行政院所屬各機關因公出國人員出國報告書(出國類別:實習)

參加東南亞國家中央銀行研訓中心

「計量模型建構與預測」

基礎課程出國報告

服務機關:中央銀行

姓名職稱:曾虹瑋/四等專員

派赴國家:馬來西亞吉隆坡

出國期間: 106年4月15日至4月22日

報告日期:106 年 7 月

# 目錄

| 壹、 | 前言           | 2  |
|----|--------------|----|
| 貳、 | 建立計量模型之功用與挑戰 | 3  |
| 參、 | 時間序列模型及其估計方法 | 7  |
| 肆、 | 建立預測模型之準則    | 14 |
| 伍、 | 課程重要範例       | 18 |
| 陸、 | 課程心得及建議事項    | 21 |

### 壹、前言

職奉准於民國 106 年 4 月 15 日至 4 月 22 日參加東南亞國家中央銀行研訓中心(SEACEN Centre)於馬來西亞吉隆坡舉辦為期 6 日之「計量模型建構與預測」基礎課程(SEACEN Foundational Course on Economic Modelling and Forecasting)。本次學員來自 11 國共 23 位 3 位課程講師均來自 SEACEN Centre 總體經濟及貨幣政策管理部門;其中,主講者 Dr. Ole Rummel 講述內容更是融合其過去任職英格蘭銀行參與貨幣政策分析的實務經驗,為課程帶來更高的實用性。

本次課程主要目的為訓練學員如何建構實證計量模型,培養量化分析總體經濟及貨幣政策的能力。除講述計量基礎觀念及方法外,全程更搭配計量軟體 Eviews 進行案例演練。課程內容編排上,先介紹計量模型之功用及實務挑戰,再介紹時間序列模型 (time series model)、資料特性處理、一般最小平方法 (ordinary least squares, OLS)、資料平穩性、季節性處理、濾波法及向量自我迴歸模型等常用計量方法,並以此應用於計算產出缺口、估計新凱因斯模型、預測通貨膨脹率等。

本報告第一節為前言,簡介課程內容;第二節為建構實證計量模型之功用與運用限制,以瞭解量化分析雖能提供客觀數據,惟仍牽涉許多主觀判斷;第三節介紹時間序列模型、資料處理、估計及模型選擇方法;建立模型除瞭解現況外,亦提供預測價值,第四節說明預測須注意之通則;第五節挑選課程中數個與央行應用有關之重要案例進行說明;第六節則為心得與建議。

.

<sup>&</sup>lt;sup>1</sup> 馬來西亞(5)、印尼(4)、泰國(3)、柬埔寨(2)、斯里蘭卡(2)、菲律賓(2)、巴布紐新幾內亞(1)、印度(1)、斐濟(1)、孟加拉(1)、台灣(1)。

### 貳、建立計量模型之功用與挑戰

建立計量模型進行實證,有助瞭解影響經濟金融體系運作的重要因素,藉由模型預測及政策模擬,可提供決策者較科學及客觀的分析結果,有利提升決策品質。然而,實務上面臨相當多的挑戰。

### 一、多模型之必然性

基於經濟體運作相當複雜,其真實樣貌及可能面臨的衝擊,均面 臨相當多的不確定性,以不同的模型估計及預測,即可能產生不同的 結果。此外,單一模型通常僅能解決特定的問題,無法完整回應決策 者的需要。因此,先進國家央行常使用多種模型(甚或加權各項模型 結果),以一或兩個模型作為核心模型,並建立衛星模型,提供核心 模型所需之資料。除可考量更多面向外,亦以降低使用單一模型可能 衍生判斷錯誤的風險。

常見的模型類型如下:

- (一)活頁簿 (Spreadsheets): 如 Excel 的活頁簿
- (二)從組模型 (Suite models): 如簡單的單變量及多變量模型
- (三) 小型結構型模型 (small-scale structural models)
- (四) 大型動態隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE) 模型

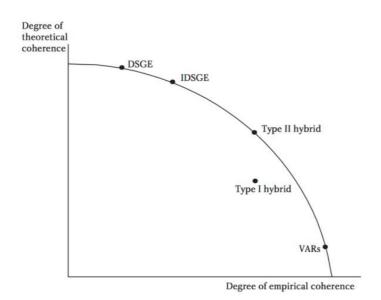
# 二、原始資料品質影響結果

良好的模型需配合高品質的原始資料,始能產生較佳的實證結果,因此,須積極解決資料可取得性、資料品質、資料衡量等問題(表1)。若資料品質差,要儘量採用符合理論基礎的模型,且模型結構要儘量簡單,如勞動市場資料品質不佳,則考慮不要納入勞動市場,抑或找尋其他可以取代的變數。

表1 資料問題類型

| 類型       | 問題或解決方法                  |  |  |  |  |  |
|----------|--------------------------|--|--|--|--|--|
| 資料可取得性   | 解決方法                     |  |  |  |  |  |
| (如:沒有足夠資 | ● 利用央行的可信度蒐集資料           |  |  |  |  |  |
| 料,樣本不夠)  | ● 插補資料將低頻資料轉為高頻資料        |  |  |  |  |  |
|          | ● 自行編製資料                 |  |  |  |  |  |
|          | ● 尋找連動性高的替代指標            |  |  |  |  |  |
|          | ● 使用小樣本方法估計              |  |  |  |  |  |
| 資料品質     | 解決方法                     |  |  |  |  |  |
|          | ● 自行編製資料                 |  |  |  |  |  |
|          | ● 資料品質控制,如使用IMF、OECD等國際組 |  |  |  |  |  |
|          | 織的資料。                    |  |  |  |  |  |
| 資料衡量     | 問題類型                     |  |  |  |  |  |
|          | ● 不同的定義                  |  |  |  |  |  |
|          | ● 統計方法的改變                |  |  |  |  |  |
|          | ● 重新設定基期                 |  |  |  |  |  |
|          | ● 資料和理論無法連結              |  |  |  |  |  |

資料來源:課程講述內容


# 三、符合經濟理論及通過實證測試間之權衡

良好的模型須具備經濟理論基礎,要能清楚表現家計部門、廠商 及政府行為,並進行福利分析(welfare analysis)。此外,模型要能通 過實證測試,包括能與資料配適,並在政策架構沒有太大變化的狀況 下,維持模型穩定性。

然而,在實務上,較吻合經濟理論之模型,實證結果未必較佳, 實證結果較佳的模型,有時缺乏經濟理論,致決策者難以向大眾說明 經濟現象。 央行採用的模型主要可分為兩種類型。第一類,著重在結構性基礎(structural foundation),模型內包含代表一般均衡的方程式。第二類,則著重在資料的配適程度,此主要是時間序列模型。Pagan(2003)根據理論基礎及資料配適程度兩大面向,將央行常用的模型排序(圖1),其中,以 DSGE 模型最具理論基礎,惟實證結果最差,而 VAR模型資料配適程度最高,惟缺乏理論基礎。

前述兩類模型均為央行採用,而貨幣政策架構是影響模型選擇的重要因素之一。若央行採通膨目標,因對群眾溝通非常重要,故須仰賴 DSGE 或小型結構模型,以此做為闡述政策的基礎。若採管理浮動匯率制度或貨幣數量目標,則因較不需對群眾溝通,可能以 Excel 活頁簿計算,就足以瞭解通膨發生的原因。此外,在選擇模型時,也須考量金融市場發展程度,如一國金融及價格管制相當嚴格,就不宜採取 DSGE 模型(其前提假設為完全競爭市場),且做決策時,需加入更多主觀判斷。

### 圖1 央行常用之各類模型符合理論及實證之程度



資料來源: Pagan (2003)

### 四、 過去資料配適度佳,未必有較佳的預測能力

過去資料與模型配適度較高,正常情況下,可推論其具較佳的預測能力,惟若經濟體發生巨大衝擊,產生結構性變化,模型可能不再適用,須重新進行估計,以修正模型。

### 五、模型無法取代主觀判斷

決策者為避免決策錯誤,擬定貨幣政策時,不宜僅靠模型擬訂決策,尚需具備主觀判斷能力,將更多未能涵括在模型中卻有價值的資訊列入考量,以彌補模型未能考慮所有變數的缺點。

### 六、 同時肩負總體經濟及金融穩定職責增加模型複雜度

2008 年美國次貸危機後,央行權責大幅增加,不僅須達成總體經濟穩定,更需兼顧金融穩定,政策複雜度大幅提升,致建構模型的複雜度及困難度也隨之增加。

# 七、其餘須考量之重要因素

# (一) 資料長度影響估計結果

用以估計的樣本資料涵蓋期間長度會影響估計結果,如樣本資料過少,可能產生偏誤,有高估或低估之風險。

# (二)貨幣政策傳導機制及傳導速度

對於小型開放經濟體而言,匯率管道非常重要,其影響貨幣政策 傳導速度,例如在浮動匯率制度下,匯率與利率的關係較為緊密,傳 導速度較快。

# (三) 足夠的人力

相較其他模型,DSGE模型非常複雜,不僅軟體成本較高,也需要足夠且研究經驗豐富的高階研究人員從事研究。

### **參、時間序列模型及其估計方法**

### 一、 經濟金融分析常採時間序列模型

時間序列模型是指變數由自身及(或)其他變數之落後項決定, 此隱含歷史資料將影響未來。由於經濟金融現象常有持續性,如本期 發生通膨,下期發生通膨的可能性高,故常採時間序列模型分析。

### 二、時間序列資料來自未知的資料產生過程

大多數的經濟金融資料得依發生時點之先後排序,可表示為  $\{y_t\}$ , t=1,2,3,...,T,  $\{y_t\}$ 即為一時間序列資料。

 $y_t$ 為隨機變數 (random variable),該隨機變數來自於不可觀察的母體 (unobserved population),而每一個在t時點的觀察值,只是其中一個隨機資料產生過程 (data-generating process, DGP)的結果。因此,在t時點觀察到的值,可視為所有可能 DGP 結果的平均值。

# 三、時間序列資料之統計量

假設有一時間序列為{V<sub>t</sub>},則其統計量如下:

- (-)期望值為 $E[y_t] = \mu_t$
- (二) 共變數為 $Cov(y_t, y_{t-i}) = E[(y_t \mu_t)(y_{t-i} \mu_{t-i})], j$ 表時間間隔

# 四、時間序列若符合弱穩定使分析更為便利且準確

若一時間序列資料符合下列性質,稱爲弱穩定(weak stationary) 或共變異數穩定(covariance stationary):

- (-)期望值固定,代表時間序列不會出現時間趨勢,即 $E[y_t] = \mu$ 。
- (二) 共變數只由時間間隔(j)決定,意即 $Cov(y_t,y_{t-j}) = \gamma(j)$ 。

### (三)符合第2條件代表所有變異數(j=0)是固定的。

在弱穩定情況下進行時間序列分析,可使用較簡單的模型或估計方法。反之,若數列不穩定且無共整合,誤用模型容易出現假性迴歸(spurious regression),即便自變數及應變數間無因果關係或經濟意涵,統計結果卻顯現關係顯著,此將使研究結論發生錯誤;又或使用錯誤的估計方式,使參數估計結果產生偏誤。

因此,採用時間序列模型,應先進行單根檢定(unit root test),確定其為定態或非定態。一旦完成模型估計,由於忽略重要自變數(omitted variable)、模型設定錯誤、衡量誤差(measurement error)等錯誤會藏在殘差中,須再次檢測殘差是否符合白噪音<sup>2</sup>特質,以確認模型正確性。

### 五、單變量單因子時間序列模型

### (一) AR 模型

變數由自身落後項決定,代表資料本身具有延續性。模型表示為 AR(p), p 代表變數落後期數,如以 AR(1)為例:

$$y_t = \rho y_{t-1} + \varepsilon_t$$

#### (二) MA 模型

變數由殘差落後項決定,殘差為預測誤差,將前期殘差列入考量,隱含修正誤差特質。模型表示為 MA(q), q 為殘差落後期數,如以 MA(1)為例:

$$y_t = \theta \varepsilon_{t-1} + \varepsilon_t$$

<sup>&</sup>lt;sup>2</sup> 白噪音定義為時間序列變數符合(條件)期望值為 0、(條件)變異數為固定常數、(條件)共 變異數為 0。

### (三) ARMA 模型

又稱 Box-Jenkins 模型,變數由自身落後項及殘差落後項決定。 模型表示為 ARMA(p, q),如以 ARMA(1,1)為例:

$$y_t = \rho y_{t-1} + \theta \epsilon_{t-1} + \epsilon_t$$

模型不僅包含資料延續性,也涵蓋誤差修正特質,實務上最具短期預測能力。此外,Box and Jenkins (1976)更是強調 ARMA 有助精簡參數,相較單純的 AR 或 MA 模型,ARMA 模型使用較少的落後期數即可達到相同模型表現。

#### (四) ARIMA 模型

若一數列經過d階差分,可成為一穩定數列,再以ARMA(p, q) 模型建模,稱為ARIMA(p, d, q)模型。

### (五)單變量模型落後期數之決定

有關單變量模型的類型及自變數落後期數,可以自我相關函數 (autocorrelation function, ACF) 及偏自我相關函數 (partial autocorrelation function, PACF) 判定。

#### 1. 自我相關函數

自我相關函數ρ(j)是在探討變數當期及其落後項間的關係,其定 義如下,數值介於±1,j表落後期數。

$$\rho(j) = Cov(y_t, y_{t-j})/Var(y_t)$$
,  $-1 \le \rho(j) \le 1$ 

#### 2. 偏自我相關函數

偏自我相關函數則係探討去除該變數所有落後期數小於j的影響後,探討當期變數與落後j期的變數間之關係,即為線性迴歸式中 $y_{t-j}$ 的係數 $\beta_j$ ,方程式如下:

$$y_t = c + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \dots + \beta_i y_{t-i}$$

如以 Eviews 觀察 ACF 及 PACF 圖形,AR(p)模型特性為 ACF 無限,而 PACF 在超過 p 期後,就會趨近於 0;MA(q)模型特性為 ACF 在超出 q 期後,將趨近於 0,而 PACF 無限。若缺乏前述情形,則可判定為 ARMA 模型。

### 六、 多變量時間序列模型

### (一) 向量自我迴歸(Vector Autoregression, VAR)

1980 年代以前,經濟實證模型以大型凱因斯模型為主,該模型建構在經濟理論上,以方程式描寫變數間的理論關係,變數包括內生變數(系統內決定)及外生變數(來自系統外),其中外生變數不受內生變數的當期或落後期影響。然而,因經濟體錯綜複雜,內生或外生變數之設定並不容易,且可能出現設定錯誤。

VAR 模型之優點係將所有變數視為內生變數,不主觀假設變數間的關係,以避免任意設定外生變數及內生變數衍生的問題。VAR模型係以變數自身及其他變數的落後項所組成,以兩個變數及落後項為1,說明 VAR(1)模型:

$$x_{t} = b_{10} + b_{11}x_{t-1} + b_{12}y_{t-1} + \varepsilon_{xt}$$
$$y_{t} = b_{20} + b_{21}x_{t-1} + b_{22}y_{t-1} + \varepsilon_{yt}$$

VAR 落後期數得由 LR 統計量決定,在決定落後期數後,若採一般化最小平方法 (OLS) 估計,須檢測殘差是否穩定,否則將採似不相關迴歸模型 (Seemingly unrelated regression model, SUR)等其他方法估計。此外,若進行 Granger-Causality 檢定,得檢定變數的落後項是否對另一變數有所影響。

實證結果顯示,在短期預測能力表現上,VAR 相較傳統大型結

構模型有較佳的表現。

# (二) 結構式向量自我迴歸(Structural Vector Autoregression, SVAR)

VAR 模型之短期預測能力佳且被廣泛地用於經濟金融實證,惟該模型無法表現變數同期間之交互影響,與經濟金融實況常不符。

SVAR 除加入同期變數間的關係外,亦可依循經濟理論,對變數間的關係給予條件限制,除符合實際狀況外,亦有助利用參數估計結果,分析經濟狀況及變數間的互動關係。

### 七、資料特性及處理方式

由於資料會影響模型估計結果,為避免估計產生偏誤,須根據資料特性,做進一步的處理,常見處理方式如表 2。

表2 資料特性及處理方式

| 特性  | 處理方法                         |
|-----|------------------------------|
| 趨勢  | ● 得取對數 (log) 平滑資料,再取一階差分分析。  |
|     | ● 加入時間趨勢作為自變數,以捕捉趨勢因素。       |
| 季節性 | ● 基於季節性因素多為暫時,難提供太多有用的資訊,故   |
|     | 須將歸於季節性的波動移除。                |
| 極端值 | ● 加入虛擬變數,以排除該極端值對模型的影響。      |
|     | ● 須留意可能是經濟體產生結構性變化。          |
| 異質性 | ● 係指資料波動不齊一的現象,此時資料將呈群聚      |
|     | (cluster) 現象,宜用GARCH模型處理該現象。 |

資料來源: Ole Rummel (2017), "Key Features of Data," SEACEN 上課講義

# 八、一般化最小平方法估計

在估計迴歸式的係數時,一般最小平方法(Ordinary least squares, OLS)係常見且基本的方法,其概念是尋求能極小化所有資料點殘差平方和的係數值。

根據高斯一馬爾可夫定理(Gauss-Markov Theorem),如迴歸式滿足殘差期望值為零、自變數與殘差無相關、殘差具均值變異、殘差無序列相關、自變數間無共線性及殘差為常態分配之條件,則以 OLS 估計,係數將具有不偏及波動度最小的性質(BLUE)。因此,如不符合條件,即可能會產生錯誤,須進行修正,修正方法如表3。

表 3 違反基本假設的檢查方式、估計錯誤的結果及可修正的方法

| 符合 OLS 估計之條件 | 檢查方式                       | 錯誤結果       | 可修正的方法      |
|--------------|----------------------------|------------|-------------|
| 殘差期望值為零      | 觀察殘差圖形                     | OLS 估計偏誤   | ● 定義新的截距    |
| 自變數與殘差無相關    | 兩者相關係數高                    | OLS 估計偏誤   | ● 拿掉自變數     |
| 殘差具均值變異      | White 檢定                   | OLS 估計雖不偏, | ● 重新調整模型    |
|              |                            | 但不效率       | ●取對數        |
|              |                            |            | ● 改用 HAC 估計 |
| 殘差無序列相關      | ● Durbin-Watson 檢定         | OLS 估計雖不偏, | ●採AR 模型     |
|              | Brusch-GoefferyLM          | 但不效率       | ● 改用 HAC 估計 |
|              | 檢定                         |            |             |
| 自變數間無共線性     | ● 自變數間相關性高                 | ●估計係數不正確   | ● 拿掉自變數     |
|              | ● 判定係數 (R <sup>2</sup> ) 很 | 且不穩定       |             |
|              | 高,但係數均不顯著                  |            |             |
|              |                            |            |             |
| 殘差為常態分配      | ● Jacque-Bera 檢定           | ● 在大樣本中,因將 | ●看是否有極端值    |
|              |                            | 趨近常態分配,此   | ●看是否出現結構性   |
|              |                            | 可忽略。       | 轉變          |
|              |                            |            | ●増加樣本數      |

資料來源:Vincent Lim Choon Seng(2017),"Connecting the Dots - A Reference to Ordinary Least Squares," SEACEN 上課講義

### 九、模型選擇準則

由於真實模型未知,根據估計結果,可能產生許多預選模型,可 採模型選擇準則挑出最適模型。常用的模型選擇準則包括:

1. AIC (Akaike's information criterion)

單變量: AIC =  $\ln(\sigma^2) + 2(k/T)$ 

多變量:  $MAIC = ln|\Sigma| + 2(k/T)$ 

2. SBIC (Schwarz's Bayesian information criterion)

單變量:  $SBIC = ln(\sigma^2) + lnT(k)$ 

多變量:  $MSBIC = ln|\Sigma| + lnT(k/T)$ 

3. HQIC (Hannan-Quinn criterion)

單變量:  $HQIC = ln(\sigma^2) + 2ln(lnT)(k/T)$ 

多變量:  $MHQIC = ln|\Sigma| + 2ln(lnT)(k/T)$ 

 $\sigma^2 \mathcal{D} \Sigma$ 表殘差平方和, k表待估參數總數, T表樣本總數。

模型選擇準則大體上考量兩個因素,第一為模型配適程度,此由 殘差平方和所決定,值越低越佳,如單變量 AIC 準則中的ln( $\sigma^2$ );另 一為增加參數帶來的懲罰 (penalty),隨參數增加,殘差平方和將持 續降低,惟參數過多,將造成估測準確度降低,因此若參數較多,此 項值會較高,如單變量 AIC 準則中的2(k/T)。不論是模型選擇準則 為何,其整體值越低,如單變量 AIC 之值,代表模型越佳。

# 十、衝擊反應函數及變異數分解

觀察模型係數值可瞭解變數間的靜態關係,而衝擊反應分析 (Impulse Response) 及變異數分解 (Variance Decomposition) 可觀察變數間長期的交互作用。

衝擊反應分析,係指在其他變數不變的情況下,某個變數出現非預期性的衝擊,對自身及其他變數長期的影響。以數學表達,即是計算每個變數對落後 1~N 期殘差的偏微分。至於N應取到第幾期,可視衝擊反應的收斂情況來決定。

變異數分解則是在分析 1~N 期間,每個時點上,各變數的預測 變異佔總變異的比率,變數預測變異佔總變異比率越高,代表變數影 響力越深。

### 肆、建立預測模型之準則

### 一、預測的價值

建立模型並進行預測的目的,係在提供政策建議、改善決策品質,或作為向大眾說明政策之佐證。

### 二、預測應考慮的面向

即便預測有相當多的益處,然預測並不直覺,且牽涉許多主觀判斷。在進行預測時,須考量下列面向:

# (一)預測錯誤造成之損失

由於預測正確幾無可能,且各模型預測結果可能不盡相同,可採 損失函數,進行模型預測能力優劣的比較。

損失函數係在衡量實際結果不如模型預期產生的成本(損失), 各種不同的誤差可能產生不同的成本,如究竟是高估或低估通膨較為 嚴重。損失函數係由決策者考量其環境及偏好決定,決定函數後,再 將各資料點的預測誤差帶入計算。

損失函數必須符合三大特性:

1. 完美預測時,即預測誤差為零時,損失為零。

- 2. 類似的預測誤差,其損失應該雷同。
- 3. 誤差越大,損失越大。

### (二)預測的目的

預測目的主要可分為預測時間數列(如貨幣政策時間落後效果)、預測情境發生的時點(如道瓊指數何時漲到特定值)或模擬各種情境的結果(如執行不同政策的結果,以決定採何種策略)。

### (三)預測呈現方式

預測可依其呈現的方式,分為點預測(僅呈現單一數值)、區間預測(呈現一範圍的數值,如下滑 5%內)、密度預測(呈現未來可能出現的值及其機率)。

由於預測結果會隨各項變數及外在環境的改變,而產生變化,因此,點預測發生的機率趨近於零,提供的資訊最少,其次是區間預測,密度預測較為周全,決策者可瞭解所面對的環境不確定性有多高。

## (四)良好模型須達成的條件

透過建立模型,得以紀律且一致性的方式,建立預測架構。政策當局通常依據貨幣傳導機制以及衝擊(shock)如何影響經濟及通貨膨脹建立模型,並權衡實證結果及經濟理論採用模型。一個好的模型,必須達成下列條件:

- 1. 提供一致性 (consistency), 此有助解釋為何預測錯誤。
- 2. 提供長期預測。
- 3. 能夠解釋情境分析及風險。
- 4. 能夠分解過去的誤差。
- 5. 能夠提供央行內部決策者一致的討論點。

### (五)預測時間長度

分為事前預測 (ex ante forecast) 及事後預測 (ex post forecast) (one-step-ahead)。事前預測係使用所有的樣本資料,建立模型進行預測,惟須待其未來真實值發生時,方能檢測模型預測能力;事後預測則係將可使用的樣本資料分成兩部分,先使用一部分樣本,建立模型進行預測,再將預測值與其餘樣本比較,此法可立即比較模型預測能力,實務上較常使用。

### (六)模型預測績效的評估

建立模型後,須持續監控及評估其預測績效,可逕觀察誤差圖形以瞭解誤差分布狀況(如總是高估)或與其他模型及外部預測比較。

此外,得計算誤差均方根(Root Mean Squared Error, RMSE)或平均誤差絕對值(Mean Absolute Error, MAE)衡量預測績效,指標值越小,代表預測力越佳。雖可根據此排序出模型優劣,惟因渠等計算方式隱含所有誤差均為同等嚴重,然事實可能非如此,如將誤差帶入損失函數,再依此進行模型排序,即可能導出不同的排序結果。

### 三、結合各種預測結果

決策者通常會有各種不同模型做出的預測結果,可結合各種不同模型計算出的結果,用變異數及共變異數方法 (variance-covariance method) 及迴歸方法(regression method)等,計算各模型預測結果之權數,再加權後得到預測結果。

假設今有a及b兩種模型預測結果,模型配置權重分別為 $\omega$ 及  $(1-\omega)$ ,其加權結果為c, h為預測期間。以兩種方法說明權重計算方式:

### (一)變異數及共變異數方法

兩種模型加權後的誤差值為:

$$e^{c}_{t+h|t} = \omega e^{a}_{t+h|t} + (1 - \omega)e^{b}_{t+h|t}$$

其中,e表預測誤差

加權後的誤差變異數為:

$$\sigma_c^2 = \omega^2 \sigma_{aa}^2 + (1 - \omega)^2 \sigma_{bb}^2 + 2\omega (1 - \omega) \sigma_{ab}^2$$

其中,σaa表模型a之誤差變異數;

σ²bb表模型b之誤差變異數;

 $\sigma_{ab}^2$ 表模型 a 及 b 誤差之共變異數;

求使加權後誤差變異數極小化的權重ω\*,可得:

$$\omega^* = \left(\sigma_{bb}^2 - \sigma_{ab}^2\right) / \left(\sigma_{aa}^2 + \sigma_{bb}^2 - 2\sigma_{ab}^2\right)$$

### (二) 迴歸方法

根據 Bate and Granger(1969),加權後模型的不偏預測值為:

$$y_{t+h|t}^{c} = \omega y_{t+h|t}^{a} + (1 - \omega) y_{t+h|t}^{b}$$

其中,y表模型不偏預測值。

該方法係直接將兩種模型之不偏預測值作為自變數、實際發生值作為應變數,建立迴歸式, $y^a_{t+h|t}$ 的係數 $\beta_a$ 即為 $\omega$ , $y^b_{t+h|t}$ 的係數 $\beta_b$ 即為 $(1-\omega)$ 。

$$y_{t+h} = \beta_a y_{t+h|t}^a + \ \beta_b y_{t+h|t}^b + \epsilon_{t+h}$$

#### 伍、課程重要範例

### 一、產出缺口之估計

產出缺口係指實際產出與潛在產出間之差距,可用以衡量通膨情勢,因此對於一國央行貨幣政策之制訂與執行具有重大涵義,央行可藉由觀察產出缺口之大小,瞭解景氣榮枯,進而預期未來通膨可能變化,採行合宜的貨幣政策因應。

產出缺口之衡量包括實際產出及潛在產出,除實際產出資料品質 相當重要外,潛在產出因無法觀察,必須估計,而估計之方法很多, 各有優缺點,且結果可能並非一致,文獻多採濾波法。

濾波法是將產出分為趨勢項(trend)及循環項(cyclical),而潛在產出係擷取其中的趨勢項。本課程以斯里蘭卡實質產出,演練設定時間趨勢、Hodrick-Prescott、Hamilton model 及 Baxter and King band-pass 濾波等方法。圖 2 係作者自行以 Hodrick-Prescott 及 Baxter and King band-pass 濾波法,計算臺灣實質產出缺口,可見兩者趨勢大致相同,但在部分時點會出現正負不一致的情形。

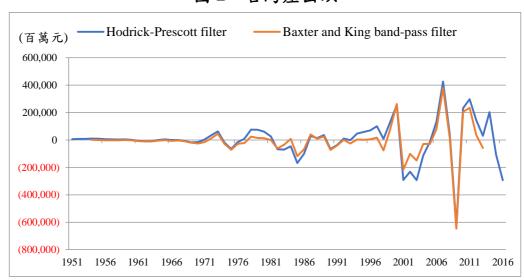



圖 2 台灣產出缺口

資料來源:作者自行計算

### 二、新凱因斯模型 IS 曲線估計

新凱因斯模型 (canonical new Keynesian model)包涵三條重要的方程式,分別是衡量總合供給的菲利浦 (Pillips)曲線、衡量總合需求的 IS 曲線及衡量央行貨幣政策反應函數的泰勒法則 (Taylor rule)。其中,由於價格具僵固性,央行可藉調整名目利率,影響實質利率及產出(即總合供給及總合需求決定之產出水準)。

課程中將 IMF (2010) "A Monetary Policy Model Without Money for India."一文中的 IS 曲線,以 Eviews 計量分析軟體重新做實證。 IMF 報告做出的 IS 曲線中,第 10 條方程式係採 OLS 估計(圖 3),而本課程先將圖 3 中所有參數放入方程式,同樣以 OLS 估計,再逐項刪除不顯著的變數,所得之估計結果(圖 4)。將圖 3 及圖 4 之結果比較,兩者並不相同,顯示即便採同樣的資料及同樣的估計方法,可能因實證步驟不同,而產生不同的結果。

圖 3 IMF (2010) 對印度 IS 曲線的預估

|                    |                                                  |                                                                                          |                    | Alternativ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ve Speci                                                                                                                                                                                                                                                                                                                     | tications                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |
|--------------------|--------------------------------------------------|------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 2                  | 3                                                | 4                                                                                        | 5                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                            | 8                                                                                                                                                                                                                                                                                                                                                                                        | 9                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                      |
|                    | De                                               | ependen                                                                                  | t Variabl          | e: YGAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SA (Sar                                                                                                                                                                                                                                                                                                                      | nple Per                                                                                                                                                                                                                                                                                                                                                                                 | iod: 1997                                                        | :2-2009:3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |
| Using GDP deflator |                                                  |                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                          | Usir                                                             | Using WPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |
| 0.32               | 0.37                                             | 0.37                                                                                     | 0.25               | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12                                                                                                                                                                                                                                                                                                                         | 0.11                                                                                                                                                                                                                                                                                                                                                                                     | 0.05                                                             | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.03                                                                                                   |
| (3.3)              | (4.8)                                            | (5.6)                                                                                    | (2.4)              | (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1.4)                                                                                                                                                                                                                                                                                                                        | (1.8)                                                                                                                                                                                                                                                                                                                                                                                    | (0.6)                                                            | (1.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.6)                                                                                                   |
| -0.10              |                                                  | -0.14                                                                                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |
| (2.8)              |                                                  | (5.2)                                                                                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |
|                    |                                                  |                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.06                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                          | -0.03                                                            | -0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |
|                    |                                                  |                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1.8)                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                          | (0.8)                                                            | (1.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |
|                    |                                                  |                                                                                          | -0.13              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              | -0.06                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |
|                    |                                                  |                                                                                          | (3.4)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              | (2.2)                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |
|                    |                                                  |                                                                                          |                    | -0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |
|                    |                                                  |                                                                                          |                    | (1.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |
|                    | -0.16                                            |                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |
|                    | (4.4)                                            |                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |
|                    |                                                  |                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.01                                                                                                   |
|                    |                                                  |                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.3)                                                                                                   |
| 0.59               | 0.40                                             | 0.28                                                                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.39                                                                                                                                                                                                                                                                                                                         | 0.39                                                                                                                                                                                                                                                                                                                                                                                     | 0.24                                                             | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.30                                                                                                    |
| (8.0)              | (7.5)                                            | (4.2)                                                                                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (8.5)                                                                                                                                                                                                                                                                                                                        | (8.5)                                                                                                                                                                                                                                                                                                                                                                                    | (3.6)                                                            | (2.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (5.9)                                                                                                   |
|                    |                                                  |                                                                                          | 0.55               | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.44                                                                                                                                                                                                                                                                                                                         | 0.43                                                                                                                                                                                                                                                                                                                                                                                     | 0.33                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.49                                                                                                    |
|                    |                                                  |                                                                                          | (9.0)              | (6.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (8.0)                                                                                                                                                                                                                                                                                                                        | (9.1)                                                                                                                                                                                                                                                                                                                                                                                    | (4.5)                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (6.1)                                                                                                   |
| 0.13               | 0.23                                             | 0.21                                                                                     | 0.24               | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12                                                                                                                                                                                                                                                                                                                         | 0.11                                                                                                                                                                                                                                                                                                                                                                                     | 0.20                                                             | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.12                                                                                                    |
| (3.0)              | (7.2)                                            | (5.7)                                                                                    | (6.2)              | (7.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2.8)                                                                                                                                                                                                                                                                                                                        | (2.8)                                                                                                                                                                                                                                                                                                                                                                                    | (3.9)                                                            | (8.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (4.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2.7)                                                                                                   |
|                    |                                                  | 0.12                                                                                     |                    | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                          | 0.06                                                             | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.04                                                                                                    |
|                    |                                                  | (8.0)                                                                                    |                    | (7.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                          | (4.2)                                                            | (3.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (5.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2.3)                                                                                                   |
|                    |                                                  | -0.06                                                                                    |                    | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                          | -0.02                                                            | -0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.00                                                                                                   |
|                    |                                                  |                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.2)                                                                                                   |
|                    | 0.32<br>(3.3)<br>-0.10<br>(2.8)<br>0.59<br>(8.0) | 0.32 0.37<br>(3.3) (4.8)<br>-0.10<br>(2.8)<br>-0.16<br>(4.4)<br>0.59 0.40<br>(8.0) (7.5) | -0.16 (4.4)  -0.59 | 2 3 4 5 Dependent Variable  Using to Using the Using to Using to Using the Using to Using the Using to Using the Using to Using the Using | 2 3 4 5 6 Dependent Variable: YGAP  Using GDP defi  0.32 0.37 0.37 0.25 0.08 (3.3) (4.8) (5.6) (2.4) (1.0)  -0.10 -0.14 (2.8) (5.2)  -0.13 (3.4)  -0.05 (1.1)  -0.16 (4.4)  0.59 0.40 0.28 (8.0) (7.5) (4.2)  0.55 0.35 (9.0) (6.3) 0.13 0.23 0.21 0.24 0.27 (3.0) (7.2) (5.7) (6.2) (7.7) 0.12 0.09 (8.0) (7.5) -0.06 -0.02 | 2 3 4 5 6 7  Dependent Variable: YGAPSA (Sar  Using GDP deflator  0.32 0.37 0.37 0.25 0.08 0.12 (3.3) (4.8) (5.6) (2.4) (1.0) (1.4)  -0.10 -0.14 (2.8) (5.2)  -0.06 (1.8)  -0.13 (3.4)  -0.16 (4.4)  0.59 0.40 0.28 0.39 (8.0) (7.5) (4.2) (8.5)  0.55 0.35 0.44 (9.0) (6.3) (8.0)  0.13 0.23 0.21 0.24 0.27 0.12 (3.0) (7.2) (5.7) (6.2) (7.7) (2.8)  0.12 0.09 (8.0) (7.5) -0.06 -0.02 | Dependent Variable: YGAPSA (Sample Per  Using GDP deflator  0.32 | 2 3 4 5 6 7 8 9  Dependent Variable: YGAPSA (Sample Period: 1997)  Using GDP deflator  0.32 0.37 0.37 0.25 0.08 0.12 0.11 0.05 (3.3) (4.8) (5.6) (2.4) (1.0) (1.4) (1.8) (0.6)  -0.10 -0.14 (2.8) (5.2)  -0.06 -0.03 (1.8) (0.8)  -0.13 -0.06 (3.4) (2.2)  -0.05 (1.1)  -0.16 (4.4)  0.59 0.40 0.28 0.39 0.39 0.24 (8.0) (7.5) (4.2) (8.5) (8.5) (3.6)  0.55 0.35 0.44 0.43 0.33 (9.0) (6.3) (8.0) (9.1) (4.5)  0.13 0.23 0.21 0.24 0.27 0.12 0.11 0.20 (3.0) (7.2) (5.7) (6.2) (7.7) (2.8) (2.8) (3.9)  0.12 0.09 0.06 (8.0) (7.5) (4.2) -0.06 -0.02 -0.02 | 2 3 4 5 6 7 8 9 10  Dependent Variable: YGAPSA (Sample Period: 1997:2-2009:3)  Using GDP deflator  0.32 0.37 0.37 0.25 0.08 0.12 0.11 0.05 0.16 (3.3) (4.8) (5.6) (2.4) (1.0) (1.4) (1.8) (0.6) (1.3)  -0.10 -0.14 (2.8) (5.2)  -0.06 -0.03 -0.08 (1.8) (0.8) (1.9)  -0.13 -0.06 (3.4) (2.2)  -0.05 (1.1)  -0.16 (4.4)  0.59 0.40 0.28 0.39 0.39 0.24 0.26 (8.0) (7.5) (4.2) (8.5) (8.5) (3.6) (2.6)  0.55 0.35 0.44 0.43 0.33 (9.0) (6.3) (8.0) (9.1) (4.5)  0.13 0.23 0.21 0.24 0.27 0.12 0.11 0.20 0.25 (3.0) (7.2) (5.7) (6.2) (7.7) (2.8) (2.8) (3.9) (8.9)  0.12 0.09 0.06 0.09 (8.0) (7.5) (4.2) (3.3) -0.06 -0.02 -0.02 -0.08 | 2 3 4 5 6 7 8 9 10 11    Dependent Variable: YGAPSA (Sample Period: 1997:2-2009:3)   Using GDP deflator |

資料來源:IMF (2010) "A Monetary Policy Model Without Money for India."

### 課程對印度 IS 曲線的預估

Dependent Variable: YGAPSA Method: Generalized Method of Moments

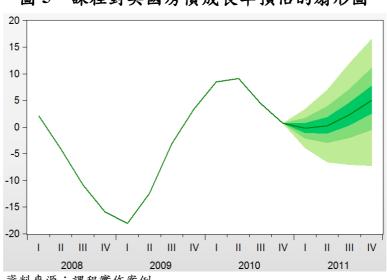
Date: 04/04/11 Time: 16:08

Sample (adjusted): 1997Q3 2009Q2 Included observations: 48 after adjustments

Kernel: Bartlett, Bandwidth: Fixed (2), No prewhitening Simultaneous weighting matrix & coefficient iteration

Instrument specification: C RPRWPI(-1 TO -2) YGAPSA(-1 TO -2)

YGAPAGRSA(-1 TO -2) WEXPRGAPSA(-1 TO -2) REER36GAPSA(-1 TO


-2) DLNFC(-1 TO -2) DLBSESA(-1 TO -2) CRR(-1 TO -2)

| Variable           | Coefficient | Std. Error   | t-Statistic | Prob.     |
|--------------------|-------------|--------------|-------------|-----------|
| C                  | -0.011536   | 0.040159     | -0.287256   | 0.7754    |
| RPRWPI(-5)         | -0.019096   | 0.017839     | -1.070506   | 0.2907    |
| YGAPSA(-1)         | 0.278050    | 0.050768     | 5.476841    | 0.0000    |
| YGAPSA(1)          | 0.524015    | 0.082225     | 6.372935    | 0.0000    |
| YGAPAGRSA          | 0.141671    | 0.041096     | 3.447302    | 0.0013    |
| WEXPRGAPSA         | 0.028701    | 0.016352     | 1.755165    | 0.0867    |
| REER36GAPSA(-2)    | -0.004862   | 0.019489     | -0.249492   | 0.8042    |
| R-squared          | 0.778790    | Mean depend  | ent var     | -0.010126 |
| Adjusted R-squared | 0.746418    | S.D. depende |             | 1.199258  |
| S.E. of regression | 0.603909    | Sum squared  |             | 14.95294  |
| Durbin-Watson stat | 2.547380    | J-statistic  |             | 0.154246  |

資料來源:課程實作案例

### 三、預測英國房價並繪製扇形圖

英格蘭央行通膨報告常以扇形圖,呈現其對經濟變數的預測。課 程中以 1962Q3 至 2010Q4 之英國經濟成長率、通貨膨脹率、英格蘭 銀行政策利率 (Bank Rate) 及房價成長率資料建立向量自我迴歸模 型 (VAR), 再以此預測 2011Q1 至 2011Q4 之房價成長率, 並將結果 繪製成扇形圖(圖5)。



課程對英國房價成長率預估的扇形圖

資料來源:課程實作案例

### 陸、課程心得及建議事項

#### 一、課程心得

本次課程安排大量實作演練,由於經濟體複雜且各國國情不同,不論是變數或模型的選擇,常常涉及許多主觀的判斷,講師亦保持開放態度,並無一定的答案。此呼應課程中的重要精神,雖然計量模型可提供一客觀標準,供做量化分析及比較,惟實務上仍需要主觀判斷能力。此外,不同的假設或模型即可能導出不同的結果,凸顯使用單一模型的風險。

對於計量分析而言,比模型更重要的是資料品質。若資料品質不住,即便使用再精密的模型,亦容易導出錯誤結論。因此,央行能蒐集大量金融數據,更顯珍貴,如能持續提升資料品質,必能在現有研究基礎上,提升計量分析結果之參考價值。

### 二、建議事項

在資訊爆炸時代,如何萃取有用資訊非常重要。對個人而言,量 化分析將成為必備之基礎能力。對組織而言,資料應該成為一種戰 略,有系統的蒐集及歸類,供組織內之個人進行量化分析。謹提出建 議如下:

# (一) 業務上更積極運用量化分析

以適當的計量模型實證量化資訊, 佐以質化資訊進行判斷, 除有 客觀資訊可比較之優點外, 亦能擁有質化資訊具備之彈性空間, 進而 提升本行研究品質。

本次訓練課程提供豐富的基礎計量觀念及軟體演練,收穫甚豐, 期能將所學量化技巧用於研究(如嘗試推估民營企業部分金融性資產 負債科目,以提高資料頻率),以提高統計品質及效用。

### (二) 讓資料成為一種戰略

資料正確性對計量分析至關重要。就單一統計資料而言,宜依據 使用目的,訂定明確的資料範圍及定義,以效率性及正確性蒐集資 料。就組織而言,應檢視各統計資料蒐集方式及定義,進行內部跨單 位的整合(如銀行申報一張含所有單位所需資料的綜合報表,各使用 單位則依據不同的權責,讀取所需內容),以達資料的一致性,亦可 降低作業成本,避免重複工作。

### (三) 增加相關人力培訓,提升研究品質

為加強行員量化分析能力,建議有計畫地在行內安排一系列的計量分析或資料處理等理論課程,並搭配 EViews、R 等軟體進行實際操作,以提升研究品質。

## 参考文獻

- SEACEN Foundational Course on Econometric Modelling and Forecasting Programme Materials, April 2016.
- Ole Rummel, "Overview of Econometric Modelling and Forecasting in Central Banks."
- Ole Rummel, "Key Statistical Time Series Concepts for Model Building."
- Ole Rummel, "Key Features of Data."
- Ole Rummel, "Concepts, Methodologies and Practical Challenges in Estimating Output Gaps."
- Ole Rummel, "Estimating the Sri Lankan output gap."
- Ole Rummel, "Estimating the Sri Lankan output gap with the Hamilton(2016) model."
- Ole Rummel, "The New Keynesian (NK) Model."
- Ole Rummel, "Estimating a monetary policy model for India."
- Ole Rummel, "Principles of Forecasting."
- Ole Rummel, "(Conditional) point, range and density VAR forecasts in EViews."
- Victor Pontines, "An introduction to VARs."
- Vincent Lim Choon Seng, "Connecting the Dots A Reference to Ordinary Least Squares."