Towards a Taiwan Agriculture 4.0 Era with Smart Science and Technologies

Dr. Junne-Jih Chen
Director General
Taiwan Agriculture Research Institute
Council of Agriculture, Executive Yuan
Taiwan (R. O. C.)
Contents

- Introduction
- Action Plan of Taiwan Smart Agriculture 4.0
- Facilitating Measures
- Action Examples
- Conclusions
Scenario of Future Farming

Drones fly over fields scanning and monitoring crop growth status and transmitting the collected information to a cloud computing platform.

Farmers could simply connect their mobile phones or tablet computers to obtain information related with agricultural operations.

By analyzing the collected field data in conjunction with Big Data, farmers could adjust main factors affecting crop growth.

In such a systematic way, a large number of farming and marketing activities can be well planned and managed. Farmers could participate in global economic activities without leaving their farms.

Global and Domestic Trends of Agriculture Development

Global Trends
- Limited resources
- Cross domain integration

Growing population & aging labors
- Emphases on safe and health products

Efficient, flexible & adapting production/marketing
- Innovative e-business models

Local Specials
- High risk from Typhoons …
- Superior R&D capacity

Part-time labor (63.9%) & weak farmers-agribusiness partnership
- Lacking trust between consumers and growers

Lacking ability to stably supply
- Small-scale strategic alliances are rising

Towards a Taiwan Agriculture 4.0 Era with Smart Science and Technologies
Benchmarks

<table>
<thead>
<tr>
<th>Development characteristic</th>
<th>Key features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany Industry 4.0</td>
<td>✓ Conduct Cyber-Physical Systematization and Farming 4.0 pilot projects by integrating M2M and IoTs</td>
</tr>
<tr>
<td>Japan Value-added AG by Technology</td>
<td>✓ Apply Agriculture Informatics technologies and human-machine collaborative devices to promote smart production</td>
</tr>
</tbody>
</table>
| New Zealand Small farmers conquer the world | ✓ Cooperatives organized by farmers
✓ Value global allocation based on integration of resources and direct connection between production and marketing
✓ Apply ICTs to realize production management, quality control and product tracing |
| Netherlands Internationalized Agriculture | ✓ Value automatic and technological innovation
✓ Fulfill Agricultural-Industrial cooperation
✓ Good supporting system for agricultural production |
| Israel Create AG turnkeys by Technology | ✓ Address resource lacking by integrating cross domain engineering technologies
✓ Create desert farming with drip irrigation |
To face the global challenge to upgrade the agricultural sector, how should we take advantage of the development of science and technologies to improve Taiwan’s agricultural productivity?
Towards a Taiwan Agriculture 4.0 Era with Smart Science and Technologies

Progress of Agricultural Productivity in Taiwan

TA 4.0
- Intellectualization + Digitization
- Smart agriculture
- Machines used like humans

TA 3.0
- Knowledge + Automation
- Precision facilities cultivation
- Simple facilities cultivation

TA 2.0
- Technology + Machinery
- Open field cultivation
- Basic yield

TA 1.0
- Labor + Experience
- Humans work like machines
- Conventional smallholder production with simple instruments to assist human, securing basic yield

- Agri. Production with established cultivation techniques and improved materials as well as mechanization, seeking for **maximum yield**

- Scaled agri. production with biotechnology, Information and Communication Technology (ICT) and automated machinery, seeking for **precision, value and quality**
Overall goals of Smart Agriculture

It is expected to establish systems of smart production/marketing and digital service.

✓ To overcome the predicament of small farmers struggling singly, increase efficiency and capability of agricultural production via smart production and intelligent management
✓ To establish active and omni-directional agricultural consumption and service platforms to meet requirements of all agricultural stakeholders and strengthen consumers’ confidence on agricultural products through big data analyses on production, supply and demand

Five commissions:
• To digitize knowledge
• To automate intelligent production
• To optimize produce quality
• To facilitate operation
• To promote cloud-based source-tracing
Action Strategies of TA 4.0

Strategy I: Improve the ability to stably supply of produce by innovating the agricultural management model with Smart Farmers Union (SFU)

Smart Farmers Union + Farming by Techs

New partnership between contractor and agribusiness

Farmers Struggling singly

Smart Farmers Unions

Union of special production districts

Small union of products

Big union of industries

Towards a Taiwan Agriculture 4.0 Era with Smart Science and Technologies
Action Strategies of TA 4.0

Strategy II: Build an application model integrating convenient and diversified agricultural digital services with value chains via ICTs

Strategy III: Create a new communication model between growers and consumers via friendly interactive technologies
Towards a Taiwan Agriculture 4.0 Era with Smart Science and Technologies

Facilitating Measures
Ongoing Case - conduct Smart Farmers Union productions with three agricultural enterprises

 Totally 802 contracted farmlands located in Yunlin, Changhua, Chiayi and Tainan counties

Biggest Difficulty– Abundant contracted farmlands are scattered and not easy to manage.
Approach I: Introduce and Apply Agricultural GIS system

- Establish crop management information based on soil characteristics and interpreted results by integrating grid-calculated environmental information with GIS technology.

- Offer the manager with decision-making reference for crop management based on real time crop growing information.
Approach II: Establish Exclusive Farmland Database for Individual Agribusiness

Integrate agric. spatial data of 11 million parcels with information pertaining to farmer, growing operation, crop production and management record.

The information of affiliated farmlands could be efficiently managed via farmland management module in background.
Approach III: Develop Integrated farmland information showcasing module (FarmCloud)

- Smart farming management system for small-hold farmer

Concepts:
- Based on Common Land Unit (CLU)
- Connecting the Farmland Management with Expert Knowledge
- Giving a suitable management advice according to time differences
- Precision AG Management: Building a small-hold farming institution

Techniques:
- Friendly Dashboard Design
- Various Statistical Charts
- Simple Map Interface
- Abundant Farmland Information

http://soilsurvey.tari.gov.tw/FarmerWeb
Thank you for Attention