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ABSTRACT   

Our ambient air carries hundreds of volatile organic compounds that can provide information about the toxicity and 

hygiene of our immediate environment. This paper presents prototype electronic nose designs that integrate array of 

chemical sensors into the embedded system to detect volatile organic compounds in the ambient air. Two specific 

applications for the electronic nose of detecting food spoilage and identifying sources of indoor air pollutants are 

discussed. A system with three chemical sensors was tested with various food items at varying stages of spoilage. The 

presented results show that food spoilage can be detected with a high degree of accuracy. A second system with eleven 

sensors was tested with various household items that emit compounds known to have adverse effect to human health. 

The results show that with the considered sensor array, the tested sources can be identified with a high degree of 

accuracy. The presented designs are being further improved to achieve higher accuracies, further expand the compounds 

that can be identified for a broader range of applications, and to build a miniaturized hand-held electronic nose device. 

The system development, testing methodologies, and results analysis are presented and discussed.    

Keywords: Smart sensing system, indoor air quality, electronic nose, ambient detection, sensor data analysis, embedded 

system 

 

1. INTRODUCTION  

Air borne compounds in our surroundings have been studied widely for applications ranging from health, defense, and 

household1-3. Volatile organic compounds emanated from our body and those from the headspace of samples have 

reported to have correlations with various diseases, and attempts have been made to utilize those compounds to diagnose 

diseases4,5. Volatile organic compounds in our ambient air that come from sources including household items, fungi, 

mold, and bacteria have been linked to various health related issues6-9. Prolonged exposure to these compounds can cause 

serious adverse effect to our health. Studies aiming at correlating these compounds with specific health conditions, 

including, diseases, have been reported in the literature6-10. In addition, volatile organic compounds emanated from food 

items have been studied for food spoilage detection10,11.  

This paper presents smart electronic noise designs aimed at identifying the sources of various indoor air pollutants and 

detect food spoilage to provide feedback to the user if the food is safe to consume. Current electronic noses consist of 

hundreds of non-specific sensors, and are bulky, costly, and not suitable for personal and household applications. The 

presented work aims to overcome those shortcomings by developing miniaturized hand-held electronic nose devices.  

1.1 Electronic Nose 

An electronic nose is an embedded system-based device with an array of highly sensitive chemical sensors and 

capabilities to collect, analyze, and interpret sensor data1,-3,12,13. The information is then communicated to the user, either 

on a display on the device or via other smart devices. Figure 1 shows a high-level block diagram of a smart sensing 

system electronic nose. One of the key aspects of a smart sensing system design is the selection of the sensors. The 

sensors need to be highly sensitive toward the target agents, while cross-selectivity is the key feature to consider 1-3,14. 

The difference in the sensing properties of the sensors provides more information. The key goal is, to have sensors that 

respond differently to the target as well as artifact components, such that the presence, absence, or change in the 

components of interest can be differentiated from the artifacts. Adding more sensors provides more information for this 

differentiation. However, increasing the number of sensors increases computational resource needs, footprint, power 

consumption, and cost. Thus, an efficient design should consider using least number of sensors possible and selecting 

sensitive, cross-selective, low-power, and lower-cost sensors.  
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Figure 1. High-level block diagram of a smart sensing system electronic nose. 

In many application scenarios, the system depends on battery power. In such cases, reducing power need at the sensor 

levels becomes one of the important design consideration. As many of the higher sensitivity metal oxide based sensors 

require heaters, this could quickly increase the power requirements. Two of the applications presented in the paper aim 

may not have strict power restriction when utilized as stationary monitoring device. However, in case of handheld and 

portable device application, power consumption needs to be considered carefully. Power efficient sensors were 

considered for the presented study. 

This paper presents two specific application examples of the smart sensing system in development: Food Spoilage 

Detection and Identifying Sources of Indoor Air Pollutants. The background for these two applications consideration are 

introduced below. 

1.2 Food Spoilage Detection 

According to a recent study, 30-40% of all food in the United States is wasted15. In 2014 alone, 38 million tons food was 

wasted in the US. A major portion of the wastage includes food that is perfectly fine to consume. These foods end up in 

the waste because consumers are unsure if the food is safe to consume. This happens for several reasons, one of which is 

confusing food labels. As the cost of seeking medical treatment is much higher than the price of the food, many 

consumers opt to throw the food away.  

1.3 Identifying Sources of Indoor Air Pollutants 

Air quality issues are generally discussed with focus on outdoor air, however, studies have discovered that the air 

contaminants are in fact present at higher concentration in indoor air. There are various contaminants found in 

indoor air, and VOCs are common components. VOCs are organic chemicals that have higher vapor pressure under 

normal ambient conditions. There are numerous classifications of VOCs, which include both natural chemical 

compounds and synthetic products. In a study conducted by the United States Environmental Protection Agency 

(EPA) involving 650 subjects in four states, 20-25 different VOCs were found in the air, drinking water, and in the 

breath6-8. The study found that the VOCs levels in indoor settings were about 2 to 5 times higher than the outdoor 

settings. Some of these compounds are harmful to human health and have been linked to several types of cancers 

and other health problems such as allergic skin reaction, nose and throat irritation, headache, nausea, fatigue, 

dizziness, damage to liver, kidney, and nervous system, and others. These harmful VOCs can originate from several 

indoor sources, including household products such as paints, paint strippers and solvents, wood preservative, 

cleaners and disinfectants, insect repellent and controls, aerosol sprays, and pesticides. The presented work aims to 

identify some of the sources of these indoor air pollutants for future indoor air quality monitoring and improvement 

applications. 

2. HARDWARE AND TEST PROCEDURE 

2.1 Hardware 

The sensors used in this work were obtained from commercial sources. The sensors were selected based on their ability 

to detect volatile organic compounds, ammonia, hydrogen sulfide, alcohol, solvent vapors, methane, propane, butane, 



 

 
 

 

 

 

and other compounds. Although the results are not shown here, a temperature sensor and a separate humidity sensor were 

used to measure ambient temperature and humidity. For food spoilage detection, three sensors were used. An Arduino 

Mega16 was used for collecting data for tea versus coffee and spoiled versus fresh food.  Mega was used because of 

existing setup for testing and data acquisition. Figure 2 shows a schematic of an electronic nose for differentiating 

between fresh and spoiled food. The circuit consists of a display to communicate the result to the user and a Bluetooth 

module to send the information to a smart phone for data logging and further analysis. However, system testing results 

are not included in the paper. For indoor air quality monitoring, the sensors were connected to an Arduino Micro17. 

Initially, four sensors were used and the system was tested with five components. Later, seven sensors were added and 

the system was tested with seven different components.  

 

Figure 2. Schematic diagram showing various components of the electronic nose design for spoilage detection (drawn in 

Fritzing18).  

2.2 Testing and Data Collection  

The setup used for testing the sensors consisted of a container that enclosed the sensor array circuit and the test 

compounds. A representative schematic of the test set-up is shown in Figure 3. The sensor array was connected to an 

Arduino microcontroller, which in turn connected to a computer. The sensor data was recorded on the computer using a 

serial data acquisition tool, and was saved as text files. For food spoilage detection, test items were stored in airtight jars 

and the sensors were instead into the jars for testing. A separate jar was used for each of the items. The data was 

collected for two to three minutes, after which the sensors were removed and kept in the air for a time interval (resting-

time) long-enough for the sensors to return to the initial state. The resting time varied between two to five minutes, 

however, this time duration was fixed for each type of experiment. For measuring indoor air pollutants, initially plastic 

bags were used as containers. The bags were discarded after each measurement. The testing with eleven sensors were 

carried with fixed containers, with a separate container for each component. Like the food spoilage testing, the sensors 

were introduced to the test components and the data was collected and saved on the computer for further analysis. For 

each test, the sensors were introduced to the test compounds for three to five minutes, followed by three to five minutes 

of resting-time. The measurement and the resting times were fixed for each experiment. 

 



 

 
 

 

 

 

 

Figure 3. Schematic of the test set-up. 

 

3. RESULTS AND DISCUSSION 

The results for food spoilage detection and indoor air pollutant identification are presented and discussed in this section. 

Several data analysis techniques for sensor data were studied19,20. As the end goal of the work is to implement the 

developed analysis techniques in the embedded system-based device, the methods that are feasible to do so were selected 

for further considerations. The results presented in the paper uses principal component analysis (PCA) for initial analysis 

of all sensor data and for studying indoor air pollutants. However, other simpler methods such as the distance between 

training and testing data and the angle between the vectors represented by the data points were used for item 

identification and food spoilage detection. 

3.1 Food Spoilage Detection  

The developed sensors were tested for differentiating fresh versus spoiled food and to distinguish between food items. 

For food spoilage detection, the system with three sensors were tested for fresh and spoiled milk, strawberry, bread, and 

potato. These items were selected as representative for produce, fruits, bakery, and vegetables. However, a broader 

selection of food items is needed for better understanding of sensor responses for a widely applicable detection. Figure 4 

shows the PCA analysis results with two principal components. The steady-state sensor values were used. The stars 

represent fresh food while the circles represent spoiled food. Each of the food items are indicated with a different color 

in the Figure. A relative separation of fresh food items from the spoiled is observed for milk, strawberry, and bread, 

however, they fresh and spoiled potato appears to be close to each other. It could be because potatoes take longer to spoil, 

and they may not have been spoilt well during this experiment. Results from a separate experiment were analyzed using 

the distance between the test values and the mean values for each fresh and spoiled item (known-data-set), taking three 

sensor values as three coordinates. The distance between the test vales and the known-data-set were calculated, and the 

result was associated with the item that is closest to the test item. The results are presented in Table 1. The first column 

shows the tested food items, and the following three columns show classification results for each test shown in 

abbreviation, as the food items were at various stages of spoilage. The accuracy of detecting each item and overall 

detection as the spoiled items are also shown. The data was also analyzed using the angle between the vectors created by 

the known-data-set and the test data. Results comparable to the previous method were obtained. 

Results for differentiating between coffee and tea using three sensors data taken at steady-state are shown in Table 2. 

Four separate experiments were conducted and each data set was tested against the known-data-set. The result was 

associated with the item in the training data with the closest distance. This result was also analyzed using PCA and 100% 

accuracy in differentiating between coffee and tea was observed in each test case. 



 

 
 

 

 

 

 

Figure 4. PCA analysis of milk, strawberry, bread, and potato tested over six days. 

 

Table 1. Results for food spoilage classification results using the distance between the known-data-set and the test sensor 

values (FB: Fresh Bread). 

Test/Classification (→) 

Test Substance (↓) 

Day-2 Day-4 Day-7 Accuracy Spoiled vs. 

Fresh 

Spoiled Milk (SM) SM SM SM 100% 100% 

Spoiled Potato (SP) SP SP SP 100% 100% 

Spoiled Bread (SB) FB SB SB 67% 67% 

Spoiled Strawberry (SS) SB SB SM 0% 100% 

 

Table 2. Results for identifying coffee and tea using the distance between the known-data-set and the test sensor values. 

Test/Classification (→) 

Test Substance (↓) 

Test-1 Test-2 Test-3 Test-4 Accuracy 

Coffee  Coffee Coffee Coffee Coffee 100% 

Tea Tea Tea Tea Tea 100% 

 

3.2 Identifying Sources of Indoor Air Pollutants  

As many of the indoor air pollutants stem from common household items such as cleaner and disinfectant, aerosols, 

paints, and bug and pest controls, the developed system was tested with representative household items. A system with 

four sensors was introduced to Air Freshener, Ant Control, Bug Repellent, Paint, Paint Stripper, and Wax Cubes. The 

PCA results showing first two principal components are presented in Figure 5. Each item is indicated with a different 

color while the blank is indicated with black circle. Each data point on the figure represents a separate test. Figure 5 

shows that the first principle component carries 94% of the total variance. The results show separations between the 

tested items, however, more test would provide more definitive outcome. The distribution in Figure 5 overlaps for items 



 

 
 

 

 

 

such as Air Freshener, Paint Stripper, and Ant Control. For testing purpose, each data set was tested against a training set 

comprising of remaining of the data sets. The classification results and the calculated detection accuracies are shown in 

Table 5. The first column shows the test item, following four columns represent each separate test and the classification 

outcomes for each item shown with abbreviations. For example, “AF” represents Air Freshener. In the row for Air 

Freshener, an “AF” implies a correct classification, and any other item name indicate an incorrect classification. The 

results show that the detection accuracy for Bug Repellent is 100%, Paint and Wax Cubes are 75%, and 50% for the 

other items.  

In later experiments, additional sensors were integrated to the system and was tested with Air Freshener, Ant Control, 

Bug Repellent, Cleaner, Lighter Fuel, Paint, and Paint Striper. The PCA results with first two principal components for 

ten experiments are shown in Figure 6. The tested items are indicated with different colors. Each star in the figure 

represent one experiment. The Blank is indicated by black circles. The sensor data was further tested for detection 

accuracy. Each test data was tested against a training data set comprising all sensor data except the one under test. The 

test results are presented in Table 6. As discussed previously, the first column shows the tested items and the following 

columns represent separate experiments with classification outcomes. In each row, if the outcome is same as the tested 

item, it represents a correct classification. The results show that the detection accuracy for Lighter Fuel, Bug Repellent, 

and Paint stripper are 90-100%. While the accuracy for Cleaner and Paint are only 30%. The low detection accuracy 

indicates that these items emit similar compounds. For example, the sensors appear to have confuse between Paint and 

Cleaner. If a test is conducted as Paint or Cleaner, the accuracy improves to 85%. This indicates that the detection 

accuracy can be improved by improving cross-selectivity of the sensor array. In addition, the detection accuracy can also 

be improved by improving the data analysis techniques, using different analysis methods, and by conducting additional 

experiments for more robust training sets. 

  

Figure 5. PCA analysis of four sensor responses tested for Air Freshener, Ant Control, Bug Repellent, Paint, Paint Stripper, 

and Wax Cubes. 

 

 

 

 

 

 



 

 
 

 

 

 

Table 5. Results for item classification and detection accuracy from the sensor data collected with four sensors. 

Test/ Classification (→) 

Test Substance (↓) 

1 2 3 4 Accuracy 

Air Freshener (AF) AC PA AF AF 50% 

Ant Control (AC) AC AC PA AF 50% 

Bug Repellant (BR) BR BR BR BR 100% 

Paint (PA) PA WC PA PA 75% 

Paint Striper (PS) PS PS AC AC 50% 

Wax Cubes (WC) AF WC WC WC 75% 

 

Figure 6. PCA analysis of eleven sensor responses tested for Air Freshener, Ant Control, Bug Repellent, Cleaner, Lighter 

Fuel, Paint, and Paint Stripper. 

Table 6. Results for item classification and detection accuracy from the sensor data collected with eleven sensors. 

Test/ Classification (→) 

Test Substance (↓) 

1 2 3 4 5 6 7 8 9 10 Accuracy 

Air Freshener (AF) AF PA AC AC PA AF AF PA AF AF 50% 

Ant Control (AC) PS AC AC AC AC AC PS AC BR PA 60% 

Bug Repellant (BR) BR BR BR BR BR BR BR BR BR AC 90% 

Cleaner (CL) PA CL PA PA CL PA BA PA CL PA 30% 

Lighter Fuel (LF) LF LF LF LF LF LF LF LF LF LF 100% 

Paint (PA) CL CL AF CL AF PA CL PA PA CL 30% 

Paint Stripper (PS) PS PS PS PS PS PS AC PS PS PS 90% 



 

 
 

 

 

 

4. CONCLUSIONS 

Smart sensing system electronic noses for detecting food spoilage and identifying indoor air pollutants have been 

presented and discussed. The device for detecting food spoilage consisted of three chemical sensors designed around 

Arduino Mega embedded system. The device was introduced to four different fresh and spoiling foods over several days 

and the results were analyzed. It has been shown that each spoiled item as well as fresh versus spoiled food can be 

detected with high degree of accuracies. However, it has been identified that additional sensors, and further testing and 

analyses may be required to improve the accuracy as well as to detect a wider range of products. The device for 

identifying indoor air pollutants consisted of four to eleven sensors designed around Arduino Micro embedded system. 

The device was tested with seven common household products known to emit volatile organic compounds harmful to 

human health. The results show that the system could identify the items with high accuracies. The low accuracies for 

some of the items have been attributed to the fact that these items may have used common solvents and emit similar 

compounds. The accuracy can be improved by improving cross-selectivity of the sensor array, conducting additional 

tests for a more robust training data set, and improving data analysis techniques. The authors continue to work on 

improving these aspects of the presented systems, and the outcomes will be reported in the future. 
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