104年赴美參加不法藥物掺偽及食品假 冒之檢驗技術研討會及參訪美國食品 藥物管理局出國分享報告

報告日期:105年02月24日

報告人:方俊仁技士、黄昱裴技士、蔡佳芬科長

出國地點:1.美國藥典委員會(USP)

2. 美國食品藥物管理局

食品安全暨應用營養中心(FDA CFSAN)

參訪美國食品藥物管理局 食品安全暨應用營養中心

美國食品藥物管理署

- 局長辦公室(OC)
- 監管事務辦公室(ORA)
- 藥品查驗暨研究中心(CDER)
- 生物製劑查驗暨研究中心(CBER)
- 醫療器械暨放射健康中心(CDRH)
- 食品安全暨應用營養中心(CFSAN)
- 動物用藥中心(CVM)
- 菸草產品中心(CTP)
- 國家毒理研究中心(NCTR)

人力資源配置圖

Dr. Jon W. Wong (左)介紹實驗室

與Dr. Alexander J. Krynistky合影(右) 蔡佳芬科長(中),方俊仁技士(左)

U.S. FOOD AND DRUG ADMINISTRATION CENTER FOR FOOD SAFETY AND APPLIED NUTRITION

Alexander J. Krynistky Chief, Bioanalytical Methods Branch Division of Bioanalytical Chemistry

Office of Regulatory Science (HFS-717) 5100 Paint Branch Parkway College Park, MD 20740-3835
 Telephone:
 (240) 402-2098

 BlackBerry:
 (301) 204-4296

 Fax:
 (301) 436-2332

 E-mail:
 alex.krynitsky@fda.hhs.gov

Pesticides screening

Dioxin analysis

Sample prep. and store

- 左上: Thermo Q Exactive Plus LC-MS/MS
- 左下: Thermo Q Exactive GC-MS/MS
- 右上: IKA Tube Mill

U.S. FOOD AND DRUG ADMINISTRATION CENTER FOR FOOD SAFETY & APPLIED NUTRITION

Perry G. Wang, Ph.D. Research Chemist Division of Bioanalytical Chemistry

5100 Paint Branch Parkway HFS-717, Room: 4E-019 College Park, MD 20740
 Telephone:
 (240) 402-1609

 Fax:
 (301) 436-2694

 E-mail:
 perry.wang@fda.hhs.gov

右: 與Dr. Perry G. Wang合影 左:可升降式辦公檯面外觀

參加「不法藥物摻偽及食品

假冒之檢驗技術研討會」

USP's Food Fraud Mitigation Guidance as Tool for Industry

Jeff Moore, Ph.D. Director, Food Standards USP Rockville, Maryland

- Tools for Food Fraud Mitigation
 - USP Food Fraud Database (鑑往知來)
 - USP Food Fraud Mitigation Guidance (弱點評估)
 - USP FCC-Identity Standards (身分識別)

Food Fraud Mitigation Guidance Approach

Ingredient by ingredient.....

- Vulnerabilities1.Contributing factors assessmentcharacterization2.Impacts assessment3.Combining 1 & 2

 - Mitigation strategy development 4.

Step.1 Contributing Factors Assessment

			Contribution to Vulnerability				
	Contributing Factor	Low ⁴	Medium-Low ⁴	Medium ⁴	Medium-High ⁴	High ⁴	
	Supply chain	Firm vertically integrated	Supplier vertically integrated	Supplier manufactures	Upstream supplier manufactures	Open market	
	Audit strategy Robust, onsite, with numerous anti-fraud measures Robust, onsite, with limited anti-fraud measures		Robust, onsite, with limited anti-fraud measures	Immature, onsite, no antifraud measures	Currently developing an onsite audit strategy	No onsite audits	
	Supplier relationship	Trusted supplier and previously purchased ingredient(s)	Trusted supplier and new ingredient	Established supplier and some relationship	Established supplier and no prior relationship	Unestablished supplier and no prior relationship	
0							
≈						2	
vilable fac	Fraud history	No or few known reports; no substantiating evidence	Moderate volume of reports; no substantiating evidence	Numerous reports; limited substantiating evidence	High volume of reports; some substantiating evidence	High volume of reports; good substantiating evidence	
tors	Economic anomalies	Nothing unusual	Isolated anomalies	Frequent but unrelated anomalies	Common but focused anomalies	Common and broad anomalies	

raw material > ingredient > product

Step.2 Potential Impacts Assessment

	Low		Moderate		High
Food Safety	Food grade- known safe	Food grade- No known risks	Food grade- known sub- population risks	Non-food/ non-food grade- unknown risks	Non-food/non- food grade- known risks
Economic Impact	No significant balance sheet impact		Operational Risk		Enterprise risk
Potential Multipliers					
Focused Consumption	No focused consumption	Temporally focused	Low level	Potential target populations	At-risk populations
Nutritional Sufficiency	No sufficiency impacts		Important micro-nutrient food	Core food for a sub-population	Primary/critical sub-population food
Public Confidence	Specific food	Specific commodity	Industry sector	Industry wide	Authorities & industry

Step.3 Overall Vulnerabilities Characterization

				Contributing Factors (Composite of Step 1)				
				1	2	3	⁴ Step 1	5
				Low	Medium-Low	Medium	Medium-Higl	High
	tep 2)	Α	Low Economic	New controls optional	New controls optional	New controls optional	New controls optional	New controls should be considered
	osite of St	В	Moderate Economic	New controls optional	New controls should be considered	New controls should be considered	New controls should be considered	New controls strongly recommended
	act (Comp	С	Low Public Health/High Economic	New controls optional	New controls should be considered	New controls should be considered	New controls strongly recommended	New controls strongly recommended
Sten 2	tential Imp	D	Moderate Public Health/High Economic	New controls optional	New controls should be considered	New controls strongly recommended	New controls strongly recommended	New controls strongly recommended
	Ро	E	High Public Health/High Economic	New controls optional	New controls strongly recommended	New controls strongly recommended	New controls strongly recommended	New controls strongly recommended

14

Step.4 Mitigation Strategy Development

		Cor	t ribut i	on to Vu	Inerabi	lity
	Factor	Low		Medium		High
	Testingfrequency	x <				
Co	Audit strategy		x 🗲		_	
ntrollable	Supply chain		x <			-
	Supplier relationship	X <	÷		_	
facto	Supplier history		х <		_	
S	Methods & specs	X <			_	
Ğ	Geopolitical considerations					x
facto	Economic anomalies					х
llable rs	Fraud history					х

15

Field Investigation of DS Adulteration

Connie Gryniewicz -Ruzicka, Ph.D. Division of Pharmaceutical Analysis US Food and Drug Administration Saint Louis, Missouri

- Rapid Screening
- Field Deployable Analytical Methods
 - Ion Mobility Spectrometers (IMS)
 - Rapid, portable, easy
 - Sensitivity, specificity
 - User friendly

Ion Mobility Spectrometer

https://www.smithsdetection.com/index.php?option=com k2&view=item&layout=item&id=40&Itemid=638

Ion Mobility Spectrum

Smiths Detection IONSCAN 500DT

IONSCAN 500DT

smiths detection bringing technology to life

https://youtu.be/r9t5tBIwQP0

https://www.smithsdetection.com/index.php?option=com_k2&view=item&id=115:ionscan-500dt&Itemid=1427#.VsVkW7kw-rA ¹⁹

Sample Preparation

Weight Loss Compounds

Instrument	ent IONSCAN-500DT		;	Sabre 4000		
Туре		Benchtop		Portable		
Calibrant (Positive)	N	licotinamide		N	licotinamide	
Substrates (Swabs)		Nomex			Shark Fin	
Compound	K _o (cm ² /V•s)	FWHM	LOD (ng)	K _o (cm ² /V•s)	FWHM	LOD (ng)
1,3-dimethylamylamine	1.6986	275	1	1.6458	330	5
Desmethyl sibutramine	1.1969	390	1	1.1898	440	1
Didesmethyl sibutramine	1.2215	375	0.5	1.2100	420	1
Fenfluramine	1.3691	340	0.1	1.3541	360	1
Fluoxetine	1.1284	380	1	1.1197	410	2
Lorcaserin	1.4288	355	2	1.407	350	5
Orlistat	Ν	Not Detected		1.2233	370	20
Phenolphthalein*	1.1325	395	20	1.1369	420	500
Phentermine	1.5979	280	0.1	1.5645	350	1
Phenytoin	1.5315	290	20	1.2415	450	500
Rimonabant	0.8722	600	15	0.8765	550	500
Sertraline	1.1727	410	0.5	1.1732	400	5
Sibutramine*	1.1722	400	1	1.1706	430	2

*Most common adulterants detected in weight loss products.

Male Enhancement Compounds

Compound	$K_o (cm^2/V \cdot s)$	FWHM (du)	LOD (ng)
Acetildenafil	0.8693	379	10
Acetyl Vardenafil	0.8201	590	5
Amino Tadalafil	1.0140	443	25
Avanafil	0.8269	576	7.5
ChloroPreTadalafil	0.9464	469	5
Homosildenafil	0.8556	521	5
Hydroxy Acetildenafil	0.8491	373	5
Hydroxyhomosildenafil	0.8350	504	10
Hydroxythiohomosildenafil	0.8236	548	10
Methisosildenafil	0.8561	491	2
N-Desethyl Vardenafil	0.8675	486	5
N-Desmethyl Sildenafil	0.8839	500	5
Nor-Acetildenafil	0.8847	492	5

Compound	K _o (cm ² /V•s)	FWHM (du)	LOD (ng)
Nomeosildenafil	0.8640	505	2
Piperiacetildenafil	0.8590	511	5
Piperidenafil	0.8638	511	5
Sildenafil*	0.8719	<mark>4</mark> 79	10
Tadalafil*	1.0068 1.2831	419 343	10
Thiohomosildenafil	0.8510	527	5
Thiomethisosildenafil	0.8505	541	5
Thiosildenafil*	0.8695	631	5
Udenafil	0.8153	548	5
Vardenafil	0.8197	500	7.5
Xanthroanthrafil	1.2179	801	10

Portable IMS – Field Deployment Pilot Study (168) weight loss products (153) **FAILED** (15) **PASS** (No Adulterant) (Sibutramine) non-adulterated adulterated (15) Lab Confirmed (140) Lab Confirmed Sibutramine **NO Sibutramine** ~92% of samples No false (13) false failing IMS negatives positives screening tested positive for an adulterant

*value includes 10th negative samples sent to the lab and false positives

Adulteration of Food with Illegal Dyes

LC/MS/MS color screen 36 compounds

(Basic dyes, Acid dyes, Solvent dyes, Pigments)

Thomas Tarantelli Senior Food Chemist NYS Dept. Agriculture and Markets Albany, New York

Analyte	RT	Τ1	T 2
Alizarin	2.72	241>156.8	241>185
Auramine O	1.25	268>121.9	268>146.8
Basic Blue 3	1.25	324>236	324>280
Basic Red 46	1.21	321.1>224.0	321.1>196.0
Basic Yellow 13	1.25	307>169.9	307>292.1
Basic Yellow 28	1.25	322>135.9	322>160
Brilliant Green	2.23	385.1>297	385.1>341
Chrysoidin G	1.22	213>76.9	213>120.9
Citrus Red 2	8.07	309>151.8	309>137.8
Crystal Violet	1.80	372>340	372>356.2
Dimethyl Yellow	6.47	226>76.9	226>133.8
Disperse Orange 11	3.81	238>165	238>194.9
Disperse Red 9	5.41	238.1>165	238.1>194.9
Fast Garnet GBC	5.05	226>90.8	226>105.8
Malachite Green	1.39	329.1>208.1	329.1>313.1
Metanil Yellow	4.03	354>109	354>169
Oil Orange SS	9.05	263>106.8	263>155.9
Orange II	3.69	329>127.9	329>155.9
Para Red	7.18	293.9>127.9	293.9>155.9
Pararosaniline	1.13	288.0>167.8	288.0>195
Quinoline Yellow SS	3.68	273.9>76.9	273.9>104.8
Rhodamine 6G	1.79	443>341	443>415.1
Rhodamine B	1.99	443>355	443>399
Safranin O	1.27	315>237	315>299
Sudan Black	9.80	457>194	457>211
Sudan I	8.09	248.8>92.8	248.8>127.8
Sudan II	9.84	277>120.8	277>167.1
Sudan III	10.50	249.2>92.6	249.2>155.8
Sudan IV	11.49	381.2>276.1	381.2>224.1
Sudan Orange G	4.29	215>92.8	215>121.8
Sudan Red 7B	11.06	378>77	378>273
Sudan Red B	11.34	381.2>90.8	381.2>105.8
Sudan Red G	7.93	279>107.9	279>122.9
Toluidine Red	7.76	308>105.9	308>127.9
Yellow AB	7.17	247.9>92.9	247.9>231
Yellow OB	8.07	262>106.9	262>156.9

Honey Adulteration

Lutz Elflein, Ph.D. Intertek Food Services Bremen, Germany

Untargeted Approach:

- Isotopic Screening (mostly ¹³C)
- Spectroscopic Screening (FTIR, NIR, Fluorescence, Raman)
- Nuclear Magenetic Resonance (SNIF-NMR; ¹H-NMR Profiling)
- High Res. MS-Profiling (GC-TOF; LC-HRMS)

Advantage:

Independent of type of adulteration

Disadavantages:

- Authentic reference databases required
- LODs vary with type of adulteration
- · Sophisticated, high effort

Targeted Approach:

- Specific Marker Methods (Marker: substance specific for the added syrup or the production process
- GC-MS, LC-MS, LC, ICP-MS, Enzymatic Tests

Advantage:

· Fast and very sensitive

Disadavantages:

- · Detects only one type of adulteration
- · LOD depends on compound concentration

Take a break

	20	
11	aal	and and a
A		3

- Francoise Dorcier
- Criminal Intelligence Officer, INTERPOL, France
- She is in charge of Operation OPSON targeting counterfeit and/or substandard food and beverages.

Overview of INTERPOL

Food fraud and DSF: scope and impact

INTERPOL's responses

Overview of INTERPOL

- Founded in 1923
- 190 member countries

INTERPOL's core functions

- Secure global police communications network
- Tools permitting the identification of crime and criminals
- Around-the-clock operational support to law enforcement worldwide
- Capacity building
- Business continuity and sustainability
- Institutional and legal support

Substitution/Mislabelling Substitution of expensive fish with cheaper species Labelled as wild fish but are farmed fish Modification of seafood product Increasing weight (over icing), use of unapproved additives

Fraud on Dietary Supplements

Adulterants

chemicals, cheaper ingredients, produced or stored in unhygienic conditions (cross contamination) False/misleading labels drugs, doping agents, not listed ingredients, allergies hidden ingredients

What are the challenges to fight against DSF?

- May contain potential dangerous ingredients difficult to detect
- Are often bought on internet
- Low awareness among consumers

	Operation OPSON				
INTERPOL's responses	2011	2012	2013	2014/2015	
	10 countries	29 countries	31 countries	47 countries	
OPERATION OPSON	INTER	RPOL SE	EUR©POI	L	
Fight aga counterfeit/sul food and bev	inst ostandard verages				

Operation Pangea VIII: 9 – 16 June 2015

(19 May – 16 June 2015)

Detailed results PANGEA VIII

Inspections in postal hubs and other facilities

- 171,304 packages inspected
- 50,852 packages seized

296 individuals arrested for various offences

- Selling medicines without a license
- Operating a clandestine laboratory producing counterfeits
- Operating websites selling illicit medicines
- Illegal sale of medicines
- Supplying unlicensed medicines

23,530,553 million units seized

- Estimated value of 75.3 million USD
- Seized medicines belong to over 20 different therapeutic categories
- Erectile dysfunction (ED) medicines most commonly seized

2,700 websites shut down (domain name or payment facility removed)

 546 adverts also removed from auction websites and social media platforms

DNA-based Identification Enables Metabolomics-Driven Detection of Botanical Adulteration

- Dr. Charlotte Simmler
- Research Associate Professor
- UIC Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, Chicago, Illinois

DNA barcoding with metabolomics

Authentication methods for licorice botanicals

DNA-based Identification Enables Metabolomics-Driven Detection of Botanical Adulteration

• Authenticity

DNA-based Identification Enables Metabolomics-Driven Detection of Botanical Adulteration

Authentication methods for licorice botanicals

- Licorice can be obtained from mainly 3 Glycyrrhiza species
 G. glabra, G. uralensis, and G. inflata
- Major results

- Damon Little, Ph. D
- Associate Curator
- The New York Botanical Garden, Bronx, New York
- Developing DNA barcoding assays with the aim of making barcoding techniques more widely accessible to non–specialists.

Herbal supplement preparations

Objective of DNA identification

An example from Devil's Claw

Objective of DNA identification

	"Universal"	"targeted"
Advanced knowledge of the sample required	no	Yes
Accurate species identifications produced	rarely	Usually
Able to detect the unexpected	Usually	Rarely
Demonstrate absence of a species	Very difficult	Possible
Produces meaningful quantitative data	no	Possibly
replicable	Usually	Usually

Objective of DNA identification

- Are adequate reference sequences available
- Enough individuals to estimate (within or among species)
- Are all of the close relatives sampled (look-alike or common substitutes)
- Can the target species be told apart using the chosen DNA segments

An example from Devil's Claw

- 獅子王球屬(Harpagophytum spp.)
- Only 2 species : *Harpagophytum procumbens* and *H. zeyheri*
- Recent studies demonstrate that *H. procumbens* and *H. zeyheri* are chemically distinct and should not be treated as equal.
- Further, the sale of *H. zeyheri* as an herbal supplement is not legal in the United States.

An example from Devil's Claw

- Chloroplast psbA-trnH gene
- Major results

PCR amplification succeeded	19 samples
Only H. zeyheri	16 (84%)
Both H. zeyheri and H. procumbens	3 (16%)
Only H. procumbens	0

• This novel mini-barcode as a standard method of quality control in the manufacture of Devil's Claw supplements

- Geoffrey COTTENET
- A scientist at Nestlé Research Center in Lausanne, Switzerland
- The development and validation of molecular methods
 - for the detection and quantification of GMO
 - for authenticity (meat, fish and plant species identification)

Food Fraud

- 2013 Europe: beef adulterated with horse meat
- DNA-based methods and especially PCR techniques

D'	0 1		o	Deleverated
Pieces	Ground	Seasoned	Specialities	Denydrated
- Comment		No 18	Texa	
rune largopauthinatorid coust	www.grocerymarket.ca		www.deikatesymesne.pl	www.fosdmayhem.com
		More Pro	ocessing = More Vu	Inerable
		More Pro	ocessing = More Vu	Inerable
Substitution	Mislabeling	More Pro	ocessing = More Vu Unapproved	Inerable I Enhancement

Limitation of PCR methods

- Limited to maximum 5-6 meat species (beef, pork, horse, chicken and turkey)
- The latest Chinese cases of meat substitution where fox and rat meat were detected instead of donkey and lamb

Meat LCD Array

- A simultaneous screening of 32 meat species with a detection of meat mixtures $\leq 1\%$ (m/m)
- Easy to use, fast, and cost efficient

Meat LCD Array

Chipron Meat 5.0 LCD K

One experiment to know 24 animal species -Cover 24 species in one experiment, -Perfect experiment for First Round screen -Find unexpected additions of animal material. Traditional method cannot offer!

No.	Name	Species	No.	Name	Species
01	Hyb-Ctrl	Hybridization Control			
02	Cattle	Bos taurus, Bos bison	14	Red Deer *	Cervus elaphus
03	Sheep	Ovis aries	15	Fallow Deer	Dama dama
04	Equine	Equus caballus, E. asinus	16	Springbok	Antidorcas marsupialis
05	Goat	Capra hircus	17	Canine / Dog	Canis sp.
06	Camels	Camelus sp.	18	Cat	Felis silvestris
07	Buffalo	Bubalus bubalis	19	Chicken	Gallus gallus
08	Pork	Sus scrofa	20	Turkey	Meleagris gallopavo
09	Kangaroo	Macropus rufus / giganteus	21	Goose	Anser sp.
10	Hare	Lepus europaeus	22	Ostrich	Struthio camelus
11	Rabbit	Oryctolagus cuniculus	23	Mallard Duck	Anas platyrhyncos
12	Reindeer *	Rangifer tarandus	24	Muscovy Duck	Cairina moschata
13	Roe Deer	Capreolus capreolus	25	Pheasant	Phasianus sp.

* Weak cross reactivity of the capture probe for Reindeer with pure Red Deer and vice versa can occur at high target

- Dr. Jonathan Deeds
- Research Biologist
- U.S. Food and Drug Administration College Park, Maryland
- As a research coordinator and subject matter expert in the areas of seafood safety and labeling

Seafood labeling

Project Fish SCALE (Seafood Compliance and Labeling Enforcement)

Seafood labeling

- Over 90% of the seafood in the U.S. marketplace is imported
- Accurate labeling is a critical first step
 - Potential risks (natural toxins, allergens, etc.)
- Guidance for Industry: FDA's Guide to Acceptable Market

Column A	Column B
Various Snappers (Lutjanus spp.)	Red Snapper (Lutjanus campechanus)
Rockfish (Sebastes spp.)	Red Snapper (Lutjanus campechanus)

Project Fish SCALE

- In collaboration with the Office of Food Safety (OFC), Office of Compliance (OC), and Office of Regulatory Affairs (ORA)
- Seafood labeling and species identification
- At the heart of this project
 - The updating of FDA's species identification capabilities to modern forensic techniques using DNA sequencing

FD		U.S Prote	. Food and ecting and Pro	Drug Administration moting Your Health	on	A to Z Index Foll	low FDA En E	SEARCH
Home	Food	Drugs	Medical Devices	Radiation-Emitting Products	Vaccines, Blood & Biologics	Animal & Veterinary	Cosmetics	Tobacco Products
Defe		- Ct						

Reference Standard Sequence Library (RSSL) for Seafood Identification

FDA Home
 DNA-based Seafood Identification
 Reference Standard Sequence Library (RSSL) for Seafood Identification
 Original Search Results

Basic Search	Advanced Sea	arch Field Search						
Search: john	dory			Show Items Clea	ar 🔲 Search v	vithin these results		
							Records Found: 2	Page 1 of 1
Sample ID	Туре	Scientific Name (sorted A-Z)	Common Name	FDA Market Name	Voucher	Voucher Museum	Date Posted	Date Modified
RFE 383	V	Zeus faber	John Dory	Dory	C-84881	CAS	11/2011	
RFE 384	V	Zeus faber	John Dory	Dory	C-84881	CAS	11/2011	

	FDA Regulatory Fish Encyclopedia (RFE) CO1 DNA Sequence (barcode, FASTA format)
5' Barcode (~655 bp):	>RFE383_Zeus_faber CCTITATTIAGTATICGGTGCCTGAGCCGGCATAGTCGGAACAGCCCTAAGCCTTCTTATTCGAGCTG AACTTAGTCAACCAGGGGCCCTCGTGGAGACGACGAACAATTTATAATGTTATCGTCACAGCTCACGCT TTTGTTATAATCTTITTTTATAGTTATACCAATCATAATTGGAGGCTTTGGGAACTGACTAATTCCACT TATAATCGGGGCCCCTGACATAGCCTTTCCCCGCATAAATTAATATAAGCTTTTGACTCCTCCCCCCCC

壁報論文展示

Development of Real-time PCR Approach for Rapid Detection of John Dory (*Zeus faber*) and Shark Catfish (*Pangasianodon hypophthalmus*) in Foods

壁報論文展示

The Analysis Report of Status for Chinese Herbs Misuses in 2014~2015

DNA barcoding for identification of species in mushrooms: A component of product certification

The Utility of DNA Authentication for the Metabolomic Classification and Quality Control Of Licorice Botanicals

Development of a Non-targeted, Raman Detection Method for Authentication of Milk Powders

Thanks for

your attention