalman filter, the ME is largely reduced, especially for cases KF-speed, and KF-speed and
power showing 85% and 92% reductions in bias, respectively. Furthermore, case KF-speed and
power has got the most significant reduction in RMSE and improvement in CC. Compared with
the baseline case, the KF-power case demonstrates that the Kalman filter indeed makes signifi-
cant positive impact on error correction of wind power curve model. This conclusion is further
validated by the differences between the case KF-speed, and KF-speed and power presented in
Table V.

IV. SUMMARY

In this study, we have established a hybrid forecasting system for wind power prediction,
based on the mesoscale meteorological model WRFV3.6 and a Kalman filter post-processing
method. The system has been validated for the targeted wind farm in Awaji-island, Japan,
which is characterized by complex topographic features.

The global-scale GFS dataset is adopted as both initial and boundary conditions for
the regional-scale and high resolution WRFV3.6 model through a 4-level nesting refining the
horizontal grid resolution down to 1km x 1km for the target region. The model has been tuned,
and the ACM2 PBL and the corresponding parameterization schemes were chosen for predict-
ing the wind speed at hub height (80 m above ground) in the wind farm site. Compared to the
observed wind speed of 15 turbines in the target wind farm, from 1 August 2013 to 31 January
2014, the WRFV3.6 model shows good performance in forecasting the surface wind field.

The Kalman filter presented in this study is a linear and adaptive algorithm which can min-
imize both the systematical and random errors by recursively combining direct model outputs
with the most updated observations. It demonstrates the ability to improve the ME, RMSE, and
CC in both wind speed and power predictions based on the WRFv3.6 NWP model and the
empirical power curve model. As shown in Table V, Kalman filter significantly improves the
raw model prediction of power by 92%, 33%, and 15% in ME, RMSE, and CC, respectively.
Compared with other post-processing methods, such as MOS and 7-day method, Kalman filter
is able to provide more reliable prediction with a short training period and is more flexible to
adapt to any target prediction with available observation and forecasting model. However, as
other statistical correction methods, Kalman filter has limited ability to predict the sudden
changes in forecasting error.** It should be also noted that extra initial tests are always needed
to successfully implement the Kalman filter presented in this study, since the correction effect
depends on the ratio r ((7%’, / ait) which is somewhat sensitive to different models and predicted
variables.

In spite of these, the wind power forecasting system presented in the paper can be expected
as an effective tool for short-term operational control for both single turbine and whole wind
farm in a target site. Having validated the system as a hybrid wind power forecasting system of
practical significance for the Awaji-island wind farm site, we are planning to adopt it to other
wind farm sites in Japan.

The present research has shown the promising performance of the proposed hybrid model
for wind power prediction under complex topographic conditions which feature almost all land-
based wind farms in Japan. It also indicates some new directions worthy of further investiga-
tions, for example, a computational fluid dynamic model with finer grid resolution coupled with



013302-16 Che et al. J. Renewable Sustainable Energy 8, 013302 (2016)

the WRF model to directly resolve the topographic effects on the surface wind field, and more
reliable power curve models that include more factors and are thus able to remove the uncer-
tainties due to the processes not reflected in the current model.
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©.2 Technical blueprint on small scale wind turbine
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2, Technical blueprint on large scale wind turbine

T 2 2014 ~ 2016 o 20172018 >

Load measurement
on the tower

Tool development
and validation

Development of

Fault Diagnosis Real-time CMS
Defect Detection of

blades Mobile detection device
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Testing and Verification Platform
of INER 25kW and 150kW wind turbines-1/7

B Development path of 25kW wind turbine

N
> 2005-2006 > > 2007-2010 > 20112012 > > 2013-now |
25kW-1st || 25kW-2nd | | Modified 25 kW-2nd | | Testine and Verificaion
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Testing and

1EC 61400-1

Blade

Verification Platform

of INER 25kW and 150kW wind turbines-2/7
E 25kW specification

IEC Standard
IEC 61400-1: Design requirements

IEC class Class-IA . "
Bt 0 [ IEC 61400-2: Design requirements for small wind turbines
number [ IEC 61400-12-1: Power performance measurements of
Turbine type Up-—wind electricity producing wind turbines
Rated output power 25 kW [ IEC TS 61400-13: Measurement of mechanical loads
. IEC 61400-22: Conformity testing and certification
Hub height 25 -
DUEEs '? = IEC TS 61400-23: Full-scale structural testing of rotor blades
e Ll GL Guideline
Cut-in speed 4 /s . Guideline for the certification of wind turbines (2010)
Rated speed 12 w's CNS 15176
Cut-out speed 22 w/'s
a0
Rated RPN 55-65 RPN T . -
16000 5 maus - .
i « (0 ~ o wpas o ()
Pitch angle control detielom it 10000 — L35 Y s
s
Yaw angle control Active control: +180° 5 1000 :: P o [ ¢
s .
Rotating diameter 12.46m ";7 000, 1= : E. om0 ot )
g 8000 A
U [T . 15 & AL
ANEOMEET (U ) ¥ . ‘.lf
P Wind 2000 T L % L
. B ‘ <' 2000 o X g X & oyt L]
<Em <l ottt ]| IS B R
Gni Generator Gear o 2 4 6 8 ) 0 z 4 & 8 1
di lle(m/: speed@nacelle(m/s)
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Cz(;iém Testing and Verification Platform
of INER 25kW and 150kW wind turbines-3/7

B Development path of 150kW wind turbine

> 2005~2006 > > 2007~2008 > > 2009~2010 > > 2011~2012 > > 2013~2014 >

25KW-1st | | I50kWHAWT -1t | | 150 kWHAWT -2nd |

———
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%iém Testing and Verification Platform

of INER 25kW and 150kW wind turbines-4/7
B 150kW specification

Pitch angle control

Yaw angle control
Rotating diameter

Gear ratio

Electric generator

Standard IEC 61400-1
1EC class Class-IA
Blade number 3
Turbine type Up-wind
Rated output power 150 kW
Hub height 50 m
Tower type Frame
Cut-in speed 3 /s
Rated speed 12 n/s
Cut-out speed 25 n/s
Rated RPM 45~50 RPM

Active control: 5° ~ 85°
Active control: +180°

22.8m
1:20

induction generator
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cgéé- Testing and Verification Platform
of INER 25kW and 150kW wind turbines-5/7

B Measurement and Analysis of Acoustic Noise of 25kW wind turbine

Hz 20 25 31.5 40 50 63 80 100 125 160 200,
dB(A)-Pitch 05| 20.9]  25.3 28.71 31.4] 33.8  36.4 35. 4] 37. 8] 50. 2 37. 7] 43. 2
dB(A)-Pitch 80| 24.9] 23.3 27.4) 34.5 37.7 38.6 41. 6 44. 6 51. 4 47.5 47.3

total dB(A)| 51.79 @Pitch 05 total dB(A)[44.48 @Pitch 80

5 . EPA Noise Regulations in low frequency (20-
> 1EC 61400-11 & ISO 1996-2:2007 Annex D > ZZOOHz and overall noise level >
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cg%- Testing and Verification Platform
of INER 25kW and 150kW wind turbines-6/7

B Measurement and Analysis of Acoustic Noise of 25kW wind turbine
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Testing and Verification Platform
of INER 25kW and 150kW wind turbines-7/7

B An experimental and numerical investigation on the 150kW wind turbine
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Small wind turbine design evaluation

laboratory-1/4
B Path TAF laboratory

0 2005~2008 > - 2008~2009 > - 20092011 > > 20112012 > 20122013 |

ISO 17025 specifies the general requirements for the competence to

carry out tests and/or calibrations, including sampling. It covers
testing and calibration performed using standard methods, non-
standard methods, and laboratory-developed methods.
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Small wind turbine design evaluation

laboratory-2/4

B Voluntary Product Certification(VPC) by BSMI

.CNS 15176-2 (2011,2013rev), -11, -12-1,
CNS 15176-2-1 (2012)

International Certification

: Scheme
§ renewableUs UK BWEA(2008) SWCC, MCS, JSWCC

e AWEA T+ US AWEA9.1(2009 TUV-NEL, DNV, Intertek,

b JSWTA Japan JSWTA(2013) ClassNK....

> |I28 [EC61400-2ed3(2013)

.;' VPC Taiwan /
ﬁffi % [ Governmental Incentive ]
Qigu test site Programs
Penghu test site (MIRDC)
(TERTC)

Institute of Nuclear Energy Research

T

o=

Small wind turbine design evaluation

laboratory-3/4

B TAF laboratory-Small wind turbine design evaluation

¢ Hi-vawt Co.3kW VAWT
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c‘%‘?’ Small wind turbine design evaluation
laboratory-4/4

B Load measurements of blades on VAWT

— Verification of Simple load calculations
— Strain dependence of wind speed and RPM

Poww )

Strain gauge 350Q
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b %
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Strain gauge 350Q
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c‘%‘;’ R/D of 5kW Vertical axis wind turbine-1/3

¥ Joint development -Passive pitch control of VAWT

* Dynamic load analysis
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%(\,% R/D of SkW Vertical axis wind turbine-2/3
N
. . . .
¥ Numerical simulations and DOE design
8 T
BLADE BLADEZONE SYMMETRY 2 [kw) S — ——=—— Blade-1
INLET +—4 + OUTLET ¥ :::,.;‘Ei [E——-e
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Wind energy assessment-WAsP-1/2

B Micro-siting for forecasting wind energy and annual energy productionAEP

B-2 Annual Average Wind Speed at 80 m s I

INER 288600 296000
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Wind energy assessment-WAsP-2/2

7
7
4

%

¥

P
T B0
il /4

ot

225 k) [setected]
"
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i Real-time CMS on 150kW wind turbine

Software _Labview program Hardware _ Vibraticn configure
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B Defect dete_ction of blades

E =

Halogen lamp

Infrared thermography

1E3 = New Blade
16  Used Blade
= “
En
£
L
E
B,
4
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st 2nd
150 kW Blade (1 4)
New Blade 283 772 1729
Institute of | Used Blade 264 ] 1611
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<(Xghesign verification of wind turbine for Taiwan-1/2

B Equivalent Fatigue Load and Rainflow Cycle Counting

Wing

Equivalent Model and Verification 3. _'w

ime Series Wind Input i

£ = T ‘
WL L S
LW Wy T @

-Direction Mom.

k Damped ?scillator

- ZE— Y-Direction Mom.
C ' ==

Base Acceleration

100k Y Direction

. g% | 22
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%%)e&gn verification of wind turbine for Taiwan-2/2

H Design load cases of NREL 5 MW reference wind turbine

Blade root - 10° Blade root
[oicsz] DIC33 | DLE33
3
2000}
Ea DLca2
z
g 1500F % N
3  —
4 [DLC 622 DLC62a | £
£ 1000} ) g
[Dic22 g
@ 1
@
REpower 5M Wind Turbine 5007 s
Gross Properties Chosen for the ine Turbine
Rating 5
Rovor Orieniaton . Con fguraton Upwind 3Eiades 30,000
Control Variable Speed. Collecive Piich
Drivetrain High Speed. Multiple Stage Gearbox 25,000
Rotor Diameter 126m E
Hub Height S0m - 3
Cut-in_ Rated. Cut_-OutWind Speed 3ms 114 mis 25 mis 3 = 20,000
Cut-in Rated Rotor Speed 69pm 121 _rpm Yy g
Rated Tip Speed E0m's g E 15,000
Overhang, Shaft Tilt, Precone 5m 5°%25° b €
Rolor Mass 110000ka | § o
Nacelle Mass 240000k | & 5 10,000
Tower Mass 347460 kg | 3
Coordinate Location of Overall M (02m.0.0m.64.0m) @ 5,000
0
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%' Technology Exchange

B 2016 IEA Wind Task 27 in Taiwan
B Visitor of Mr. Sasaki, ClassNK

B Workshop of small wind turbine *
B Technical course by Prof. Ishihara, Uni. of Tokyo

iea wind

Obstruction of the Wind by a Building
Tres of Helght
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