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Oxygen generation from **0 isotope-doped LI,Cu0, caused by electrochemical oxidation

Tomoyuki Ozaki, Yu Taura, Kazuko Yamashita, Ryulchi Arakawa, Hideya Kawasaki, Yoshinori Arachi

ic vehi is crucial that
Li-ion batteries with high energy density have been required for power sources of electric vehicles. In particularly, it
the positive electrodes exhibit a large specific capacity with high cell voltage. The practical candidates for the electrode are limited
such as Li,MnO,-based solid solutions. Based on our previous investigations on LiNiy ;Mn, ;0,, we have focused on Li,CuO, and
LI,Cu0,-Li;NIO, solid solutions to investigato the role of oxygen in the positive electrode.

Background

4 Characterization of copper oxide |+ Ni-substituted Li,CuO,
2% S #CuO, plane s spread into 3 sheet © 1Y Aracty ool ECS Towos 88, (013) 143.161
o Cudd s cloved o e :

[ "Overiap of Cu3d and O2p orbitals.
Indicates the possibility of oxygen
et sy e g (10 VOV i remOVing Uit J i
o enemaicoty
+ Characterization of Li,Cu0,",,
i mre At ot ... -
U Cu 0,

Lgeo, ‘ ® They exgect o ean-

P casacty tue
1ors g et of U kba 3 U

I
* | LiiCu0, = Cu0 + 1120, Li,Cu, N0, = L1, cu, NL,O, ,+ 4120,
S| Objectives

i @ Todstect 0,

b5 -
+ Synthesis of 0 isotope-doped LL,Cu0; and L,Cu; N0, sampies +Sot up for In situ GC-MS 7

CHCHEO0L 10 MEH00), 040
Onoa Ve We sttompted to repéacement of the conventionsi Li,Gud,
e by 0 isotope by sintering in O, stmee @ ot

eicpe by ' in O, stmosphere of o mass

‘Ww-«mmmm.mmmm‘
b s dond

1
i
{[ e deecioas
i
i
i

s teloane directiy from 110D,
Phase changes.
LhCuy IO, = LiCu,

-in L;Cy0,
« We suggested that 0n = 10, 2,
; B Donerated O, my, contribuge 3
T S e o L oot e gt o
e A L o e s e b e | A .
I Ot Ar s 200, & —— v (o ¢
(E=310v) e ee

essure Joining Method for Zn-Al Solder
_ By Pre-Ultrasonic Bonding

shi* ©, Fumiki Kato®, Kenichi Koui* ¢, Shinji Satoa,
' Hiroshi Sato*

M Industrial Science and Technology, *Sanken Electric Co.,

Restrictions during reflaw of Za-Al
preform soder
+Ca fnish on che plated N
“Reflow i1 4 vacuum
“Loud daring reflaw( > Sg/mm’)
= ~Semaller preform than die

Neod fo break the oside flm

To beeak the oxide film of ZawAl preform
duriny £wo restrictions exist.

Ti. i, and Ag plating
N, nd Au plating
Kinds of samples

SN, 0.32mm

Ultrasonsc bonding breaks the axide film of Zn-Al preform, und  Reliability testing method

29rC

o wengh
bt - 323 e e 1 it
Al prefonm did ot R 8 joint.

With uhrasanic bonding, the inerface e
it et refow - =

A7, ning processabave 19 C far S by e
hipywas devcloped using it asank oding before e T otk was s by e C e fo Sk ooty

{Proseson Pogea (STF), “Nextgencaccn pover
- S power
12 valder Joint afier reflon and shear strength lacreased. clectromics.” and “The Novel Semsconducior Power Electronics
phay ”
dard = NEDO)

Synthesis of Alternate Layered Structure of
f SHINSHU Ruthenate Nanosheet-Graphene Oxide

)~ UNIVERSITY for Electrochemical Applications
Dai Mochizuki, Keita Ishimoto, Yusuke Ayato, Wataru Sugimoto




f CuSn alloy nano-tree and application
Cudn alloy
for gas-sensors
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1) Low cost (ca. $ 0.01—0.001): Printing.
| 2) Low environmental impact: Biodegradable.

(SUMMARY we developed printed pattern of metal
anoparticles on biodegradable polymer substrate
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ircuits with Qxide Thin | ilm ¥ransistors

Introd r
* The &SEHTET is not suitable for an intcgruted gireut on  high resolution backplanc due o the low charge carier ‘mobility, Oxide
TETs are replacing the a-SiH TF Ix because of low cost Prosess the higher mobifity and lower Ieakage current than a-S5.11 TFT- Since |
only the i mhun--lmmwwmmﬂwﬂh“ﬂﬂ?chul TFTS ae oot possil
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P ()pm'ulion;ll Amplifier Circuits with Oxide T'hin Film Fransistors
{ ) g2 Oxide TFT with Solution Based Gate Insulator

- Introductio s 238

* The a-SkH TFT s not sutable for an integrated eircuit on a high resolution backplanc duc 10 the low charge camer mobility, Oxide
TETs re replacingthe a-SicH TFT because oflow cost process. the higher mobility and Jower leskage current than a-SEH TFT, Since
only the n-channel is available in an a-1GZ0 TFT, i d P chanel TFT,
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bealth diagnostics.
* Mo of the analo ciruit i adoping & CMOS-basd o s for the exellent performance, TFTs ca b s o the integrated
circuits the flexi instcad of staching the chips on thesubstrate. For the sening applicatons, we deveioped |
oper schannel 8-1GZO TFTs.
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-cuit with Oxide Thin Film Tr ansistor

Abstract
e TYT (i i ransisio) has igher clctron mobilty and les leakage cosrent than amorphous siican TFT and the 1GZ0 TFT has been
i by many esearchers and usd in the isplay bockplane. I ths work,an amplife ircuit with oxide TFTS i presented. The voliage gains
of 1) was o ass A ampliicr, and it op A 1 e from 2V 103 V

Introduction

re necessary. Foe the compact and flexible devices,
e devices for integrated circuits, thin film
due 1o its higher field effect mobility. The

+ For poctable audio smplificr, ow powet ind compact design
fully integrated circuit on a subsrate is necessary. Among the possib
transistor with oxide semicondoctor material is ooe of the candidates

g i TFT ated 2

+ Mostcommnly used type af power amplifier is the class A amplifcs. The class A amplificr i the most common and
imples form of power ampliie, in which fransstor s always oevstae 0 Wt it conducts doring onc complete
Cycle of the impet signal wavelom producing minimum disortion and maximum amplitude (0 the outpet. The T
efficiency of this type of circuit i low and it delivers small power outpts Tt s A e T

in which TFT was uscd as a load resistance. In the invertez, the gate i

voltage for the input gate electrode is alsa important, and the
in which we should design the resistor divider according 1o the

+ To get high amplfication gain. we designed a common saurce amplifies
connected 10 drain electrode, for the load resistance. The DC operating
conventional way 1o get the operation voltage is using resistor divider,
charscteristcs of TFT

Amplifier Circuit with Inverter
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qtmazation. econdieg © te process conditiom.

. Afec optmizmion of ines o TFTs, wecosld > We opumized the circuit o opeesie for the
hiain the voltage ga of 10 threshold voliage changs froe 2103 V.
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g cl A me i it o TFTL s the ol i o 1w o
* The capaceor wan removed between two lifiers tirmi
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b from 2103 V.
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Oxide TFT with SOG Gate Insulator

i 2

K. Teii'y H. Ito!, N, Katayama', S. Matsumoto'

wshu Universiry, Kasuga, Fuknoka 816-8580. Japan
. Sengen. Toukuba. Ibaraki 303-0049, Japan
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Atomic Layer Deposition of Zn(0, S) Buffer Layer on CIGS Solar
Cell
Vtsuan Yu'*, Chi-Chung Kei', Ming-HuaShino?, Wen-Chich Li, Cheng-Han W' Shih-Chang
k Liang?, Cuo-Yo Ni* it
! nstrument Technology Research Center, National Applied Research Laboratories, Hsinchu 300,
Taiwan, R.O.C. »
*Metallurgy Section, Material & Electro-Optics Research Division, National Chung-Shan Institute of

Science and Technology, Lung Tan, Taiwan.  AyARM] abs
-mail: ysyu@narlabs org.tw s
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C o n c I u S I o n S ] Characteristics ofSr,,_xﬁ/Vi,,,D,

in Humidified Methane Fuel for Solid Oxide Fuel Cells
Eun gyoung Park! Jeong Woo Yun®
Chonnam National Unwersity. (wyuniinu ac)

\OFCs

A solid oxide model has been built in STAR-CCM+ utilizing the electrochemical reaction and
reaction heating model. In the current version 11.02, fluxes and li i must be
specified manually. Six month goals are to replace them with the ability to electrochemically react
multi-component gas species. The electrochemical reaction model has been confirmed to conserve
electric current at the cathode collectors and across the triple phase boundaries. Species mass

is by ified reaction fluxes to component flows at inlets and
outlets. Finally, the electrochemical reaction heating model based on temperature dependent
ials is d based on f i py data from NIST thermodynamic

tables and the model is shown to be conservative when incorporating joule heating.

Electrochemical Reactions produce species (6 mo.)

Phasic Porous Media (6 mo.)
. Distinguish solid and fluid variables Volume Porosity
. Phasic Temperatures, Electric Potentials, etc. Vi=y
Volume A ged El hy i (pl: Area Porosity Tensor
area porosity: ity analog? A=K-A
Transport Equation

a
zfpv‘defpm-u'-f/‘.al=Is‘¢w

EMFCs

1) Multiphase in porous media

2) Hydrated membrane

3) Porous electrode readionsr

T — ~
MDX Data Fittmg . Concentration (Mixture Entropy)* LA S R
i = [T %N :
6K cell prototype ot v“"‘-I"FZv“"(c,'")l M/j/ A
. Current (electrode = tab
collector) “
e Cell Stack
s Energy (in — out = power) )
Steady State in 150-500 iterations Air = 100 stack: 3M cells 10K iterations
. Runs one minute (1 core) . 10 hours 48 core
. Tune exchange current I Room for improvement!
a - Electric Potential hardest to
% converge
= . Needs Good Initial Guess
! Direct solve 1000 equations
os2
os
NS compoe S07C s 3Gl i
r’h-di-'-mlm - 038
o
Energy/Voltage Losses i
oxs
Maximum: Enthalpy consumed by reaction* g E%E N
. J O B
M—IZMHI"’FM/]I« N
e G =L
b= | S (87757 - [ - i
3 Ohmic - T ess pacoonorrzol | e
).045 054 068 082 096 Electric Potential (V)
v...=j%’ﬂ/j1-u .
*  Activation ST Lm——
v.,=fn/-a/f1-u s
5 Concentration (Mixture Entropy)* |
RT G CurrentDensity Monitor (A/cm2) _—
e B
Vo P | B . 'y
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The Effect of Thermal Hydrogenation Processing on

the Nano-Size Grain Refinement and Oxide Layer ! nt!'Od u cti O n_

Formation of Ti-6Al-4V Alloy
1. Ti-6-4 alloy is a promising material.

L. M. Wang, C.J. Tsai Major applications are in :

@ aerospace,

o @ automobile,
@ military industries
because of its :
@ low density,
@ excellent mechanical,

Chung Cheng Institute of Technology, @ corrosion properﬁes

Dept. of Power Vehicle and System Engineering

University of National Defense, Taiwan, R.O.C. % . e‘ ﬁ
=/

2. Recently, extensive studies have been reported 5. THP can produce nano grains.
on refinement of the grain size of titanium alloys [Yu,06;She,07;She,09].
using a thermohydrogenation process (THP) by
employing hydrogen as a temporary alloying 6. Oxide layer produced on nano grains may be a
element. good way to enhance the corrosion resistance of
Ti-6-4 alloy.
*THP, by using :
hydrogenation and dehydrogenation process 7. There are limited reports on the corrosion
[Yu,06;She,07;She,09]. behavior of grain-refined Ti alloys resulting from
the THP. 20)
@ ps
4/57
8. Control of O, flowing rate into the furnace The thickness of oxide layer and _ o
containing THP processed sample of Ti-6-4 alloy its corrosion resistance (i.,,) vs. Earlierworks in Literature

E p £ from related treatments
may be possible to control the desirable thickness

and composition of Ti-6-4 and therefore :
improve the corrosion resistance of T-6-4 alloy.

TV

; ’ Wangetal. , J. ECS, 160,(11) C560-C568(2013)
b2

-

o

5/57 6/57

However, in the literature:

*  Yu [Yu,06] and Shen [She,14;She,09 ] studied
THP at 600 C with hydrogenation loading at the
ranges 0.1-09 H/M and reported with
disagreements in hydride formation and
microstructure evolution with above reports.

* It is noted that the employed temperature for THP
is mostly among the range of 650-850 ‘C with the
amount of hydrogenation mostly lower than 0.4
H/M (the mole ratio of hydrogen to the alloy
atoms of related alloy)

[Sun,09 ; Sha,07; Sha,08 ; Liu,09 ; Zhu,09 ; Zha,10;
Zha,08;Sun,09; Li,07; Zon,07]

7157 8/57
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*In 2010 Zhao et al.[Zha, 10] confirmed the phase
transformation leading to the grain refinement and
further proposed that the recrystallization may
result in the grain refinement when studied THP
with hydrogenation loading at 0.1-0.4 H/M at 750°C
and dehydrogenation at 700°C.

*Although the grain refinement in THP process was
found as early as in 1979 by Mahajan et al.
[Mah,79], the possible mechanism was not
explained until in 2009 by Shen et al.[She,09] on the
loading of 0.7 H/M at 600 “C in THP process, in which
phase transformation was proposed as the main

risbon for e il PTSHE. *Shen et al. [she, 14]proposed that during

hydrogenation process, the precipitation of the
hydride of B, and & phase leads to the defects in the
matrix and these defects would be the main routes
to cause the grain refinement.

957 1057
*However, based on the phase diagram not in
agre.ement and microstrUf:ture fro.m SEM only * The aim of this study is to add more understanding
possibly makes the uncertainty remained; as far as of the defect produced during THP process in terms
the defect is concerned, the lack of the atomic size of microstructure evolution leading to grain
scale evidence may lead to the different arguments. refinement with hydrogenation loading at 0.1-0.7
*Thus, the phase diagram, microstructure evolution, H/M at 600°C and dehydrogenation at 600°C.
the influence of produced defects to the grain
refinement still need further studied to build up its
more accurate features during THP process. ﬁo ‘L

. Se—
157 1257

« Sievert's volumetric apparatus was used for THP
treatment.

« Hydrogenation : 600 C /30 min

+ Dehydrogenation : 600 'C/2 h, followed by air cooling for
approximately 30 min to room temperature.

Experimental work

@ Pressure transducer

+ as-received(AR)
* B-solution treatment at 1050 C in vacuum for 0.5 h,
followed by furnace cooling to room temperature(AR+BST)

Sample

D) Vacwum gauge

Rotary pump

preparation

Vehaber
Redilor Vs

Fumace

Fig.1 Sievert’s volumetric apparatus diagram 44/57

13/57

* ANN : without O,+Ar (500cc/min) at 704°C /2h/air cooling

* ANN plus O, : with O,(50cc/min)+Ar (500cc/min) at704°C/

Annealing 2h/air cooling 06
treatment 0.54f--=-==-= T T
v g 044
~ The hydrogen contentis up to 0.54 H/M
Temp. gauge E‘ (H/M : hydrogen-to-metal-atomic ratio)
O g
0.2
control
e |——{Guoen©)
: : i - 600°C
Fig.2 Annealing treatment diagram "o 5 10 15 20

All the samples were ground with SiC abrasive papers and
further polished with fine grade diamond paste before each

stage treatment.

15/57
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Result and Discussion

Time [min]

Fig.3 Typical kinetic curves for hydrogen absorption
1




AR+BSTTHP+ANN(O2)

(polished) S
z S 1
<3 - 2
= Sl ¢ ® 2| M wThAl
= | AR‘BSTATHPFANN V () B phase

walished) = L
E §T “ 0 “ @ o phase
= [] o ‘ .
= - M)\ J \‘} | T m———
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< | (polished)
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z » . o - .
Z | ArsBsT a 5 O
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— .
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4'0 4‘5 5'0 ;5 60 65 70 75 80
2-0 (degrees)

Fig.4 XRD patterns of Ti-6-4 alloy after related treatments.
The identified phases of a, a2, and 8 are marked.

%)
S
0
o
w
S
s
b
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600°C, hydrogenation and dehydrogenation

{o3atiM) N \R+BST+THP

Fig.6 Optical micrographs of Ti-6-4 alloy subjected to THP
treatment at 600°C following B-solution treatment

the lamellar structure is preserved
associated with severely etched feature after THP treatment

19/57

AR+BST+THP+ANN

magnified

oM SEM
Fig.8 Optical and SEM micrographs of Ti-6-4 alloy subjected
to post-THP annealing treatment (704°C /2h/air cooling)
the thicker a grains are obtained due to the effect

of grain growth attributed by post-THP annealing treatment
21/57

(b)
[1101]a// [1102]a2

(1102)a

(1011)e
L]

O111)a -
° (112002

o Caima
L]

o

o
L]

i .
Fig.10 (a) HRTEM micrograph of AR+BST+THP+ANN
condition and its Fast Fourier Transform analysis
of the framed area inserted
(b) the corresponding schematic illustration of FFT

pattern
23/57

—

i

equiaxed a and intergranular g

lamellar structure

Fig.5 Optical micrographs of B-solution treated Ti-6-4 alloy

18/57

AR+BST+THP

magnified
T

refined a phase

SEM

Fig.7 Optical and SEM micrographs of Ti-6-4 alloy
subjected to THP treatment at 600°C

grain refinement within the a matrix is observed
through SEM technique
20/57

AR+BST+THP+ANN(O,)

magnified

oM SEM
Fig.9 Optical and SEM micrographs of Ti-6-4 alloy
subjected to post-THP annealing treatment
with O,

22/57

Fig.11

Relatively distorted
region close to grain
boundary are arrowed.

24/57

24/57
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(b) AR+BST+THP

Fig.12 SEM micrographs of the top surface of oxidized
Ti-6-4 alloy of AR+BST and AR+BST+THP
conditions

Intensity (Arbitrary units)

458.20 ¢ Ti 2P, Ti 2P
I
AR+BST+ANN 463.82

457.99 eV

R+BST+THP+ANN(O2) ™\ 463.94
458.17 eV

464.{4

AR+BST+THP. 45821 eV 464.02
458.13 eV

R+BST ky 464.07

450 455 460 465
Binding Energy (eV)

25/57

Fig.15 XPS spectra of the Ti 2p region of the top

surface after related treatments

The Ti 2P, peak was positioned at about 458.2 eV, indicating

oxidized Ti** in the form of TiO, in agreement with the work of

Intensity (Arbitrary units)

Fig.17 XPS spectra of the V 2p region of the top

The Vv 2P peak was positioned at about 516.9 eV, indicating

oxidized v**in the form of V,O5 in agreement with the work

517.20 =V 2Pz
AR+BST+ANN

517.39 eV
AR+BST+THP+ANN(O2)

516.77 eV

AR+BST+THP

: :

65 70 75 80
Binding Energy (eV)

surface after related treatments

Fig.19

Beta structures

27/57

) 29/57

Typical parallel alpha and

3157
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(b) AR+BST+THP+ANN 0.56 pm

(a) AR+BST+ANN 16.44 pm
thicker bu

magnified

greatly thinner, de adhered oxide layer

i

refined substrate

Ti-6-4 alloy after related treatments

(c) AR+BST+THP+ANN(O;) 1.04 pm

refined substrate

Fig.14 Cross sectional SEM micrographs of oxidized

7340¢ Al2P
AR+BST+ANN
z
= 72.99 eV
]
2 |ArsBsTeTHR ANNOY
g
£ 73.57 eV
2 G
) - —
<
>
z
‘@ |[AR+BST+THP L
=
]
=
= |AR+BST 7243 ¢V
65 70 7s
Binding Energy (eV)

Fig.18

(0.1-0.7 H/M)

Fig.20

zone axis:[1123]

zone axis:[1011]

80

Fig.16 XPS spectra of the V 2p region of the top
surface after related treatments
The Al 2P peak was positioned at about 73.2 eV, indicating

oxidized AP+ in the form of Al,O; in agreement with the work of

)

Refined Ti-6-4 substrate producing thinner oxide layer gy

28/57

SEM image after related
hydrogen loadings

3057

Ti-6Al-4V THP loading 0.1 H/M

3257




( Ti-6AI-aV THP loading 0.1 H/M)

Fig.22
Fig.21 Dislocation loops together Ti-6Al-4V THP loading 0.3 H/M
with Delta phase being
detected
3357 3457
Fig.23

(Ti-6Al-4V THP loading 0.3 H/M) Fig.24
Stacking faults as arrowed in

Ti-6Al-4V THP loading 0.5, 0.6, 0.7 H/M
TEM. 80.5,0.6, /!

38557 36/57

Fig.26

Stacking faults as
arrowed in matrix are
observed loading at
0.7H/M )

Fig.25

Il defined area as
arrowed in the HRTEM
image

(Loading at 0.7 H/M)

[10829],
37157 38/57

The schematic model proposed to
illustrate the found dislocation
loop and the remained stacking
faults in matrix.;

o0
8o

(a) (b)

FICEOEOLOIDNTEONENNND  CEOUBODANEITODCONONN,

R L L E R AL

U IIITITELI T

OBEIIIEIIIEREIE RIS

) AT RIS ¢
Fig.27 e
eETTIIIITIIINEIIIT

‘ —

COO0080
BCOOCOOEOO000,

After THP, E
possible i
mechanism of = : =
dislocation loop 6 Al Gekydrgpuntlin, he aoRt. _—
formation and s
stacking fault

produced.

(d) is not easy to occur since
the significant strain energy
may be increased.

roooe
e

39157 4057

20




(b) hydrogenation

Fig.29

(a) The o+
lamellar
structure after
p solution
treatment,

(b) After0.1,0.3 or

ullml

0.5 H/M THP
hydrogenation
the schematic
microstructure
evolutions

03 HM l 0.5 1M l
/,

41557

The Ti,Al and V atoms in the ill
defined area that may lead to the
amorphous like microstructure.

ill defined

Fig.31

4357

-lll defined areas present the amorphous
characterics that can form an area to cut
the continuity of the lattice arrangements ;
as a result, nano a, precipitate of nano a,
can form refined a and B and this blocking
effect can result in a grain refinement.

[Sha,08] Shan, D. B., Zong, Y. Y., Ly, Y., and Guo,
B., “The Effect of Hydrogen on the
Strengthening and Softening of Ti-6Al-4V
Alloy,” Scripta Materialia, Vol. 58, pp. 449-452,
2008.

[Liu,09] Liy, H. J., Zhou, L., Liu, P., and Liu, Q.
W., “Microstructural Evolution and Hydride
Precipitation Mechanism in Hydrogenated Ti-
6AI-4V Alloy,” International Journal of
Hydrogen Energy, Vol. 34, pp. 9596-9602,
2009.

[Zhu,09] Zhu, T. and Li, M., “Effect of 0.770
wt.% H Addition on the Microstructure of Ti-
6Al-4V Alloy and Mechanism of & Hydride
Formation,” Journal of Alloys and Compounds,
Vol. 481, pp. 480-485, 2009.

A7i57

(c) After dehydrogenation, the & phase inversely transformed to a +
B phase, r

Iting in a grain refi effect.
Fig.30
| debydrogenation
(d)The
magnified image
of (¢); the

interfaces of
nano a/a , a/p or
a/a;may form
the ill-defined
area.

4257

Conclusions

@ The THP process results in the

21

formation of refinement structures (refinement of
a matrix by breaking it into several pieces) and
the precipitation of a, (TizAl) in Ti-6-4 alloy.

44/57
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