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Reduced-Order Modeling and Flutter Suppression Control

of an Experimental Wing*

Kai-Yew Lum1,3, Cai-Lin Xu1, Zhenbo Lu2, Kwok-Leung Lai2 and Yongdong Cui2

Abstract—This paper presents a numerical and experimental
study of the reduced-order modeling (ROM) and flutter sup-
pression control of a wind-tunnel wing model. The modeling
work is computation based and performed in modal coordinates
of the wing structure. A nonlinear ROM of aerodynamic
and structural responses is obtained via computational aero-
elasticity simulation, finite-element analysis and system identi-
fication. Then, casting the linearized model in linear fractional
transform, a fixed-order robust controller is obtained that
achieves flutter suppression over uncertain air speed.

I. INTRODUCTION

Wing flutter is caused by feedback interaction between

unsteady aerodynamic forces acting on the wing, and the lat-

ter’s elastic structure. Under certain flight conditions, flutter

instability can result in limit-cycle oscillations (LCO) which

endanger the structural integrity of the aircraft [1]. Active

flutter suppression has been extensively studied; traditional

approaches have employed control surfaces such flaperons

as actuators [2]–[7]. In recent years, active flow control

techniques have also emerged [8]–[10].

A mathematical model of aero-elastic (AE) motions is

essential to model-based control design. Fig. 1 represents an

AE system with control. The main modeling work centers

on the aerodynamic response operator F(.), whereas the

structural response model P is practically linear and well

understood. First-principle equations of motion have been

widely employed, wherein the aerodynamic response model

is based on solutions of linearized or quasi-steady aerody-

namics [2], [3], [7]. Rigid-body and 2D simplifications have

also been considered [4], [5], [6].

A parallel approach is reduced-order modeling (ROM)

by system identification, using experimental or flight-test

data. Some works treat the AE system as a lumped model,

ignoring the internal feedback structure [11], [12]. Others

are based on the above first-principle models, whereby

modeling errors, e.g. in the nominal aerodynamic load, are

estimated via system identification [3], [13]. Meanwhile,

various studies have employed high-fidelity computational

aero-elasticity (CAE) simulations of the input-output data

(u,v;y) to directly identify F(.) [14]–[18].

This paper presents a numerical and experimental study of

ROM and flutter suppression control of a wind-tunnel wing
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Fig. 1: Schema of an aero-elastic system

model [19]. The structural and aerodynamic response models

are based on CAE data computed in the modal coordinates

of a finite number of dominant modes, and system identi-

fication. The aerodynamic ROM is nonlinear, and takes a

non-block form of the Hammerstein-Wiener equations with

an underlying μ-Markov linear structure [20]. By linearizing

the thus obtained AE system model and formulating its linear

fractional transform, a fixed-order robust controller for flutter

suppression under uncertain air speed is computed using the

HIFOO algorithm [21]. Wind tunnel tests confirm the validity

of this approach, achieving 90% attenuation of LCO.

II. REDUCED-ORDER MODELING AND IDENTIFICATION

A. Preliminary: μ-Markov Structure

The scalar μ-Markov model structure is a μ-step ahead

predictor of the input-output pair (u,y) and is given by:

y(k)=−

na∑
j=1

ajy(k−μ+1−j)+

r+μ−1∑
i=r

hiu(k−i)

+

nb∑
i=r+1

biu(k−μ+1−i). (1)

In the above, μ is the number of Markov parameters in

the model, na and nb are the model orders, and r is the

input delay. In particular, μ=1 recovers the standard ARMA

structure [20], [22].

B. Hammerstein-Wiener-like Model with μ-Markov Struc-

tures

Consider now a nonlinear, multiple-input multiple-output

(MIMO) extension of (1) given by

y(k)=−z−μ+1(A(z
−1

)◦ᾱ[.])y(k)

+z
−r

(H(z
−1

)◦γ̄ [.])u(k)+z
−r

(h(z
−1

)◦β̄[.])v(k)

+z
−(r+μ)

(B(z
−1

)◦γ̄[.])u(k)+z
−(r+μ)

(b(z
−1

)◦β̄ [.])v(k),
(2)

where y=[y1,...,yN ]
T

, u=[u1,...,uN ]
T

, and z−1

denotes the

delay operator. A, H and B are N×N transfer-function
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matrices, whereas h and b are N×1; they are further

expressed in terms of their elements as:

A(z
−1

)=
[
Aij(z

−1)
]
i,j=1,..,N

,

H(z
−1

)=
[
Hij(z

−1)
]
i,j=1,..,N

, h(z
−1

)=
[
hi(z

−1)
]
i=1,..,N

,

B(z
−1

)=
[
Bij(z

−1)
]
i,j=1,..,N

, b(z
−1

)=
[
bi(z

−1)
]
i=1,..,N

,

with the following scalar transfer functions:

Aij(z
−1

)=A
(1)
ij z

−1

+···+A
(na)
ij z−μ+1 ,

Hij(z
−1

)=H
(0)
ij +H

(1)
ij z

−1

+···+H
(μ−1)
ij z−μ+1 ,

hi(z
−1

)=h
(0)
i +h

(1)
i z

−1

+···+h
(μ−1)
i z−μ+1 ,

Bij(z
−1

)=B
(0)
ij +B

(1)
ij z

−1

+···+B
(nb)
ij z−μ+1 ,

bi(z
−1

)=b
(0)
i +b

(1)
i z

−1

+···+b
(nb)
i z−μ+1.

Furthermore, the operators ᾱ[.] and γ̄[.] represent N×N

matrices of polynomial functions, whereas β̄[.] is N×1; they

are defined as follows:

ᾱ[.]=
[
ᾱij(.)

]
i,j=1,..,N

, ᾱij(ν)=

q∑
l=1

α
[l]
ijν

l, ν∈R,

γ̄[.]=
[
γ̄ij(.)

]
i,j=1,..,N

, γ̄ij(ν)=

p∑
l=1

γ
[l]
ij ν

l, ν∈R,

β̄[.]=
[
β̄i(.)

]
i=1,..,N

, β̄i(ν)=

p∑
l=1

β
[l]
i ν l, ν∈R,

where α
[l]
ij , γ

[l]
ij , β

[l]
i are scalar coefficients, and p and q

are some fixed positive integers. Finally, “◦” in (2) denotes

the Hadamard product of the respective operators. Thus,

expanding (2) yields the following equation for each mode

yi, i=1,...,N :

yi(k)=−z−μ+1
N∑
j=1

q∑
l=1

Aij(z
−1

)α
[l]
ij y

l
j(k)

+z
−r

⎧⎨
⎩

N∑
j=1

p∑
l=1

Hij(z
−1

)γ
[l]
ij u

l
j(k)+

p∑
l=1

hi(z
−1

)β
[l]
i vl(k)

⎫⎬
⎭

+z
−(r+μ)

⎧⎨
⎩

N∑
j=1

p∑
l=1

Bij(z
−1

)γ
[l]
ij u

l
j(k)+

p∑
l=1

bi(z
−1

)β
[l]
i vl(k)

⎫⎬
⎭.

(3)

Remark 1: The nonlinear model (2) or, equivalently, (3) is

unlike the classical Hammerstein-Wiener model, as it is evi-

dent that the Hadamard product in (2) does not allow separa-

tion into a block-oriented form. Thus the name Hammerstein-

Wiener-like (HWL). Fig. 2 gives a block diagram.

C. Identification of HWL ROM for Aerodynamic Response

Based on the aforementioned HWL model (3), a ROM of

the aerodynamic response operator F(·) can be represented

as

F(·)∼
N

{
A,H,h,B,b, ᾱ, β̄, γ̄

}
(4)

where the symbol ∼ with subscript N signifies an N -

modal ROM; the right-hand side of (4) is defined for some

y

B(z−1) ◦ γ[.]

h(z−1) ◦ β[.]

b(z−1) ◦ β[.]

H(z−1) ◦ γ[.]z−r

z−(r+μ)

z−r

z−(r+μ)

A(z−1) ◦ α[.]

+

+

+

+

+

+

v

u

Fig. 2: Hammerstein-Wiener-like model

chosen model orders (μ,na,nb,r,p,q). In modal coordinates,

N is the number of dominant modes to be considered, thus

ignoring higher-order aero-elasticity. Modeling thus consists

in identifying the parameters A
(k)
ij , H

(0)
ij , h

(k)
i , B

(k)
ij , b

(k)
i ,

α
[l]
ij , β

[l]
i and γ

[l]
ij . A total of N2(na+2μ+2(nb+1))+2Nμ+

N2(q+2p) parameters will need to be identified.

The proposed HWL model can be viewed as a MIMO

extension of a nonlinear model with ARMA structure con-

sidered in [23], wherein a two-stage algorithm based on

singular-value decomposition was given for the identification

of SISO models. Here, this method is extended to the MIMO

model (3). Details are omitted.

Parameter identification is performed using input-output

data generated in open-loop CFD simulation. In other words,

the input u are prescribed functions of time acting as modal

displacements, and the generalized aerodynamic forces y as

response to those displacements are solutions of a full-order

flow solver [24].

III. ROBUST FLUTTER SUPPRESSION CONTROL

Design of flutter suppression control is performed on a

linearized model of the aero-elastic system shown in Fig. 3.

Linearization concerns two aspects: first, the aerodynamic

ROM F(.) defined in (4) is linearized about zero modal

displacements and forces; second, the structural response

operator P in Fig. 1 is replaced by a finite-order linear

system. Robust control design is then performed for an

uncertain speed index V . Details follow.

AE System

dynamics

w
disturbance

flap deflection v

reduced-order H∞ robust controller

measured output
K(s)

zm

aerodynamic

V 2 P

structural

modal displacments

uspeed index

y

generalized aero forces

u

F(·)

response

v

Fig. 3: Flutter suppression control block diagram

Remark 2: Even though control design is based on the

linearized AE system, it is important to note that system

identification of a nonlinear ROM for F(.) is necessary, as

a linear model would yield poor estimates of the poles and

zeros [20].
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A. State-Space Model of Linear AE System

1) Linearized aerodynamic ROM: Linearization of the

HWL model (2) at zero u and y retains only the N×N

μ-Markov system {A,H,h,B,b}, of which a discrete-time

state-space realization can be computed using the eigen-

realization algorithm [25]. Furthermore, by Tustin’s trans-

form, a continuous-time state-space model Σf of linearized

aerodynamics can be obtained. Let Σf be represented by:

F(.)
linear
∼
N

Σf :

{
ẋf =Afxf+Bfu+bfv,

y=Cfxf+Dfu+dfv,
(5)

where xf ∈R
nf are the internal states of dimension nf

depending on the ROM.

2) Modal equations of structural dynamics: In modal co-

ordinates, each mode of the structural dynamics is described

by a linear second-order system:

üi+2ζiωiu̇i+ω2
i ui=αV 2yi, (6)

where ζi and ωi are the associated damping factor and natural

frequency, α is a flow condition-dependent constant, and V

is a non-dimensional quantity related to airspeed [24], [26].

For the first N dominant modes, i.e. with i=1,...,N , a state-

space representation Σs of linear structural dynamics is thus

given by:

P∼
N
Σs :

⎧⎪⎨
⎪⎩

ẋs=Asxs+Bs(V
2y+w),

u=Csxs,

zm=Hsxs,

(7)

where the system matrices are

As=diag
[
A1

s ... AN
s

]
, Bs=diag

[
B1

s ... BN
s

]
,

Ai
s=

[
0 1

−ω2
i −2ζiωi

]
, Bi

s=

[
0
α

]
,

Cs is straight-forward, and w is an assumed disturbance. In

the above, zm respresents a physically measured output of

the AE system, e.g. acceleration picked up by sensors. The

rows of the output matrix Hs are thus the sensor locations

in modal coordinates, and are computed using finite-element

analysis (FEA).

3) AE closed-loop model: Based on (5) and (7), the AE

system in feedback of Fig. 3 is represented by the following

closed-loop equations:[
ẋs

ẋf

]
=

[
As+V 2BsDfCs V 2BsCf

BfCs Af

][
xs

xf

]

+

[
Bs

0

]
w+

[
V 2Bsdf

bf

]
v, (8a)

zm=
[
Hs 0

][xs

xf

]
, (8b)

which takes the form:

ΣAE :

{
ẋ= Âx+B̂1w+B̂2v, x=(xs, xf)

zm=C2x.
(9)

B. Uncertainty Model and Linear Fractional Transform

By Hopf bifurcation analysis, the onset of flutter corre-

sponds to the crossing of the imaginary axis by a pair of

eigenvalues of ΣAE as the speed index increases past a cross-

over value Vf [14], [18]. To achieve flutter suppression, the

control objective is to stabilize ΣAE for uncertain speed index

near Vf . In other words, stability is to be guaranteed for

V 2=V 2
f +ΔV , ΔV <

1

γ
, (10)

where ΔV
Δ
=V 2−V 2

f , and γ is desired to be small so that the

stability range is large. Flutter suppression is thus a robust

stability margin problem [3].

Substituting (10) into (8) and (9), one obtains the following

uncertainty expressions:

Â=A+ΔA, B̂1=B1+ΔB1, B̂2=B2+ΔB2 (11a)

with

A=

[
As+V 2

f BsDfCs V 2
f BsCf

BfCs Af

]
, (11b)

ΔA=

[
ΔV BsDfCs ΔVBsCf

0 0

]
, (11c)

B1=

[
Bs

0

]
, ΔB1=

[
0
0

]
, (11d)

B2=

[
V 2
f Bsdf
bf

]
, ΔB2=

[
ΔV Bsdf

0

]
. (11e)

The following lemmas are straight-forward.

Lemma 1: The uncertainty matrices ΔA, ΔB1 and ΔB2

can be decomposed into the form:[
ΔA ΔB1 ΔB2

]
=−MxΔV

[
Nx Nw Nv

]
, (12)

where

Mx=

[
−Bs

0

]
, Nx=

[
DfCs Cf

]
, Nw=0, Nv=df .

Lemma 2: Define the fictitious input wf and output zf :

zf =
[
Nx 0 Nw Nv

]
⎡
⎢⎢⎣
x

wf

w

v

⎤
⎥⎥⎦. (13)

Then the AE system ΣAE (9) with uncertainties (11a) can be

expressed as the following linear fractional transform (LFT)

with internal feedback (see Fig. 4):⎡
⎣ ẋ

zf
zm

⎤
⎦=

⎡
⎣ A B̄1 B2

C1 D11 D12

C2 0 0

⎤
⎦
⎡
⎣x

w̄

v

⎤
⎦, (14)

where

w̄=

[
wf

w

]
, B̄1=

[
Mx B1

]
,

C1=Nx, D11=
[
0 Nw

]
, D12=

[
Nv

D12

]
,

and the internal feedback is given by

wf=−ΔV zf . (15)

C. Fixed-Order Robust Control

The problem of flutter suppression translates into finding a

robust output-feedback controller K(s) for the LFT system

To appear in 2016 American Control Conference.



⎡
⎣ A B1 B2

C1 D11 D12

C2 0 0

⎤
⎦

−ΔV

K(s)

w

zf

zm

wf

v

w̄

Fig. 4: LFT system with internal feedback and output-

feedback control

Acc2

Acc1

Fig. 5: Experimental wing with sensor placement. Acc1:

bending and torsional accelerometer; Acc2: lateral ac-

celerometer.

(14) that minimizes its H∞ norm ‖Tw̄zf ‖∞. A sufficient

condition is that K(s) stabilizes the nominal system and

satisfies

‖Tw̄zf ‖∞<γ (16)

for some γ small enough; by the small gain theorem, the

stability of the closed loop is guaranteed for all perturbations

satisfying |ΔV |<
1

γ
[27].

The standard H∞ output-feedback full-order controller

is not practical for the AE system given the latter’s high-

order (25th; see later). On the other hand, reduced-order

H∞ controller design is a difficult non-convex optimization

problem. To overcome the latter, this work seeks a fixed-

order H∞ controller by means of a non-convex local op-

timization algorithm that offers the advantage of stability

guarantee when a solution is found, and handling of non-

smooth gradients encountered in non-convex problems [21],

[28].

IV. NUMERICAL AND EXPERIMENTAL RESULTS

The proposed approach is applied to an experimental wing

and tested in a low-speed wind-tunnel (Fig. 5). The wing has

been specially designed so that flutter occurs with sustained

LCO at a relatively low speed, between 20m/s and 40m/s.

A beam-like wing with tip store has been adopted as it fits

these requirements [19]. FEA reveals five dominant modes

as shown in Fig. 6 with their modal frequencies. Table I lists

the key parameters.

TABLE I: Key parameters

nominal speed index Vo=0.69
nominal air speed 20 m/s

nominal Mach number 0.06

number of modes N=5
(μ,na,nb,r,p,q) (3,1,1,1,2,2)

order of Σf nf =15
order of Σs 10

order of ΣAE 25

flutter speed index∗ Vf =1.20
flutter air speed∗ 34.7 m/s

order of controller K(s) 3

number of sensors dim(zm) = 2
∗ flutter speeds are determined numerically

Two accelerometers are attached to the tip store, of which

the first is predominantly sensitive to the bending and tor-

sional modes, and the second to the lateral mode. This is

evident in the sensor locations in modal coordinates:

[
0.1299 −0.0006 −0.2866 −0.1130 0.0766

−0.0021 0.1364 0.0141 0.0021 −0.0020

]
.

A. Model Identification & Validation

1) System identification: A full-order CAE simulation

of the wing has been conducted with prescribed modal

displacements in the form of band-limited chirp signals [20],

at the nominal speed and Mach number. As a result of this the

first five modal displacements and generalized aerodynamic

forces are used for the identification of a HWL ROM. Fig. 7

shows that there is a good fit between ROM and CAE

responses, with less than 1% error in all except the 2nd mode

which exhibits pronounced nonlinear behavior.

2) Model validation against experiment: A key concern

in this study is the fidelity of the CAE and FEA solutions

and, consequently, the validity of the aerodynamic ROM

and structural dynamics model. To ascertain this, simulations

of the nonlinear AE system, i.e. ROM F(.) in feedback

interaction with the finite-order structural model Σs, are

conducted and the responses compared with accelerometer

measurements obtained in experiment. Fig. 8 shows the

Fig. 6: Wing modal shapes and frequencies obtained in FEA

(left to right): 1st bending (2.19Hz), 1st lateral (10.07Hz),

2nd bending (13.55Hz), 1st torsional (16.48Hz), 3rd bending

(38.09Hz).
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simulated and measured responses of the first sensor for a

given sequence of flap angle commands (in fact, a finite-

width impulse response of the controller). After adjusting

for sensor bias and filtering noise, it can be seen that the

simulated response closely resembles the measurement.

A second validation is done by first performing Hopf

bifurcation analysis of the ROM, which yields a flutter speed

index of Vf =1.20, i.e. at which a pair of eigenvalues of ΣAE

crosses the imaginary axis. Next, nonlinear ROM simulation

at this speed produces LCO (instead of divergence) as shown

in the bottom graph of Fig. 9. Moreover, the top graph shows

a good agreement between the spectrum of the simulated

LCO and that measured in the wind tunnel at the same speed.

In particular, both reveal a fundamental LCO frequency of

ωf =8.5 Hz.

B. Control Design & Linear Analysis

A third-order controller has been found that stabilizes the

linear AE system ΣAE for V ∈ (0,2.4). Fig. 10 shows the pole

loci of both the open- and closed-loop linear AE system. It

can be seen that at the open-loop flutter speed index Vf =
1.20, the closed-loop system’s poles remain on the left-hand

plane, whereas for the open-loop system the pair of poles

evolving from the 2nd mode (lateral) crosses the imaginary

axis.

C. Wind Tunnel Experiment

Finally, flutter suppression control experiments are con-

ducted in the wind tunnel. Fig. 11 shows a screen shot of

the experiment and real-time recording, as well as the time

history of sensor measurements during one run. In order to

avoid abrupt action by the flap, a gain factor is applied to the

controller and increased slowly from zero to 1. It can be that

when the gain factor exceeds 1, flutter is suppressed by more

than 90%. On the release of the controller, flutter reappears,

which fully validates the control performance. A video of the

experiment can be viewed at https://youtu.be/E1rOflXZyUo.

V. CONCLUDING REMARKS

This study has demonstrated the feasibility of the pro-

posed ROM approach. In particular, model fidelity has been

experimentally confirmed, which lends confidence to control

design. Robust control over air-speed uncertainty effectively

achieves flutter suppression.

This work is focused on stabilization of the LFT model

(14) using HIFOO-based control design, whereas perfor-

mance is a secondary concern. Meanwhile, the observability

of (14) is important as it concerns sensor placement; an

analysis thereof will be addressed in a future publication.

It is worth noting that the present study only considers the

wing in a vertical position with zero angle of attack, i.e. its

reference state is non-loaded. An extension can be envisaged

to address aerodynamic load and gravity at different angles

of attack. More crucially, the present formulation does not

account for a varying angle of attack and dynamic pressure.

Future work should consider LPV methods, adaptive control

and robustness to changing flight conditions.
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