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Throughput Improvement with Multiple Antennas
and Channel Allocation for Ultra-Dense Femtocells

BEFERRZAFARBFIRFRT T Mol 2 FobF

Ang-Hsun Tsai, Member, |EEE, Chung-Hsien Tsai, Member, |EEE, and Li-Chun Wang,
Fellow, IEEE
il FRE

Abstract

In this paper, we investigate the impacts of channel allocation with multiple antennas on link
reliability and throughput, and formulate an optimization problem in the ultra-dense
multi-antenna orthogonal frequency-division multiple access (OFDMA)-based macrocell and
femtocell heterogeneous network. We develop a distributed joint transmission antenna
selection and channel allocation scheme to achieve the tradeoff between the throughput and
link reliability in this optimization problem, and to improve the users' link reliability and the
femtocell throughput. This scheme can jointly allocate suitable antennas and resource blocks
(RBs) for transmission with two steps of comparisons on channel gains of RBs and antennas.
Simulation results show that the proposed scheme with ten antennas can achieve 130% higher
throughput for femtocells than the random channel allocation scheme with four antennas

under the link reliability requirement.

Index Terms—Small cell; femtocell; heterogeneous network; resource block allocation;
multiple antennas; link reliability; throughput.
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Throughput Improvement with Multiple Antennas
and Channel Allocation for Ultra-Dense Femtocells

Ang-Hsun Tsai, Member, [EEE, Chung-Hsien Tsai, Member, IEEE, and Li-Chun Wang, Fellow, IEEE

Abstract—In this paper, we investi the impacts of cl lal-
location with multiple antennas on link reliability and throughput,
and formulate an optimization problem in the ultra-dense multi-
sonal freq ¥-division multiple access (OFDMA)-
based macrocell and femtocell heterogencous network. We develop
a distributed joint transmission antenna selection and channel
allocation scheme to achieve the tradeoff between the throughput
and link reliability in this optimization problem, and to improve
the users’ link reliability and the femtocell throughput. This
scheme can jointly allocate suitable antennas and resource blocks
(RBs) for transmission with two steps of comparisons on channel
gains of RBs and antennas. Simulation results show that the
proposed scheme with ten antennas can achieve 130% higher
throughput for femtocells than the random channel allocation
scheme with four antennas under the link reliability requirement.

" rih,
or

Index Terms—Small cell; femtocell; heterogencous network;
resource block allocation; multiple antennas; link reliability;
throughput.

I. INTRODUCTION

Small cells are low-power, low-cost and operator-managed
wireless access points that can improve coverage and system
throughput. In general, small cells are divided into three types:
microcells, picocells, and femtocells. Microcells are often de-
ployed in the outdoor environment, such as rural and urban
areas. Picocells and femtocells are deployed in the indoor envi-
ronment, including enterprise buildings and apartment houses.
With the popularity of small cell networks, the amount of
mobile devices connecting to the networks grows massively,
and the traffic demand increases rapidly. For three types of
small cells, the amount of femtocells 15 the most, hence the
interference problem is the most serious. With an ultra-dense
macrocell and femtocell heterogeneous network, a femtocell
user (FUE) suffers the femto-to-femto and macro-to-femto

This work was sponsored by the Ministry of Science and Technology
(MOST) of Taiwan under grants MOST 104-2221-E-606-005- and MOST 105-
2221-E-606-003-,

A.-H. T=ai is with the Department of Electrical and Electronic Engineering,
Chung Cheng Institute of Technology, National Defense University, Taiwan
(e-mail: anghsuni@gmail com).

C.-H. Tsai is with the Department of Computer Science and Information En-
gineering, Chung Cheng Institute of Technology, National Defense University,
Taiwan (e-mail: keepbusytsaii@gmail.com).

L.-C. Wang is with the Department of Electrical and Computer Engineering.
National Chiao Tung University, Taiwan (e-mail: lichun@ecc nctu.edutw).

interference, and a macrocell user (MUE) undergoes the femto-
to-macro and macro-to-macro interference [2], [3], [6], [10].
Therefore, managing the two-tier interference becomes a key
to the success of improving the service quality and system
throughput.

For an orthogonal frequency-division multiple access
(OFDMA)-based femtocell system, adaptively allocating radio
resource can help manage the two-tier interference due to
the increase of channel diversity and user diversity. Moreover,
increasing the number of antennas equipped on the femtocell
base station (FBS) can provide the spatial degrees of freedom
to increase more available channels to be selected for reliable
transmission. Consequently, the design of resource allocation
schemes needs to simultaneously consider the link gains on all
channels with multiple antennas for a user to control the two-
tier interference and improve the throughput.

In the literature, most papers [1]. [4], [5], [7], [8] inves-
tigated resource allocation schemes in the femtocell network
system without considering the effect of multiple antennas.
The authors in [4] proposed a distributed resource allocation
algorithm in the OFDMA femtocell networks to maximize
the total minimum spectrum efficiency of femtocells with two
conditions: faimess among the femtocell users and quality of
service (QoS) protection for macrocell users. The work in [1]
proposed a semi-distributed interference management scheme
to cluster the femtocell base stations, and performed a channel
and power allocation scheme for each group in the two-tier
cellular OFDMA femtocell network., An iterative algorithm
to jointly allocate subchannels and control the transmission
power in [7] for the OFDMA mixed macrocell and femtocell
network. The works in [8] and [5] formed a multi-objective
optimization problem to maximize the throughput of users and
to solve the admission control problem with resource allocation,
respectively. However, these papers [1], [4]. [5], [7], [8] did not
investigate the mpact of multiple antennas for femtocells.

In this paper, we develop a distributed joint transmission
antenna selection and resource block allocation scheme to
help femtocells select the antenna with highest link gain from
the standpoint of channel for transmission for the ultra-dense
OFDMA macrocell and femtocell heterogeneous network. The
developed scheme can jointly allocate suitable antennas and
resource blocks (RBs) for transmission with two steps of
comparisons. Firstly, the scheme compares all the link gain of
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antennas on all RBs, and selects the antenna with the highest
average channel gain on each RB as the candidate antenna for
transmission. Secondly, the scheme compares all the average
channel gains on the candidate antennas, and allocates the
suitable antennas and RBs from these candidate antennas. With
the limit of available femtocell RBs, the scheme can achieve
higher femtocell throughput and link reliability than the random
channel allocation scheme for femtocells.

The remainder of this paper 1s organized as follows. Sec-
tion II introduces the problem formulation, and the proposed
resource allocation scheme is detailed in Section III. We show
the simulation results in Section IV. Finally, our concluding
remarks are given in Section V.

II. PROBLEM FORMULATION

In the ultra-dense multi-antenna OFDMA femtocell net-
work, system throughput and link reliability are both essential
factors in resource allocation schemes. From the throughput
perspective, the system can increase the number of RBs al-
located to the femtocell to increase the data rate. However,
the FUEs may suffer the strong interference from all adjacent
femtocells, and the link reliability decreases. Alternatively.
the FBS can equip more antennas to increase the available
channels with high link gains for improving the throughput.
Nevertheless, this may result in lower link reliability due to the
decreasing transmission power of each antenna. From the link
reliability viewpoint, allocating fewer RBs to femtocell system
can decrease the interference effect for users, but this brings
about system throughput degradations. Therefore, the resource
allocation scheme needs to simultancously consider the number
of allocated RBs, channel gains and transmission antennas in
the ultra-dense multi-antenna OFDMA femtocell network to
achieve the optimal system throughput and link reliability of
LSETs.

To achieve the tradeofl between throughput and link relia-
bility, we formulate an optimization problem to determine the
optimal number of antennas equipped on each femtocell NJF
for transmission and the optimal femtocell RB usage ratio p,..
and the optimal KB allocation with antenna selection, where p,,
15 defined as the ratio of the number of used RBs to the total
number of EBs. The objective of formulation aims to maximize
the i-th femtocell throughput CF subject to the link reliability
requirement P, s, for all outdoor MUEs and indoor FUEs.
The optimization problem can be expressed as

Nggs NF
~F \ 7
max G E 2 ERBmgi Bre-m_ . (D
NEwppr e np n=1 $=1

subject to

‘RB S {D 1}3 Vn,‘v'é,‘v'-i, (2)
\rF

ZCRR ETO X S {U 1}? %"n,V-i, (3}
=1

Nag NI

L >_,E.f?‘ﬂ,n,¢,i i NRR: V‘!, (4)
n=1 ¢=1

Bral, FUE = Frelth, (5)
Prapve 2 Pret ths (6)

where N gg 15 the total numherc)fRBs, and Bgrg 1s the effective
bandwidth of a single RB. f; " is the theoretical spectrum
efficiency of the RB = for the i-th femtocell using the ¢-th
antenna to transmit. F.f,m‘w‘w is the allocation outcome for
the RBs and antennas in the i-th femtocell. In the following,
we c*cp]am the above constrains. The constraint (2) represents
that €R B¢, 1 an indicator function and can indicate if the
RB n is al ocatcd to the FUE in the i-th femtocell with the
antenna ¢. If the EB n is allocated to the FUE i the i-
th femtocell with the antenna o, EEB‘““&". 1; otherwise,
€hpass — 0. The constraint in (3) states the limitation that
each RB can be allocated to the FUE through at most one
antenna in a femtocell. With the constraint (4), the total number
of RBs allocated to the FUE in the i-th femtocell is limited to
(e Nge). The link reliability of indoor FUE and outdoor MUE
must be higher than the minimum link reliability requirement
with the constraints (5) and (6), respectively.

III. JOINT TRANSMISSION ANTENNA SELECTION AND
RESOURCE BLOCK ALLOCATION SCHEME

In this section. we combine the resource block allocation with
multiple antenna selection for the optimization problem in (1)
in the ultra-dense multi-antenna OFDMA femtocell system.
A channel-oriented channel allocation scheme (COCAS) 1s
proposed to help femtocells select the antenna with highest link
gain from the standpoint of channel for transmission by two
steps of comparisons on channel gains of RBs and antennas. In
the first comparison, the scheme compares the average channel
gain of each antenna on each RB, and selects the antenna with
the highest average channel gain as the candidate antenna for
each RB. In the second comparison, the scheme compares the
average channel pain of each candidate antenna on each RB,
and selects the top (p,. - Npg) RBs to transmit. Therefore, the
COCAS can determine the optimal a‘ﬁﬂ:nﬁ-_“. with a given g,
and a given N to transmit for the ultra-dense multi-antenna
OFDMA femtocell system. The allocation procedure of the
COCAS 1s described as Algorithm 1.

We explain these steps by the followmng example mn Fig 1.
In Fig 1(a), there are N} = 3 antennas equipped on each
FBS and Npp = 4 RBs, and the corresponding channel gains
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Algorithm 1 COCAS
Input:

hpewiy 7090, ¥\ All the channel gains of cach subcar-
rier from users in the i-th femtocell.

Output:
P \ Ta :
ERBAdai" \\ Femtocell RB allocation.
Pseudo-code:
nN,.
s 2 )
L Bavgngs = Fo o lhreoal”s ¥,V .
T l=(n—1)N..+1
\\ Calculate the average channel gain of each RB for each
antenna.
% £hp e =0, Vn,Ve,Vi.
3 0= {].,'2, e ,-NRB}-
4: for n= 1to Npp do
5 ¢ = argmax haug,n,é,i »

1<¢<NF

6 for = 1to (p. - Nrg) do

T: fi= 1a£|§£n;a; h“gm,ém‘-, YneQl,
~F

g ém?,w Da,i L,

9 Q=0-{n}.

10: end for

11: end for

are presented as the histogram. Assume that the femtocell RB
usage ratio is pp = 0.75, i.e., there are pp = Npg = 3 RBs
allocated with the proper antennas for the user. The procedures
are described as follows:
(a) First comparison:

=5 hml_g,RB:,e"-,,l' > hot‘g,h’Bw’ﬁ':,‘f > hm'g,RB,.és,i

=P =1= huvg.RBnéhi
= haug.RBg«,ﬁn,'i > hm-g,.‘i‘ﬂa,%‘i > havg,RBg.¢3,i
> P2 2= hnvg,HB:‘&:,i

= havg,RBy,61,i = Navg, RBydayi > Ravg, BBy gs i
S ¢a=1= h’augﬂﬂ:,@;ﬁ
= havg,RBy ¢3¢ > havg, RBa,gii > Ravg, RBy g6
= g =3= huvg,ﬁ'ﬂ.ﬁlﬁx,i
(b) Second comparison:

- h >h h

avg,RBy, ¢q,i avg, RBy s, = avg, RBy dy.i

thetop 3 candidates

(c) The allocation outcome is shown in Fig 1(b).

1V. SIMULATION RESULTS

In this section, we show performance improvements of the
channel-oriented channel allocation scheme (COCAS) for the

4 =1 \

. ¢| a¢23¢5f\ ¢] a¢'29 3 gﬁ] a¢2r¢3 ¢ 1 a¢23¢_f\
RB, RB, RB, RB,
(a) Channel gain of each antenna for cach RB

honpi RBi  RB, RB RB,
é 1 0 0 0
(5] 0 1 0 0
B 0 0 0 1

(b) Allocation outcome

Fig. 1. Anexample of COCAS. Assume that the number of antennas equipped
on each FBS is N = 3, the number of RBs is Ngg = 4, and the femtocell
RB usage ratio is p. = 0.75. The average channel gain of each antenna on
each RB are presented as the histogram.

ultra-dense multi-antenna OFDMA  heterogencous macrocell
and femtocell network with the complicated two-tier interfer-
ence, compared to the random channel allocation scheme. The
downlink of the multi-antenna OFDMA femtocell system with
two-ticr interference in the apartment houses is considered. The
simulation environment is shown in Fig. 2(a), where a group of
25 femtocells are separated by d,; = 20 m, and covered by a
macrocell with a radius of /,,, = 500 m. Each FBS is equipped
with N/ antennas. Figure 2(b) shows that cach house covers
an arca of 100 (meter®) and has four 5 = 5 (meter?) rooms.
The FBS is deployed at the center of the house with a shift
of (0.1m, 0.1m). It is assumed that there is only one FUE in
cach house, and only one MUE is appeared in the street arca
of 25 femiocells. The indoor FUEs™ locations are uniformly
distributed within the house, and the outdoor MUE is located
in the shadowed region with width of (d,; — 10)/2 (meters)
surrounding the house, as shown in Fig. 2(b). Additionally, both
FUE and MUE are equipped with only one antenna.
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Fig. 2.

An illudrative example of the two-ier interference scenario in
multi-antenna OFDMA femtocells: (a) a cluster of 25 femtocells, each indoor
femtocell user faces femto-to-femto and macro-to-femto interference, and the
outdoor microcell user undergoes the femto-to-macro interference from all
neighboring femtocells. (b each femtocell is surrounded by the streets with

{dyy — 10)/2 (m}) and one macrocell user is appeared in the sireet area of 25
femtocells.
TABLE 1
THE DOWNLINK MULTI- ANTENNA OFDMA FEMTOCELL S¥YSTEM
PARAMETERS
Parameters Values
Carrier frequency (fz) 2.0 GHz
Magrocell radius (B ) 500 m
Transmission power (MBS/FBS) A6 dBm [/ 20 dBm
MES antenna 'gsin (G) 15 dB
Noise figure (MBS/FBS/UE) SdB/S5dB/7dB
System bandwidth (£) 10 MHz
FET size (Nppr) 1024

Number of RBs (Nzz) 50
RE bandwidth {Brg) 180 KHz
Mumber of data subcarriers (N) 600
Number of subcarriers for each RB (V..) 12
Predefined effective CINR threshold (v, )

for link reliability requirement

Wi Vol teliability equirericat (Frel i6)

-2.5 dB
5%

The channel model and the definitions of link reliability and
femtocell throughput are referred to our previous work in [9].
Table T hists the related system parameters for the downlink
multi-antenna OFDMA femtocell system. With the simulation
results, we can design the optunal N,F, p- and sf'? o for
higher throughput and link reliability by using the COCAS in
the multi-antenna OFDMA femtocell system.

Link Relitbility
=
00

~¥—FUE, COCAS
- FUE, Random

—&—MUE, COCAS
-Gr—=MUE, Random

--- Lk Belighility Requirement

- T LT . b b —|

1 5 10 15 0 25 30

Number of Antennas Equipped on Each Femtocell, Nf

Fig. 3. Link reliability of outdoor macrocell user and indoor femtocell user
versus number of antennas equipped on each femtocell, for the COTAS and
random channel allocation scheme in multi-antenna OFDMA femtocel] systems
with femtocell resource block usage ratio o, = 0.2,

P05

0.95 R
— g

09 e |

£ 085 ¥

2 e

5 08 ey

| |

2 0.75

#—FUE, COCAS
—A— FUE, Randorm

o= MUE, COCAS
—G— MITE, Ramdern
Lk Relability Requeement N 4

1 5 10 15 20 25 30
Number of E d on Each F
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Fig. 4. Link reliability of outdoor macrocell user and indoor femtocell user
versus number of antennas equipped on each femtocell, for the COCAS and
random channel allocation scheme in multi-antenna OFDMA femtocell systems
with femtocell resource block usage ratio p,, = (0.5,

A. Impacts on Link Reliability

Figures 3 and 4 show that the link reliability performance
of indoor FUE and outdoor MUE against the number of an-
tenna equipped on each femtocell N in the shared-spectrum-
allocation femtocell system with femtocell resource block usage
ratio p, = 0.2 and p, = 0.5, From the figures, we have the
following observations:

1) As the femtocell RB usage ratio p. decreases, the link
reliability of the ndoor FUE increases slightly, while the
the link reliability of the outdoor MUE increases obviously
because of the decreasing femto-to-femto and femto-to-
macro interference.
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Fig. 5. Average femtocell throughput versus number of antennas equipped
on each femtocell, for the COCAS and random channel allocation scheme in
multi-antenna OFDMA femtocell systems.

2) With the link reliability requirement F,..; > 90% for in-
door IF'UE and outdoor MUE under the femtocell RB usage
ratio p, = 0.2, the optimal number of antenna equipped
on each femtocell N 2 12 and NF = 4 for COCAS and
random channel allocation scheme, respectively. For the
femtocell KB usage ratio p. = 0.5, the optimal number of
antenna equipped on each femtocell N = 10 for COCAS
with the link reliability requirement P..; = 90% for indoor
FUE and outdoor MUE, Nevertheless, the optimal number
of antenna equipped on cach femtocell N7 does not exist
if the femtocell RB usage ratio p, = 0.5.

B. Impacts on Femiocell Throughput

Figure 5 shows the average femtocell throughput against the
number of antennas equipped on each femtocell NF in the
shared-spectrum-allocation femtocell system. From the figure.
we have the following observations:

1) The average femtocell throughput decreases as the number
of antennas equipped on cach FBS increases because the
FBS evenly distribute the power into multiple antennas,
which decreases the signal power to the FUE. Moreover,
the COCAS can achieve higher average femtocell through-
put than the random channel allocation scheme with the
same number of antenna equipped on the FBS,

2) As the femtocell RB usage ratio p, decreases, the av-
crage femtocell throughput decreases because the FBS
uses fewer KBs for transmission. Nevertheless. the link
reliability of MUE can he increased due to the decreasing
femto-to-macro interference.

From Figs. 3 and 4, the optimal number of antenna
equipped on cach femtocell with the link reliability re-
quirement P, > 90% are NF a2 10 with o = 0.5 and
NF w4 with p, = 0.2 for COCAS and random channel

1
e

allocation scheme, respectively, Therefore. the achieved
average femtocell throughput from Fig. 5 can be 10 Mbps
and 4 Mbps for COCAS and random channel allocation
scheme. respectively. It represents that the COCAS can
achieve 130% higher average femtocell throughput than
the random channel allocation scheme under the link
reliability requirement F,.o; > 90% for all users.

V. CONCLUSION

In this paper, an optimization problem was formulated to
investigate the effects of multiple antennas and resource al-
location on femtocell throughput and link reliability in the
ultra-dense multi-antenna OFDMA macrocell and femtocell
heterogeneous network, To achieve the tradeoll’ between the
throughput and link reliability 1n this optimization problem, we
proposed a low-complexity distributed channel-oriented channel
allocation scheme for the multi-antenna OFDMA femtocell
network. Because the COCAS can jomntly select the antennas
and allocate RBs with the higher link gain for transmission
under the limit of femtocell RB usage ratio, the [emtocell
throughput can be improved and user’s link reliability can be
guaranteed. It is shown that our proposed COCAS with ten
antennas can improve 130% higher throughput for femtocells
than the random channel allocation scheme with four antennas
under the link reliability requirement.
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