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Program at a Glance

Registration: October 08: 14:00-16:00; October 09/10: 8:00-17:00; October 11: 8:00-12:00

09:00-09:10
09:10-09:50
09:50-10:30
10:30-10:45
10:45-11:25
11:25-11:45
11:45-12:05

12:05-13:00

13:40-15:20

Day 1: October 9

1-F3

Tea/Coffee Break

12:00-13:00

13:00-13:40

13:40-15:20

EM EM
15:20-15:50 Tea/Coffee Break
15:50-17:30 1-A4 1-B4 1-c4 1-D4 1-E4 1-F4 1-G4 1-H4 1-14 1-14 1-K4 1-14 1-mM4
RE RE ES EM EM CEC CEC MT&ES MT&ES
17:30-19:00
Day 2: October 10
8:10-09:50 2-Al 2-B1 2-C1 2-D1 2-E1 2-F1 2-G1 2-H1 2-11 2-)1 2-K1 2-11 2-M1
RE RE ES EM EM EM CEC CEC MT&ES
9:50-10:20 Tea/Coffee Break
10:20-12:00 2-A2 2-B2 2-C2 2-D2 2-E2 2-F2 2-G2 2-H2 2-12 2-)2 2-K2 2-12
RE RE ES EM EM EM CEC CEC MT&ES MT&ES

2-F3

18:00-22:00

Day 3: October 11

RE RE EM EM
15:20-15:50 Tea/Coffee Break
15:50-17:30 2-A4 2-B4 2-F4 2-G4 2-H4

EM

EM

RE

8:10-09:50 3-Al 3-B1 3-C1 3-D1 3-E1 3-F1 3-G1 3-H1 3-11 3-J1 3-K1 3-11 3-M1
RE RE RE ES EM RE EM EM CEC MT&ES CEC
9:50-10:20 Tea/Coffee Break
10:20-12:00 3-A2 3-B2 3-C2 3-D2 3-E2 3-F2 3-G2 3-H2 3-12 3-)2 3-K2 3-12
CEC RE RE ES EM EM RE EM CEC MT&ES RE
12:00-13:00 Lunch
13:00-15:00 3-A3 3-B3 3-C3 3-D3 3-E3 3-F3 3-G3 3-H3 3-13 33 3-K3
RE CEC RE MT&ES ES EM CEE CEC (GEE CEC
15:00-15:30 Tea/Coffee Break
3-A4 3-B4 3-C4 3-D4 3-E4 3-F4 3-G4 3-H4 3-14 3-J4 3-K4
15:30-17:30 RE RE MT&ES ES EM RE MT&ES CEC CEC
MT&ES = Mitigation technology and energy storage; CEC=Clean energy EM=Energy policy and ES=Energy sciences; system; RE ble energy
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% 2 1 ICAE2016 11 F1.35 keynotes JEH &

BN B Keynote #H H SEEk
Prof. Lawrence |Science and Technology Partnerships, NREL | Photovoltaics Technology: Ny
L. Kazmerski (National Renewable Energy Laboratory)st | Where we are, how we got here, | 25

1T (since 2009) and where we are going
Prof. Heping Xie | PO I[ KE R MAE T AT Mineralization, a Profitable and |CO, £f
J¢ Prof. Bin Prosperous CCUS Route FHF)
Liang H
Prof. Goran Imperial College, London, UK Role and Value of Flexibility in | §EJFEL
Strbac Future Low Carbon Energy R
Systems

Dr. Chengyin * Deputy General Manager of Beijing Electric Vehicle and Battery BEEfEH
Yuan Electric Vehicle Co. Ltd Pack Development in China

* VP of Beijing Pride Power
SystemTechnology Ltd

Mr. Gaopeng Li | * Chief Engineer of National Engineering Research, Development and EENE
Technology Research, Center for Electric | Industrialization of the Electric
Bus Control and Safety Bus in China

* Deputy Technical Director of Zhengzhou
Yutong Bus Co., Ltd

— I KGRI T FLAI441Y Prof. Lawrence - .5 2009 FEBH4ARHE(E: Science and
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Multijunction Cells (2-terminal, monolithic)  Thin-Film Technologies
LM = lattice matched © CIGS (concentrator) B (IMM 302x) So itec
48 = MM=metamorphic ® CiGS oeing- Solar 27
IMM = inverted, metamorphic O CdTe guncton El EE}’%'&%EE
'V Three-junction (concentrator) O Amorphous Si:H (stabilized) ab | Fraunhofer ISE Seu o Juu . LM, 942x)
= Z Three-juncti ) ing PV 90x) | (MM, 454x) i,
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Th NREL (14.7)
Solexel 75
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20— Georgia Tech
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L NREL N?ELN NREL NREL .
16~ !
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Mobil United Sola ° 13.6% [0)
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CaCOs (AR +2 CH;COOH (Z5) € Ca(CH;COO), + CO, + H,0
Ca(CH3;CO0); + CO, + H,O € CaCOs (7 LB IRIESS) + 2 CH;COOH
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Key Laboratory of Efficient Utilization of

1. A critical analysis on performance of ORC | Low and Medium Grade Energy, Tianjin
through a modified thermodynamic model | University Wang et al. Hh
based on fluid property Guangzhou Institute of Energy Conversion,

Chinese Academy of Sciences
. Clean Energy Processes Lab., Dep. of Chem. Y

2. An assessment of s.ubcrltlc.al and Eng., Imperial College London Oyewunmi et i [5F]
supercritical organic Rankine cycles for . 1
waste-heat recovery Department of Flow, Heat gnd Combustion al. etalliE

Mechanics, Ghent University

3. Analysis of an alternative method to . I
optimize the combined model of engine and lsjt;litself;il Laboratory of Engine, Tianjin Shu et al. rh
organic Rankine cycle Y

o o Key Laboratory of Low-grade Energy

4. Comparative investigation on Utilization Tech. and Systems, Chongging
thermo-economic performance between University Wu et al o
ORC and LiBr absorption refrigerating i ) i ’ -
cyecle in waste heat recovery Col'lege'of Power Engineering, Chongqing

University
) ) ) Sir Joseph Swan Centre for Energy Research,

5. Design and parametric study of an Organic | Newecastle University B
Rankine cycle using a scroll expander for ) ) B Luetal. ]
engine waste heat recovery Department of Energy Engineering, Zhejiang =8|

University

6. Dynamic modeling of CO, transcritical State Key Laboratory of Engines, Tianjin . ‘
power cycle for waste heat recovery of Universit Lietal. th
gasoline engines Y

7. Dynamic response performance comparison
of ranking cycles with different working State Key Laboratory of Enignes, Tianjin D
fluids for waste heat recovery of internal University Wang et al. s
combustion engines

) L ) ) Institute for Energy Systems, Technische

8. Economic feasibility of organic Rankine Universitit Miinchen 1
cycles (ORC) in different transportation . Pilia et al.
sectors School of Mechamcgl & Agrospgce Eng., Hrhz

Nanyang Technological University
School of Mechanical Eng., Beijing Institute
. N of Technology

9. Effects (.)f the ORC Operating Conditions on School of Mechanical and Automotive Eng., -
the Engine Performances for an Hubei University of Arts and Science Zhao et al. Hh
Engine-ORC Combined System Y

School of Mechanical and Power Eng., North
University of China
10. Experimental study on a small-scale RCUK National Centre for Sustainable
a organic Rankine cycle system for ner, se in Foo ains, Institute o ietal L[5
R245fa organic Rankine cycle sy fi Energy Use in Food Chains, Insti f Lietal BB

low-grade thermal energy recovery

Energy Future, Brunel University London
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11. Integration of organic Rankine cycle with

State Key Laboratory of Multiphase Flow in

e ] Power Eng., Xi’an Jiaotong University th
lignite flue gas pre-drying for waste heat . Han et al =
and water recovery from dryer exhaust gas: | -aboratory of Steam Boilers and Thermal ' A
thermodynamic and economic analysis Plants, National Technical University of i

Athens
Université Grenoble Alpes
12. Perfoymance evaluqtlon anq comparison of | cgA Landelle et .
experimental organic Rankine cycle al VA
prototypes from published data CNRS ’
ADEME
13. Potential of low temperature organic
Rankine cycle with zeotropic mixtures as | Beihang University Dong et al. th
working fluid
Department of Flow, Heat and Combustion
o . Mechanics, Ghent University FE iR
14. Preliminary experimental results of an 11 Lecompte et )
kWe organic Rankine cycle Clean Energy Processes Laboratory, al. S
Department of Chemical Engineering, S
Imperial College London
Sir Joseph Swan Centre for Energy Research,
. . . Newcastle University
15. Simulation study of an ORC system driven Guangxi Electrical Power Institute of . HIEY
by the waste heat recovered from a Vocational Trainin Jietal.
trigeneration system £ e
Institute of Engineering Thermophysics,
Chinese Academy of Sciences
16. System design and thermodynamic analysis Key.Lab(.)ratory of Thermo-Fluid Science and .
o . . . Engineering, School of Energy and Power Liu et al. Hh
of a sintering-driven organic Rankine cycle . . . . .
Engineering, Jiaotong University
Energy Conversion Research Center,
- ) Department of Mechanical Engineering,
17 S CO:Kankin eyl sstem. | Do Univcry Famne|
ine p & Graduate School of Life and Environmental |et al.
PP Sciences, Osaka Prefecture University
ACE System Co. Ltd.
Key Laboratory of Renewable Energy,
Guangzhou Institute of Energy Conversion,
18. Thermodynamic analysis of organic Chinese Academy of Sciences
rankine cycle with hydrofluoroethers as Guangdong Key Laboratory of New and Wang et al. R

working fluids (Poster)

Renewable Energy Research and
Development

University of Chinese Academy of Sciences
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PR T E o 2RI B A PARHE R A4 25% » AHT 40%LUREE T Fk - 4lE 3a
B > B T RETEA AN ERS L > e T A0 e s s Ay BB S00TE - 38 I T B T s LR
DRI B Y —LE 38 5 EEAN Volvo Jo Renault Z2/SENE] - $91 AL BBV A I RIR S8 T AF -
ORC wJFEE Ry B AE > NI Rt BE BN BT HY AT TR .2 — © [B 3b Ry UHPIRARES (2R
BERARHEIR AR RIG RS - BEE5 [ERECED - IARISCR IS 25% 527122 30% > ]
HIFHEEENH 40%[% 2 35%  BHBFEENEITTE - PARISCR AT T 30% 272 41% - FEE AT
35%[# 2 24% S Z > BATHAUHEREECE HATHY 1.64 % - ORC FH L] UKIEFEAA% -
H2MEABIE ORC HEIEAFA W ESERE - (1) ORC ATl EERARECNEHEF K ? Q)
AHEEE AR (TR EEIRE - ORC EERE G UL ? EAESHE > THAFRK > ROk
DIRRMIMEA TR  FHEARK A IEEE B ORC &R

Wheels

100%
Applied Fuel
Energy
(Combustion)

Radiation: 5%

Cooling system
\Waste heat recovery

Typical power flows in
a combustion engine
Exhaust: 24%

()R A5[%#(5] (b) ARATHEAHARL6]
3+ B NAE S [ BE PR BEIA R RE TR o3 o

(—)/AE] Landelle 55 A\ #55% ORC [FAIBEAVERET 34T o & L2471 Fy Performance evaluation
and comparison of experimental organic Rankine cycle prototypes from published data » {EE& {5
% ORC i3> WA AISEECA 2R S LLE AR s R Ry BRI TEET 704 » BLfE ORC
FEE TR (working fluid) ~ 7AR 25 (expander) + 78 J5 = (lubrication) + #1221 25 (heat
exchanger) > #1[& 4 Fr7R > 3& A LA T A% ORC HffaHyBE S, - 8 S /&y ORC DhE R/ NSIER
Z AR - 18l Sa BER ORC L=RE] ORC SRR - [E 5b EHREZAR SR AR 2581
A BIEETAIIAERT > REUM S IRARERMGS © 8 5 [FEIRFE A FERVR LR - 58
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CFC Mix PFC

HFE 3% 3% 2% 50 Plate & fins Shell&Tube
5% . n/a 1% 15%
40 & Mixture ’ Fin-tube
= Oil-loop 4%
rocarbons 30 .
Hydr : bon @ Oil-free / Helical-coil
HFC 20 EE P —
54% 10 ...... Other
HCEC 0 A A e Plate 3%
21% Scroll Turbine Volumetric Screw 3%
(a) Working fluid categories (b) Expanders and lubrication (c) Heat exchangers types

4 : 7KEY Landelle % \¥f ORC FlAF&cE T /3T R [ 2]
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Abstract

A set of stainless steel tabular heat pipes are successfully fabricated, for the purpose of the low-grade heat recovery
applications in a corrosion exhaust environment. The fabrication, the thermal performance testing systems, and
modeling are presented in the paper. Experimental results show that the water filling ratio plays a significant role in
the thermal performance of heat pipes. A numerical model is developed and the model prediction is trustworthy in
comparison with experimental data. The model reveals that a better heat pipe thermal performance could be achieved
by selecting a material with higher thermal conductivity coefticient. However, it should be compromised in terms of
the thermal performance and the application concerns like corrosion.

© 2016 The Authors. Published by Elsevier Ltd.
Selection and/or peer-review under responsibility of [CAE
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1. Introduction

The low-grade heat, especially the waste heat from exhausts of factories with a gas temperature lower
than 250°C, is relatively difficult to be recovered to date. A heat pipe is a good heat transfer device on the
field of heat exchange applications, and is one of possible engineering solutions to the purpose of low-
grade heat recovery. However, a corrosive problem on the acid dew point in flue gases at 100~150°C is
deemed necessary to be solved for such challenging application.

Heat pipes are generally made of copper, however it is weak in corrosion resistance point of view. In
the study, therefore, a set of heat pipes are fabricated of stainless steels. It is expected that the heat transfer
performance of stainless steel heat pipes should be lowered compared to copper one, because the thermal
conductivity of stainless steel (K = 16 W/m/K) is much lower than that of copper (& = 400 W/m/K).
Experimental tests are carried out to evaluate the influence of materials on the heat transfer performance.
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In addition, a numerical model 1s developed to better understanding of heat pipes as well as the influence
of materials.

2. Heat Pipe Fabrication and Thermal Performance Test

A number of heat pipes are fabricated in the study. The tubular heat pipes are made of unpolished
SUS316 stainless steel tubes, of a diameter of 6 mm and a length of 300 mm. The thickness of tubes 1s 0.5
mm. When a wick structure inside stainless steel tubes is fabricated, the heat pipe is carefully flushed,
deeply cleaned, and completely dried. The one end sealed tube is then vacuumed and filled with
deionized water as the working fluid. The volumetric ratio of the filling water to the internal heat pipe
volume ranges from 4% to 11%. The end cap is clamped and welded in a vacuum environment. A photo
of the homemade heat pipes is presented in Figure 1.

Fig. 1. Photo of homemade SUS316 stainless steel heat pipes.

The thermal performance measurement of heat pipes is carried out with two testing systems, as shown
in Figure 2. The thermal performance measurement shown in Figure 2(a) is designed for fast evaluation
of a heat pipe. A heat pipe is placed inside a thermal insulation chamber with a slope inclined at 45° to
horizontal. An electric heater directly contacts with the bottom half side of a heat pipe. The power of the
heater 1s gradually stepped up from 0 to 200 W. A circulating water bath 1s adopted as the heat sink. Both
heating and cooling sides are of a contact length of 30 mm. Two thermocouples locate at the center of
heating and cooling sections, respectively. Accordingly, an effective length for the thermal performance
measurement of heat pipes is about 270 mm.

Figure 2(b) illustrates the high temperature testing system used in the study. The lower half part of a
testing heat pipe is placed in an electric oven. The other half part is inserted into an enclosed water/steam
chamber, containing one third of water. Qutside the chamber, fiber glass is used as a thermal insulation
from the ambient air. Four thermocouples are installed. Three of the four thermocouples locate separately,
vertically and evenly on the surface of heat pipe inside the oven, and the last one locates around the top of
the head space of the water/steam chamber.

3. Results and Discussion
3.1. Thermal performance tests with the fast testing system
Figure 3 shows the thermal performance of heat pipes, tested with the fast testing system, for three

different water filling ratios of 4%, 7%, and 11%. The x-axis is the input power of the oven or the heat
source. T1 and T3 represent the temperatures at heating and cooling sections, respectively. The
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temperature difference between T1 and T3 is also plotted. The y-axis on the left hand side is the thermal
resistivity, which is calculated by the temperature difference divided by the input power.

Thermal Insulation
(Fiber Glass)

‘Water/Steam Chamber

Heat Pipe

Thermocouple
Data Logger

Temp. Controller

Fig. 2. Tllustration of two thermal performance measurements used in the study. (a) fast testing system: (b) high-T testing system.

For the water filling ratio of 4%, in Figure 3(a), the temperature T1 1s always greater than T2, and both
temperatures increase with the increase of the mput power. The temperature difference also increases with
the increase of the mmput power when the power is lower than 50 W. Beyond that, the temperature
difference reaches stable at about 45 W. The temperature difference and the thermal resistivity are both
high in the range of all powers tested. It indicates a poor thermal performance, which is expectedly
resulted from water dry out due to low water amount mside the heat pipe.

Figure 3(b) shows results for the water filling ratio of 7%. The temperatures increase with the increase
of the input power, as similar as the trend shown in Figure 3(a). However, an eventful feature is observed
that there is a temperature drop between the power of 50 W and 60 W. One can also observed that the
temperature difference is high as P<50 W, and the temperature difference becomes relatively small as
P>60 W. It experimentally indicates that a 7%-water-filled heat pipe should be operated at a startup
temperature greater than 60°C. As P>60 W, the temperature difference and the thermal resistivity are
reduced and stably kept to 40°C and 0.07 K/W, respectively.
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Fig. 3. Thermal performance of heat pipes for three water filling ratios of (a) 4%. (b) 7%. and (c) 11%.
Figure 3(c) presents experimental data for the water filling ratio of 11%. The temperature difference

monotonically decreases with the increase of the power. The temperature drop observed in Figure 3(b)
cannot be observed. It indicates that an 11%-water-filled heat pipe can be easily started up, even at a low
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mput power or a low temperature. As P>60 W, the temperature difference and the thermal resistivity
stabilize to 45°C and 0.09 K/W, respectively. The thermal resistivity for the 11%-water heat pipe is higher
than that for 7%-water one. It means that a 7%-water heat pipe is relatively excellent in heat transfer rate,
and an 11%-water heat pipe is relatively suitable to be used at lower temperatures (i.e., 7<60°C).

3.2. Thermal performance tests with the high-temperature testing system

Figure 4 displays the temperature variation with the time for four thermocouples measured in the high-
T testing system. The channels 1 to 4 represent the temperatures of thermocouples T1 to T4 illustrated in
Figure 2(b), respectively. The temperatures on the heat pipe surface in the heating section are in the order
of T1 > T2 > T3, but frankly speaking the three temperatures are very close quantitatively. T1, T2 and T3
reach a stable temperature of 233°C in r = 1.800 s (0.5 h). In a longer time r = 5400 s (1.5 h). T4
approximately reaches a stable temperature of 152°C. It corresponds to a steam pressure of about 5
kg/cm”. The test is lasted for 25.200 s (7 h) and no damage occurred to the heat pipe.

300 -

250 ]

200

150

100 ]

Temperature (°C)

50 1

0 3 . . . . | . .
0 3,600 7,200 10,800 14,400 18,000 21,600 25200
Time (s)

—CHANNEL1 —CHANNEL2 —CHANNEL3 —CHANNEL4

Fig. 4. Temperature variation with the time for four thermocouples measured in the high-T testing system. The channels 1 to 4
represent the temperatures of thermocouples T1 to T4 in Figure 2(b). respectively.

3.3. Model results

To better understanding of heat pipes, a numerical model for heat pipe simulation is conducted with a
commercial finite element package, COMSOL Multiphysics.

Due to page limit, only selected information and simulation results are presented in the paper. The
detail fundamentals of heat transfer equations in COMSOL and heat transfer in general can be found
elsewhere [1-5]. The model is 2D axisymmetric. Figure 5 illustrate the model’s physical geometry, which
can be referred to that shown in Figure 2(b). The boundary conditions for the heat source and for the heat
sink are set to 233°C and 25°C, as the same as the experimental data shown in Figure 4. The time
dependent model is run and the results are summarized in Figures 6 and 7.

Figure 6 displaces the temperature distribution of the heat pipe testing system model for selected times
at 0, 60, 600, 1200, 2400, and 3600 s. At =0, all temperatures are as the same as the mitial value of
T7=25°C. At =60 s, the heat pipe quickly reaches thermal steady state thanks to its high thermal
conductivity. After /=600 s, the temperature variations are visually and difficultly distinct, although
temperatures are still slightly increased somewhere.

Figure 7 shows the time dependence of temperatures at selected points. All temperatures are obviously
quite close except for the temperatures at two points, R b _air and RO boiler top. The former locates
outward the surface of the insulation and the temperature therefore equals to the ambient temperature of
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25°C. The latter locates near the top inside the boiler (i.e., the water/steam chamber), and the temperature
represents the steam temperature, which is important in heat exchange and waste heat recovery
applications. The steam temperature is stepped up and reaches to a stable temperature of 155°C after

=2.400 s (40 min).

c_
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n 250 200 -150 -100 50 100 150 200 25C

Fig. 5. A 2D axisymmeifric physical geometry for the heat pipe high-T testing system. The unit 1s in mm.
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Fig. 6. Temperature distribution for selected time from 0 to 3600 s.

Comparing the experimental data and the model output, the steady-state temperatures are essentially
close (152°C vs. 155°C, respectively). There is a time lag between the experimental data and model
results (Figures 4 vs. 7). Authors believe that the time lag is due to variation of heating rate automatically
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controlled by the oven used in the experiment. Overall speaking, the model prediction should be
trustworthy.

In addition, 300-mm heat pipes made of SS316 stainless steel and copper are compared by using the
developed model. The surface temperatures of the heat source and the heat sink are 250 and 150°C,
respectively. The steady state time needed for a cooper heat pipe is approximately 0.15 s and 0.45 s for
SUS316 one. It reveals that a better heat pipe thermal performance could be achieved by selecting a
material with higher thermal conductivity coefficient. It should be compromised in terms of the thermal
performance and the application concerns like corrosion. The model could be a useful tool for the
development of heat pipes as well as a heat pipe waste heat recovery system hencetorth.
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Fig. 7. Temperature variation for selected points in the high-T heat pipe testing system. The symbols used in the legend are defined

as follows, ~“0” stands for =0. “i.” for r=the inner radius of the heat pipe tube. “0” for r=the outer radius of the heat pipe tube. “h”

for z=the half height of heat pipe in the heating region, “b” for z=the half height of heat pipe inside the boiler (i.e.. the water/steam

chamber). “boiler” for r=the radius of the boiler, “air” for =the radius of the msulation. respectively. “R0_boiler top™ locates close
to the top of the boiler at #=0.
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