AIRPORT ENVIRONMENTAL MANAGEMENT 04-08 October 2015 Abu Dhabi, UAE Module 12: Climate Change and the Commercial Imperative #### voice world's airports ### Module objectives - To review the scientific evidence for human-induced climate change - To highlight international and national commitments to reduce climate change emissions - To explain the financial implications arising from increasing carbon liabilities Source: Phys.org, 2013 #### The latest climate science - The Climate Change debate is over - Temperature rise between 0.3°C and 4.8°C by 2100 (1985-2003) - Limit to +2°C (EU) | Atmospheric CO ₂ equivalent parts per million | % likelihood of eventual warming exceeding 2°C | | | | | | |--|--|--|--|--|--|--| | 430 | 63 | | | | | | | 450 | 77 | | | | | | | 550 | 99 | | | | | | (Hadley Centre, 2007) 399 ppm (August 2015) http://co2now.org/ #### Global aviation emissions forecast to 2050 Low growth = +467% High growth = +1,282% #### **UK emissions performance and projections** Figure i: Projected UK emissions of greenhouse gases against targets Source: UK Department for Energy & Climate Change #### **UK international aviation emissions** Greenhouse gas emissions from UK-based international aviation, 1990-2013 (MtCO $_2$ e), https://www.gov.uk/government/publications/final-uk-emissions-estimates ### The magnitude and speed of change - Dramatic CO₂ reductions to prevent 'dangerous climate change'. - But aviation CO₂ emissions growing and there is no technological solution on the horizon. - System and technology change will have to be fast and far reaching. - Aviation will remain in the political spotlight. ### Industry roadmap to reduce CO₂ emissions #### MAPPING OUT THE INDUSTRY COMMITMENTS - improve fleet fuel efficiency by 1.5% per year from now until 2020 - 2020 through carbon neutral growth - **9** by 2050, net aviation carbon emissions will be half of what they were in 2005 (Schematic, indicative diagram only) ### Implications for aviation - Carbon pricing impact upon the cost of air transport. - Low Carbon Technology Step change airframe/engine design and alternative fuels. Rate of developing being outstripped by growth. - Securing the engagement of individuals could influence public attitudes to air transport. Stern Review ### Regulatory intervention growing - 1997 International Aviation excluded from Kyoto Protocol - 2008 National CO₂ targets 80% includes international aviation? - 2009 UK aviation emissions targets 2050 CO₂ < 2005 - 2009 CAA commission on CO₂ limits for Heathrow - 2009 UK presses for EU ETS at COP 15 in Copenhagen - 2010 DEFRA Airports CC Adaptation Order - 2012 Aviation enters EU ETS and 'stop the clock' - 2013 ICAO 38th Assembly MBM in 2016, start 2020 ### **UK CCC report on aviation emissions (2009)** - 2008 report suggested that present aviation CC emissions would account for 25% of all emissions by 2050 if UK achieved its 80% cut. - Jan. 2009 UK Government commits to stabilising aviation emission to 2005 levels by 2050 - 60% growth in air services only by 2050 allowing for expected improvements in efficiencies well below that which would occur (est. 200%) if demand is not constrained by carbon prices and airport capacity - Global aviation emissions should be capped #### **ACARE Goals** - By 2020 (relative to 'typical' 2000 aircraft) - 50% reduction in perceived noise - 50% reduction in CO₂ emissions - 80% reduction in NOx emissions - By 2050 (relative to 'typical' 2000 aircraft) - 65% reduction in perceived noise - 75% reduction in CO₂ emissions - 90% reduction in NOx emissions ### Will CC restrict airport growth? - Arguments being made to restrict further airport infrastructure growth - To prevent dangerous climate change - Because aviation will have limited role in low carbon economy ### Could climate change affect air route networks? - Maximise load factors - Service Frequency - Hubbing v. point to point - Dynamic Capacity Management ## **Changing Public Attitude** #### Public attitude to air travel - Government targets for CO₂ reductions will not be achieved by industry alone. - Public awareness to be raised about CC consequences of purchasing habits - Globally aviation 2-3% of CO₂ from human activity - For many UK households it could be 25%+ of their direct purchasing #### voice World's airports #### Public attitude to aviation and climate change - High awareness of climate change - Low awareness of climate change and aviation - Generally not willing to change flying habits - Willing to pay more to compensate /offset, change expectation of convenience and on board services (but will this translate to action?) - Most believe government and industry responsible for resolving the problem - Starting to affect demand at the margins, one survey suggested 10% planning to fly less (but was this a credit crunch impact?) # Non-CO₂ Climate Impacts of Aircraft #### voice World's airports ### **Aviation RF in 2050 (IPCC, 1999)** A radiative forcing of 0.19 W m⁻² in 2050 for the reference scenario (Fa1) About 5% of the total radiative forcing from all anthropogenic activities IPCC, 1999 ### **Peak Oil and Carbon Prices** ### The broader carbon challenge - The debate is not simply about climate change its mitigation and impact - A second threat is the availability and price of carbon fuels - After 200 years we are approaching the end of the Carbon age #### Peak oil I - Known reserves finite and declining - Demand growing - New finds (deep water and tar sands) environmentally & financially costly / risks to extract & refine Garth Len #### **Peak Oil II** - Aviation a legacy user of C fuels - Can synthetic / biofuels fill the gap? - The cost of flying will rise <u>Does Sustainable Aviation = carbon free flight?</u> Source: Industry database, 2003 (IHS 2003) OGJ, 9 Feb 2004 (Jan-Nov 2003) ### **Exercise: Drivers for carbon management** - Identify the key commercial, social and environmental drivers for carbon management at airports - Which drivers have greatest influence at airports in your country? ## **Impacts of Climate Changes on Airports** ### 2010 DEFRA airport CC order - Requires 7 largest English (and Scottish) airports to: - assess the risk of CC for their 'statutory functions'. - bring forward adaptation proposals in 2011. ### Climate change impacts on aviation - At airports and en route - Disruption, delays, diversions - rain, fog, winds, heat. - changes in jet stream - Changing a/c performance - Runway length, airspace ## Climate change and airport capacity - Infrastructure design for future weather. - Construction materials - Capacity of drains etc. - Water / energy use - Disruption and delays. - Rain, fog, winds, heat. #### Sea level rise - 2050 and beyond ? - Low lying airports- coasts, river estuaries - Airport infrastructure or approach roads - Risks -sea level rises, storm surges, tidal lock - Examples: EU, Norway, San Francisco - London City ? ### Climate change, levels and patterns of demand - Destinations less attractive - Seasons will change - New markets emerge - Sun and Ski - Air freight patterns/food production - NOT an Environmental issue - Implications - Timescales - Magnitude - Certainty | lisks | and Control Measures | | | | | | | Е | Δ | Action Defines actions that are known and required now to mitigate | dentified short-term o | climate related risks | | |------------|--|--------------------------|---|---|--------------|---------------------|--|------------------|--|--|-------------------------|---------------------------|--| | iioico | | | | | B | | Excessive | 0 | _ | and or longer-term risks if the solution requires action now Prepare Defines tasks to improve understanding of the cause or solution to a significant short or made | | | | | Heathrow 🗾 | | | | | Significant | Optimal | U | - | risk. Tasks are therefore predominately research based | the latest elevate o | -1-1 | | | | | Making overy journey better | | | | A | Moderate | Adequate | A | W | Watching Brief Watching brief to be maintained in the short term on the latest climate science di
and the situation on the ground. | | | | | | | | | | G | Low | Inadequate | 1 | | | | | | | | | Climate Variable | Thre shold | Confidence
(climate projections and
or consequence \$ | Risk Grading | (no adaptation) | Existing Control Measures | Control Messures | | | | | | | Risk ID | Risk | | | | Short Term | Medium / Long (2020 | | | | Adaptation Response Nee de d | Business Unit
owners | Director/s
Responsible | | | | | | | | (to 2020) | to 2050s) | to 2050s) Summary | | | | | | | | AIRSIDE | | | | | | | | | | | | | | | 1 | Flashpoint of aviation fuel exceeded on hot days-
polontial fro hazard. | Temp | Aviation fuel flash point is 38°C. Temperatures
during the summer of 2003 peaked at 37.5C | н | A | я | Splil reporting and defined clean up procedures. | А | P | Propare: Research into spill clean up options currently used at
airports in warmer climates to commence to develop policies robust
to air temperatures exceeding 38°C. | Airside | Airside Director | | | 2 | Increased incidence of tool venting from aircraft in warm weather. | Temp | Aviation fuel flash point is 38°C. | н | A | Α | Spill reporting, clean up procedures, airport pollution
control system | О | P | Propare: Research into options currently used at aliptos in
warmer climates for spill reporting and clean up procedures. | Airside | Airside Director | | | 3 | Increase of fire risk due to hotter temperatures combined with increased lightning and drought potential. | Temp | Requires research | м | а | А | Onsite fire brigade, fire water supply and fire mains,
regular drills, smoke and fire detection systems,
wegetation management plans, PATS testing of
electrical equipment. | 0 | P | Prepare: Ensure that the planned changes and development of the
airport's fire main considers and addresses the potential for
increased fire risk resulting from climate change. | Airside | Airside Director | | | 4 | Change in distribution of pests and wildlife species.
Potential changes to bird migration patterns and bird strike
risk. | Temp | Requires research | L | а | g | PPE, first aid for outdoor workers. Veterinary service,
bird management controls. | o | w | Watching Brief | Airside | Airside Director | | | 5 | Reduced lift for departing aircraft due to 'thin air' and reduced engine efficiency in very hot weather. | Temp | Aircraft operate in multiple temp zones, unlikely to be breached | н | G | g | Potential to change load factors, ATM rates, if
needed. Existing noise tootprint monitoring and
mitigation tools. | E | W | Watching Brief | Airside | Airside Director | | | 6 | Torrendial rain creats is hazardous conditions for
we hicles and planes i.e. airside and landside road
wahicles, and taxting and landing aircraft. | Precip. | Defined in Strategic Flood Risk Assessment
(SFRA) | н | g | А | Grooved runway, drainage system, ATC procedures
Le. increased separation distances, nurway safety
zones, operational guidance for pilots'airside staff,
warning signs on moloway network to announce
hazardous conditions. | 0 | w | Watching Brief | Airsida | Airside Director | | | 7 | Seasonal changes to fog related disruption (increase in winter months, decrease for remainder of year). | Fog | Low Visibility Procedures when the Runway
Visual Range (RVR) is < 600m and/or cloud
ceiling is < 200 ft. Projections do not suggest
any critical thresholds would be crossed | L | а | a | LVPs, operational guidance for pilots and airside
whicles, warning signs on nearby motoway network
to alert drivers to hazardous conditions. | E | w | Watching Brief | Airside | Airside Directo | | | 8 | Increased risk of schedule interruption from stormy conditions. | Stoms | High wind procedures and cross wind
procedures enacted at defined criteria
(dependent on aircraft type). | L | а | А | ATC procedures i.e. separation distances, contingency plans for disruption. | o | W | Watching Brief | Airside | Airside Directo | | | 9 | Increased longevity of wing tip vortex effect due to general becalming of surface wind speeds. | Wind | Wing tip vortex is particularly problematic for
small plance taking of in quick succession after
large alteraft. | L | G | G | Reparation programme to repair affected roots, ATC procedures i.e. increased separation distances. | E | w | Watching Brief | Airside | Airside Directo | | | 10 | Change to prevailing wind direction affects runway utilisation and schedules. | Wind speed/
direction | All commercial alteraft are tested to a
"damonstrated" maximum crosswind as part of
their certification. Large alteraft are better able to
handle cross which than light alteraft.
Technology is improving all of the time. | L | | | Not able to be assessed due to lack of projection data. | | W | Watching Brist | Airsida | Airside Directo | | | 11 | Disruption to airfield operations from lightning Lo.
refusiling suspension, changes to fight routing. | Lighting | All commercial aircraft are tested for resilience
to lightning strike as part of their certification.
Planes can withstand lightning strike in the air
but during take off and landing instrument loss
would be critical hence the diversion of routes
and stacks. | L | G | А | Suspension of relueiling, changes to stack locations and departure routes, diversions. | o | w | Watching Brief | Airsida | Airside Directo | | Heathrow Airport Climate Change Adaptation Reporting Power Report, May 2011. Heathrow Airport Limited. http://archive.defra.gov.uk/environment/climate/documents/adapt-reports/08aviation/heathrow-airport.pdf #### **Conclusions** - High degree of certainty that we are already dealing with 'Dangerous' Climate Change' - Policy is seeking to avoid 'Catastrophic Climate Change' and address adaptation requirements - Policy requirements for mitigation and adaptation will add to the increasing price of carbon resulting from reducing oil reserves - Aviation will be affected by climate change and has to play a full part in emissions reductions ## **Any questions?**