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Abstract—Indoor air pollution has much greater impact on 

our health than we perceive. Presence of particulates and volatile 

organic compounds (VOCs) in indoor air are in much higher 

concentrations than outdoor air. These particulates and VOCs 

are known to cause numerous health problems to millions of 

people every year. This paper presents a solution for passive and 

continuous monitoring of harmful VOCs using a sensor array. 

We tested common household products for VOCs emissions. The 

items were tested in a controlled laboratory setting which 

simulated an indoor environment. In the laboratory, the 

developed system was able to detect the presence of the harmful 

VOCs and classify the sources of those VOCs. Principal 

component analysis (PCA) was used for identification and 

classification. The presented system aims to assist the users to 

monitor the presence of harmful VOCs and inform about their 

possible sources. How we designed the system and the test results 

are presented and discussed. 

Keywords—Smart sensing system, indoor air quality monitoring, 

volatile organic compounds, sensor array, principle component 
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I. INTRODUCTION  

The indoor air quality monitoring has been widely studied 
for the presence of volatile organic compounds and for toxic 
and unhygienic conditions [1]. Studies have shown that the 
concentrations of some compounds and particles in indoor air 
are two to five times higher than outdoor air [2]. Studies have 
also shown that, every year, there are 1.5 to 2 million deaths 
worldwide that are linked to indoor air pollution [3]. According 
to one study, in the United States, people spend majority of 
their time inside buildings or vehicles [4]. As we spend more 
time indoors than outdoors, indoor air quality plays a vital role 
in our health and well-being. VOCs, emitted by many common 
household items, are a major source of indoor air pollution.  
Some of those VOCs are toxic to humans, and are known to 
have harmful effects to our health [5, 6]. A study conducted by 
the U.S. Environmental Protection Agency in 1987 indicated 
that indoor air pollution is the fourth top carcinogen. Some 
other common adverse effects that people experience when 
they live in poor indoor air quality include, allergic reactions or 
long-term damage to kidneys, liver, and nervous system [10]. 

With increasing regular usage of household products such as 
pest and insect repellents, cleaning products, and odor 
neutralizers, the risk of continued exposure to toxic compounds 
has increased. This is particularly important because the toxic 
VOCs may also be present at the workplace, in the classrooms, 
and at public places [7-9].  

In our previous work [1], we demonstrated use of sensor 
arrays in detecting air pollution caused by common household 
products. The sensor arrays consisted of four to eleven sensors. 
The system was tested with seven household products, and it 
was able to detect the presence of tested products. Building on 
the outcome of the previous work, the presented study 
classifies the sources of the VOCs. In addition, this study was 
conducted using test-chambers and ultra-clean air. PCA was 
used as the pattern analysis technique.  

The system development method, testing and analysis 
procedures, obtained results, and data analysis are presented 
and discussed. 

II. SYSTEM DEVELOPMENT, ANALYSIS METHODS, 

AND TEST PROCEDURES 

A. Sensor array 

The developed array consists of eight sensors including 
seven cross-selective VOC sensors (Sensor 1 through Sensor 7) 
and a temperature sensor (Sensor 8). In order to choose 
appropriate sensors, some considerations of selection are 
required for these sensors, including sensitivity [4], response 
time, selectivity, and stability. While selecting the sensors to 
include in the array, we considered the fact that adding more 
sensors does not always provide additional useful information. 
More sensors also imply a higher cost for the array and the 
need for increased computational resources for analyzing the 
sensor data. Therefore, from initial selection of a larger number 
of sensors, those identified to contribute to the recognition 
were included in the sensor array. 



B. Principal Component Analysis  

PCA is a statistical dimensionality reduction technique 
where the new axes are selected for maximum covariance [11].  
The covariance matrix can be calculated using equation (1).  
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Next, eigenvectors and eigenvalues of the covariance 
matrix are determined. The covariance matrix is a square 
matrix, denoted by A in equation (2). The non-zero vector x is 
called an eigenvector and the scalar λ is called an eigenvalue. 
The eigenvalues will be sorted by their magnitude shown in the 
equation (3). The magnitude of λ1 is the largest and its 
corresponding eigenvector is called x1, or the first principal 
component (PC1). Similarly, the second principal component 
(PC2) is found by finding the second eigenvector of the 
covariance matrix, x2. The second eigenvector is perpendicular 
to the first PC and maximizes the covariance. 
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The main goal of PCA is to convert a high dimensional 
multivariate data into a lower dimensional picture by using 
projections [12]. For example, the aforementioned PC1 and 
PC2 are the desired x and y-axes in a two-dimensional PCA 
plot. Thus, PCA enables simplification of a complex data set 
into a form that is easier to appreciate the relationship between 
different variables. In the presented study, PCA was 
implemented in MATLAB. The original data collected from 
the smart sensing system was imported into MATLAB and the 
presented results were generated. 

C. Training and Testing for Identification 

The method of identification for smart sensing systems 
involves two steps, known as training and testing. Training 
refers to a step of collecting and recording sensor data for the 
known compounds followed by analysis using pattern analysis 
techniques. While collecting data, it is important to keep the 
consistency for each trial so that the training data is not 
affected by external factors. Testing refers to the step of using 
the classification results from training to classify a test data set. 

D. Experimental Setup and Data Collection 

The schematic of the experimental setup is shown in Figure 
1. It consists of three chambers, a control valve, and an ultra-
clean air tank. The test VOCs were introduced in Chamber 1 
with the air valve closed. Sensor array was placed in Chamber 
2. Chamber 3 was used for trapping the outgoing VOCs. The 
air control valve was used to control the flow rate of the VOCs 
from Chamber 1 to Chamber 2. Glass wool was used in 
Chamber 1 to smoothen the VOC release process. The inner 
volume of all three chambers were 250 mL each. In order to 
develop an effective procedure, setup calibration testing was 
conducted with acetone and ethanol. These two chemicals were 
tested individually. Acetone or ethanol was injected in the first 
chamber, and various wait-times (time duration before opening 
the air-flow) and various flow-rates, were recorded to 
determine the parameters that resulted in the highest response 

from the sensor array. It was found that 120 second wait-time 
and 0.5 L/min were optimum parameters. Collection of the data 
began 45 seconds after opening the airflow valve and was 
collected for eight minutes. Purging was carried out for five 
minutes at 1.0 L/min. A temperature sensor was added in order 
to measure ambient temperature and ensure a stable 
temperature condition, and account for any variations. The 
sensor array was connected to an Arduino Mega to record and 
import data. 

 

Fig. 1. Schematic diagram showing the test setup. 

III. RESULTS AND DISCUSSION 

In this study, we aim to classify various pollutants based on 
the collected sensor responses. From a list of common 
household products that are known to contribute to the indoor 
air pollution, the following representative compounds were 
selected for testing: Air Freshener (AF), Insect Repellent (IR), 
Lighter Fuel (LF), Ant Control (AC), Cleaner (CL), Paint (PA) 
and Paint Stripper (PS). Two sets of experiments consisting of 
tests with individual compounds (Section 3.1) and tests with a 
mixture of two or more compounds (Section III.B) were 
conducted. 

A. Individual Compounds  

A total of 30 sets of tests were conducted over an 11 day 
period. Sensor response data was collected for eight minutes 
for each test. A sample sensor array data for the Paint Stripper 
is shown in Figure 2. Sensors 1 to 8 corresponds to the eight 
sensors on the array. 

 

Fig. 2. A sample sensor array response raw data from a test with Paint 

Stripper. 



For PCA analysis, three steady-state data points at 3, 4, and 
5 minutes were sampled from each test. Thus, 24 data points 
were created from each test. PCA of all data sets are shown in 
Figure 3. 

 

Fig. 3. PCA of training data set for seven household products, showing the 

first and the second principal components. 

• Training and Testing 

For testing purposes, each data set (containing data sampled 
at 3, 4, and 5 minutes) was tested against a training data set 
comprising of the remaining data sets (total of 87 data points). 
The process was repeated until each set was used as a test set. 
Table I shows the confusion matrix. 

TABLE I.  CONFUSION MATRIX 

True 

Label 
Predicted Label (%) 

 
AF IR LF AC CL PS PA CA 

AF 99.74 0 0.04 0 1.15 0 0.04 0.73 

IR 0 100 0 2.25 0 0.01 0 0 

LF 0.01 0 99.21 0.01 0.02 0 0.01 37.45 

AC 0 0 0.02 97.53 0 0.02 0 0.02 

CL 0.16 0 0.01 0 98.72 0 0 0.09 

PS 0 0 0.03 0.21 0 99.96 0 0.18 

PA 0.02 0 0.22 0.01 0.01 0.01 99.92 5.01 

CA 0.08 0 0.47 0 0.09 0 0.02 56.52 

 

B. Mixtures of Compounds 

Next, tests were conducted with a mixture of two or more 
compounds. The tested combinations are as follows: Insect 
Repellent and Ant Control; Paint and Paint Stripper; and Insect 
Repellent, Ant Control, Paint Stripper, and Paint. In addition, 
varied concentrations of the compound mixtures were tested. 
For example, a mixture of raised concertation of Insect 
Repellent and normal concentration of Ant Control , vice versa. 
Total of 30 sets of tests were conducted over a 4 day period. 
Sensor response data was collected for eight minutes for each 
test. The PCA results of all data sets are shown in Figure 4. 

 

Fig. 4. PCA training data set for test with multiple VOC sources, 

showing first and second principal components. 

The classification results of the data could be derived into a 
different pattern and presented as clusters in the PCA plot. 
However, the test results could be either Insect Repellent or 
Ant Control when these two items were mixed. This result 
matches a general prediction. While two chemicals were used, 
we could sense those two products. Likewise, while the 
mixture of paint and paint stripper were tested, the recognition 
results would be either Paint or Paint Stripper. For testing, 
procedure of using each data set as a test against a training data 
set comprising of the remaining data sets was utilized. The 
confusion matrix of the results is shown in Table II.  

TABLE II.  THE LIKELIHOODS IDENTIFYING RESULTS 

True 

Label 

Predicted Label (%) 

IR+AC PS+PA IR+AC+

PS+PA 

IR(highe

r)+AC(no

rmal) 

AC(highe

r)+IR(no

rmal) 

AF 0 0 0.01 0.04 0 

IR 95.61 0.05 54.57 28.63 94.24 

LF 0 0.02 0.06 0.15 0 

AC 4.34 1.85 42.09 69.81 5.64 

CL 0 0 0 0.02 0 

PS 0.05 98.01 3.14 1.16 0.12 

PA 0 0.07 0.1 0.16 0 

CA 0 0 0.01 0.04 0 

 

In order to improve the prediction from above results and to 
produce an actionable output for the users, likelihood results as 
shown in Table III were developed. The likelihood was 
calculated based on the Euclidean distance between the two 
groups. Euclidean distance is used to describe the distance 
between two dots in Euclidean space. The Euclidean distance 
formula is shown in equation (4) where “d” represents the 
distance. The parameters p1 to p8 are the mean response values 
of the test data set and q1 to q8 are from the training data set, 
respectively. 

2 2 2

1 1 2 2( , ) ( ) ( ) ( )n nd p q p q p q p q= − + − + + −             (4) 



The similarity is higher while the distance between two 
groups are shorter. Thus, the likelihood can be derived into 
equation (5). The summation of (1/d) represents the reciprocal 
of the summation distances between test data and the eight 
training products. However, in this case, we decided to use 
eight sensors such that each piece of data is treated as an eight-
dimensional dot. If we simply implement equation (5) to 
generate the probability, the percentages would likely be too 
small. Thus, we have to take into account the number of 
sensors and normalize the equation (5). Equation (5) can be 
rewritten as equation (6), which gives the desired probability. 
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Another set of experiments tested two of the products were 
mixed with different concentration levels. First, 0.6 mL IR 
mixed with 0.2 mL AC and second, 0.2 mL IR mixed with 0.6 
mL AC (Table II). Based on the classification results, 
enhancing the concentration only change the intensity, and it is 
was not very effective for identification. Creating another 
mixture recognized as a totally different cluster of data because 
of the differences for sensitivities toward different components. 
When the concentration of Insect Repellent was enhanced, the 
results were more likely to be an Ant Control. While the 
concentration of Ant Control was enhanced, the likelihood of 
Insect Repellent was higher. In this case, the reasonable 
understanding would be the new mixture was slightly similar 
or near to their original pattern of the components which 
caused the high accuracy. Changing the concentrations causes 
a stronger response and affects the response values of the 
sensing system, but does not affect the test results.  

TABLE III.  SIMILARITY INDEX TABLE 

 
Similarity 

Similarity Description Percentage (%) 

1 
Very unlikely 0-25 

2 Unlikely 25-50 

3 Not very likely 50-70 

4 Likely 70-90 

5 Very likely Above 90 

IV. CONCLUSIONS 

We have presented and discussed a system for detecting 
indoor air VOCs. The system consisted of a chemical sensor 
array and PCA classifier. The system was able to classify 
common household sources of harmful VOCs. However, 
additional training data is needed for the system to be able to 
classify a wide range of VOCs and their sources. We believe 
that the presented system makes significant contributions 
towards developing a modality for passive and continuous 
monitoring of indoor air VOCs using chemical sensor array. 

Compared to our previously reported work, which used filtered 
air and open test chambers, in the presented study, air-tight 
chambers set up with ultra-clean air was utilized. Similarly, 
more controlled calibration methods were utilized to determine 
the air-flow and test procedures. In addition, much extensive 
tests and results analysis are presented in this study, including, 
tests and analysis with multiple VOCs. The information about 
possible sources of the VOCs will help the users to take 
corrective measures.  
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