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The authors measured the neutron energy specira of a uasi-monoenergetic "Li(p,n) neutron source with 137,
200, 246 and 389 MeV protons set at seven angles (0°, 5°, 10°, 15°, 20°, 25° and 30°), using a time-of-flight  _
(TOF) method employing organic scintillators NE213 at the Research Center for Nuclear Physics (RCNP) of
Osaka University. The energy spectra of the source neutrons were precisely deduced down to 2 MeV at 0° and
10 MeV at other angles. Neutron energy spectra below 100 MeV at all angles were comparable, but the shapes
of the continuum above 150 MeV changed considerably with the angle. [n order to consider the correction
required to derive the response in the peak region from the measured total response for high-energy neutron
monitors, the authors showed the subtractions of H*(10) obtained at larger angles from the 0° data in the
continuum part. It was found that subtracting the dose equivalent at larger angles (21° for 389 MeV, 25° for
- 246 MeV and 26° for 200 MeV) from the 0° data almost eliminates the continuum component. This method
~ has potential to eliminate problems associated with continuum correction for high-energy neutron monitors.

Keywords: quasi-monoenergetic neutron; lithium; neutron energy spectrum; continunm correction; RCNP

1. Introduction’ ' have -not only peak neutrons but also low-energy
P ‘ . . ) continua caused by breakup and spallation reactions.
Radiation - fields - behind accelerator shielding and The fraction of ti?e peak gompontfnt in. the neutrori

Alight altitudes are charact'erized by a large contribution spectrum is around 50 %, but data correction for the

?f ngutrqns with energles. above 20 M"’:V’ Wl_'e“ contribution of continuum neutrons disturbs to derive

investigating neutron fields in such places, integrating the response in the peak region from the measured total

detectors such as Bonner spheres, ionization chambers response. Nolte et al. reported an interesting method to
andhdosmega rs have been used with newly fde(\;eloped ~ reduce the contribution experimentally at iThemba using -
methods.  Determining ~the  reliability of detector 0100 Mev "Li(p,n) reaction [3]. They concluded that
response matrices requires calculations using Monte subtracting the data obtained at 16° from the 0° data
+Carlo codes  and  calibration  measurements. provides a true monoenergetic spectrum because the

Quasi-monoenergetic neutron reference beams are of spectrum of the continuum component is almost the

special importance for calibrating ?he detectors, same at 0° and at 16°. Although this method has the
Facilities  such ~as the iThemba [1] have - potential to eliminate problems associated with

quasi- monocnergetlc neutron fields with energies up to . oy correction, the neutron energy spectrum at

200 MeV using "Li(p,no,)’ ?18 (gs. + 0.429 MeV, Q; larger angles for 100 - 400 MeV proton incident

-1.64 and -2.08 MeV), On the o&er hand, the Researc ‘reactions has never been measured and the continuum

Center for Nuclea.r Physics (R'CNP) cyclotron facility correction has never been investigated.

has neutron fields in energy regions up to 400 MeV, and This paper. considers the measurement of neutron

neutron energy spectra at 0° for 352 MeV protons have energy spectra- at seven angles (0°, 5°, 10°, 15°, 20°, 25°°

been measured [2]. These neutron energy spectra at 0° and 30°) for the 140, 200, 246 and 389 McV "Li(p,n)
reactions at RCNP, and the characterization of peak and
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Introduction '

« High-energy neutron standard fields have been developed for calibratmg radiation protection devices used in accelerator facnitles and
high-altitude environments, and testing of semiconductor devices.

+ High-energy neutren fields above 20 MeV are produced by the 7Li(p,n) reaction using cyclotrons.

+ The quasi-monoenergetic neutron field consists of a high-energy peak and a continuum down to the low-energy région.

« Information of the continuum is necessary to subtract the effect of the continuum in the calibration and testing.

Time-of-flight measurement of quasi-monoenergetic high-energy neutron fields
» The lower limit energy of the TOF measurement was removed using a new beam-chopping system of the AVF cyclotron facility in the

TIARA/JAEA. [

+ TOF measurements down to the keV region were achieved with scintillation detectors.

keV region: SLi-glass scintillator GS20
MeV region: Organic liquid scintillator BC501A

w! Derived result consists of a high=energy peak
and a continuum, as expected.

No significant count remains below ~150 keV
after eliminating time-independent component.

‘Energies of neutrons which directly come from

the target are above ~150 keV.

| Neutrons below ~150 keV are time-independent.
" 107 L .Bonner sphere spectrometer (BSS) is effective to

Neutron energy £ (MaV) evaluate the time-independent low- energy

Spectral neutron fluence by 50-MeV ’Li(p,n)  neutrons below ~150 keV
reaction measured by the TOF method

Design of actlvatlon Bonner sphere spectrometer
+ BSS using 3He proportional counter has problem at the high-energy neutron fields.

.

3
)

.

Spectral neutron fluence ddYde per monitor count

 Neutron irradiation room of TIARA/JAEA

Setup of gold-foil BSS

Signals attributed to high-energy particles
disturb precise counting of He(n,p) signals.

s

Gold foils (20 mm dia, 1 mm thick)
were installed in high-density
Y polyethylene (HDPE} attachments,

BSS based on activation detector

Gold activation method is suit for
measuréments in the high-energy
20004000 soon - 00d neutron experiments.

PUISE-heiaﬁt‘hc[I:gmlgmmns of (n,¢) reaction can be isolated from
3He-based BSS other reactions.

Attachments containing gold foils
were installed in Bonner spheres.

Evaluation of activation BSS :
+ Response of the gold-foil Bonner sphere is defined as saturated count rate C of a specmc HPGe detectur (AIST HPGe) for neutron
fluence rate”.
+ Response matrix of the gold-foil BSS was evaluated by Monte Carlo calculation using MCNPX and measurements at the 565- keV
monoenergetic neutren standard field of AIST. Demonstration in the quasi-monoenergetic
+ The activation BSS are demonstrated in the qua5| monoenergetic high- eneugy high-energy heutron field in TIARA
neutron field of TIARA. ‘ {EREEE
Measurements for mon enel etic eutron field - Calculation by MCNPX
Irradiation in the 565-

7Li(p,n) reaction using 50 MeV p*
Neutron peak energy: 45 MeV

keV monoenergetic 0.025 T Spheres: 3", 4", 4.5", 5", 6"
neutron standard field -
of AIST. z " 7‘@%
b
: e ﬁ o.018 The first trial of unfofdmg wn:h the gold-foil BSS
iScaling . £ \ g
Activity measurement i § 0.01 LA » T
N i £ Unfolding code: MAXED in the
|
of 198AU with the AIST i ‘ | i - || UMG 3.3 package
HPGe. ©E 000 i i \J| pefault spectrum:
= | ' §%,, | Y| resuit of the TOF measurement
T T 7= RT BT g_ (>150 keV) + extrapolation
Neutron energy [MeV) E w? | (fiSU keV, Maxwellian )
Additional attachment Is.Used to measure the Response functions of 1 I ‘::‘gti';:‘)"““" and flat connection
activities on the same geometrical condition. the activation BSS ; T Requested y? per degree of
Conclusions e oe) freedom: 1.0

« The low-energy continuum is studied for the precise app”catlnn of the qua5| monoenergetlc high-energy neutron field.

+ TOF measurements revealed energies of neutrons which directly come from the target were above ~150 keV. Neutrons below ~150
keV were time-independent and the BSS unfolding method is considered to be effective,

+ The unfolding method using activation BSS was proposed to avoid difficulties of *He-based BSS in the high-energy neutron field.

+ The activation BSS was developed and demonstrated in the guasi-moncenergetic high-energy neutron field,

« Future tasks: Improvement of reliability and accuracy of the proposed method by experlments and calculatlons. )

ythe iy of Kducaien, Cubure, S5t Sienca and Tachnalegy ofJasan,
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Abstract

* This paper provides an overview of high-energy quasi-monoenergetic neutron sources and
facilities above 20 MeV around the world. Various technical matters are discussed which are
required in characterizing the neutron fields by spectrometry, fluence and beam profile
measurements. Important topics regarding the calibration of neutron detectors are also
introduced with emphasis on beam monitoring, tail correction, background subtraction and
fluence-to-dose conversion. Efforts to standardize the high-energy neutron fluence in Japan

and by the German national metrology institute in collaboration with Belgian and South

African institutions are also presented.

.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

High-energy quasi-monoenergetic neutron reference fields

above 20MeV have been developed in cyclotron facilities.”

Compared with monoenergetic neutron reference fields of
energies below 20MeV, high-energy reference fields are
less common but their significance has not been less for
various reasons. High-energy neutrons above 20MeV are

present at aircraft altitudes and in space as well as in

high-energy accelerator facilities. Dosimetry is important
in these high-energy neutron workplaces [1,2] and various
types of dosemeters and detectors have been developed for
this purpose. Bonner spheres with enhanced responses for
high-energy neutrons are one of the most effective tools
for determining the spectral fluence in these workplaces
[3-5). High-energy neutron reference fields have been
‘required for calibrating these neutron detectors as well as
for verifying their energy responses [2,6). The reference
fields have also been extensively used for shielding-benchmark
experiments for high-energy accelerator facilities [7] and
for cross-section studies for interactions induced by high-
energy neutrons [2,8-17]. Cross-section data for high-
energy neutrons are especially required for developing
accelerator-driven subcritical fission reactors or transmutation
of radioactive waste [18]. Furthermore, quasi-monoenergetic
neutron beams have been used for accelerated testing of
semiconductor devices to investigate neutron-induced single-
event effects [19].

0026-1394/11/060292+12533.00 © 2011 BIPM & IOP Publishing Ltd Printed in the UK & the USA

26

This paper reviews high-energy quasi-monoenergetic
neutron sources above 20MeV and methodologies for
characterizing neutron fields and calibrating neutron detectors, -
which have been used and may have potential use for metrology
purposes. Efforts have been made to develop high-energy
neutron fluence standards in Japan, and by a collaboration with
German, Belgian and South African partners which are also
introduced here.

2. Neutron sources

High-energy quasi-monoenergetic neutrons above 20MeV
have been generated at cyclotron facilities with accelerated
protons striking thin targets of light elements such as Li and
Be. Cyclotrons typically generate proton beams with a pulse
duration of 1ns at a repetition rate of 20 MHz to 30 MHz.
The time interval between pulses can be enlarged up to one
order of magnitude by employing a beam pulse selector to
reduce the beam pulse repetition rate, especially for precision
measurements using the time-of-flight (TOF) technique. Beam
currents are adjusted between 1 nA and 10puA depending on
experimental requirements. ! )

The targets are most commonly made of metal Li up to
10mm thick. The protons undergo a "Li(p, n)’Be reaction
(Q = —1.644MeV) in the Li target to forward generate
neutrons, which form a main peak in the spectrum. Since
the protons lose 1 MeV to 2 MeV in the target, the main peak
has a width corresponding to the energy loss. - The main

) 8202



Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 1, p.166-169 (2011)

ARTICLE

Development of the Quasi-monoenergetic Neutron Calibration Fields
of Several Tens of MeV at TIARA '
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Development of three calibration fields for 45, 60 and 75 MeV neutrons has been in progress at Takasaki [on
Accelerators for Advanced Radiation Application (TIARA) of JAEA-Takasaki. Achievement of the neutron
calibration fields requires establishment of both measurement of neutron fluence and its monitoring technique. In
order to measure the neutron fluence of main energy peak especially at a reference point on low fluence condition, a
proton recoil counter telescope with high efficiency has been developed. The design of relatively large telescope
components brought a high detection efficiency at the reference point with wide irradiation area at a long distance.
Effective and precise measurement of the neutron fluence could be performed with uncertainties less than 6.5 %
(standard deviation). For detecting neutrons without scattering near the target, a transmission type neutron fluence -
monitor has been newly developed to measure the neutron fluence directly at the collimator exit. Its performance such

as counting rates was tested for various beam intensities.

KEYWORDS: neutron calibration field, TIARA, proton recoil counter telescope, fluence. monitor

L Introduction’

High energy proton accelerator facilities such as J-PARC
have been developed to pursue frontier research in particle
physics, nuclear science and technology. In order to
implement - the quality of radiation protection in . such
facilities, neutron calibration fields in a wide energy range
are required to evaluate the energy response of neutron
monitors and dosimeters.

For the neutron fields above 20 MeV, the standard
calibration fields have not been fully established in Japan.
For the purpose of the development of such calibration fields,
the quasi-monoenergetic neutron irradiation fields of several
tens of MeV are available at Takasaki on Accelerators for
Advanced Radiation Application (TIARA) of Takasaki
Advanced Radiation Research Institute (TARRI), Japan
Atomic Energy Agency (JAEA)." Therefore, investigation
of the characteristics of the neutron fields at TIARA®Y has
been furthered in order to contribute to the establishment of
the standard fields by the National Metrology Institute of
Japan, National Institute of Advanced Industrial Science and
Technology (AIST), in the future. Three neutron fields with
45, 60 and 75 MeV peaks are planned to be established,
considering the international intercomparison of the neutron
fields at TIARA with those at other facilities in a similar
encrgy range.

Up to now, beam profile, main peak energy of
quasi-monoenergetic neutron, and neutron spectra inside and
outside the irradiation field were measured and reported.>”
Among remaining issues on neutron fluence for the main
_energy peak and on corrections for low energy neutrons
below ‘the main energy peak region and gamma rays,
measuremeut of neutron fluence and establishment of

*Corresponding Author, E-mail:shikaze@jaea.go.jp
© Atomic Energy Society of Japan

fluence monitoring technique are. important for - the
development of the calibration fields. This paper reports the
results of absolute measurement of neutron fluence by using
a proton recoil counter telescope (PRT) with high detection
efficiency and the development of a transmission type
neutron fluence monitor to monitor neutron beam directly.

II. Quasi-monoenergetic Neutron Fields at TIARA
The quasi-monoenergetic neutron = fields by using
"Li(pn)’Be reaction for 40-90 MeV neutrons have been
established at TIARA as the irradiation field for experimental
1se.” The neutron spectra have the main energy peak in high
energy region and continuous distribution below the peak
region. Figure 1 shows the layout of the quasi-monoenergetic
neutron source facility at TITARA. A proton beam from an AVF
cyclotron is transported to a 'Li target with thickness
corresponding to 2 MeV energy loss. Protons passing through
the target are bent by a clearing magnet into a Faraday cup
shielded by an iron beam dump. Neutrons are guided to the
experimental room through about 3 m thick collimator
(inner-diameter of 11 cm) consisting of an iron rotary-shutter

Experimental rcom

Detector or
Monitor

*O

Neutron beam

i 3 ﬁss]m;
chambear
2200

W
[ hamber |

\ . !_ - I 1200 ;

3400 '

Fig. 1 Schematic view of the quasi-monoenergetic neutron
source facility at TIARA,
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Time-of-Flight Measurements for Low-Energy
Components of 45-MeV Quasi-Monoenergetic
High-Energy Neutron Field from ‘Li(p,n) Reaction
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S. Nishino, S. Kurashlma

M. Haglwara Y. Unno, J. lehlyama, M. Yosh17awa and H. Seito

v
Abstract—A quasi-monoenergetic neutron field generated in the

"Li(p, n) reaction consists of a high-energy monoenergetic peak
and a continuum to the low-energy region. In this study, the spec-
tral fluence of the continuum was measured with the time-of-flight
(TOF) method using a ®Li-glass scintillation detector and an or-
ganic liquid scintillation detector for the keV and MeV region, re-
spectively, The neutron spectral fluence was determined down to
the keV region by implementing a new beam chopping system and
the results showed that the neutrons that came directly from the
target had a lower energy limit about 100 keV. Discussions were
‘made also on the effect of the time-independent neutrons which
are assumed to be room-scattered neutrons. The obtained informa-
tion is expected to contribute to understanding the quasi-monoen-
ergetic high-energy neutron field and 1mprovements of calibrating
neutron detectors in the field.

Index Terms—High-energy neutrons, neutrons, quasi-monoen-
ergetic neutron fields, spectrometry, time-of-flight method.

[. INTRODUCTION

UASI-MONOENERGETIC ‘high-energy neutron fields
with energies above 20 MeV are being developed for
high-energy neutron standards at cyclotron facilities
[1]-[3]. Calibration of the neutron detectors used for scientific
experiments and dose controls in high-energy accelerator facil-
ities and high-altitude environments is performed in such fields
[4]. The quasi-monoenergetic neutron field is generated by the
"Li(p, n) reaction and consists of a high-energy monoenergetic
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peak and a continuum to the low-energy region. This continuum
disturbs the calibration of neutron detectors for the high-energy
monoenergetic peak neutrons so its effect should be properly
considered [5]-[7].

Although a time-of-flight (TOF) method with an organic
liquid scintillation detector is typically used in spectral mea-
surements of the quasi-monoenergetic high-energy neutron
field [8], the repetition rate of the accelerated proton beam and

- the distance between the neutron source and the detector impose

a minimum energy limit. Neutrons with energies below this
limit overlap with neutrons in the next pulse. This limit energy
has typically been several MeV because of the high-repetition
rate of the proton beam accelerated by an AVF cyclotron with
a common beam chopper located after it. The spectral infor-
mation below the TOF threshold energy has been evaluated
by the unfolding method using a Bonner sphere spectrometer
(BSS) [4], [6]. However, the BSS unfolding method may not
be accurate due to the lack of a reliable default spectrum based
on TOF measurements below the threshold energy.

At the same time, common neutron detectors using polyeth-
ylene moderators generally have a local maximum response
at an energy of several MeV and the effect of the unknown
continuum has significant influence on the measurement. A
two-angle differential measurement method using a- target
swinger has also been attempted [5][6]; however, it could not -
directly reveal the speciral structure of the continuum, and the
target swingers are only available at a few facilities. Therefore,
a TOF measurement method for the low-energy region of the
continuum is required.

Recently, a beam. chopping system [9] called “P-chopper”
became available for neutron experiments [10] at the AVF cy-
clotron facility at the Takasaki Ion accelerators for Advanced
Radiation Application (TIARA) of the Japan Atomic Energy
Agency (JAEA). The P-chopper is located in a beam injection
line of the cyclotron, and can reduce the beam repetition rate
considerably when it is used together with an existing beam
chopping system called an “S-chopper.” Using the chopping
systems, the TOF threshold has, in principle, been removed, and
the low-energy region of the continuum is measured using the
TOF method with scintillation detectors in this study.

II. EXPERIMENT

The TOF measurement was performed at the LCO beam line
for neutron experiments at the AVF cyclotron facility of TIARA.

0018-9499 @ 2015 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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The authors measured the neutron energy spectra of a quasi-monoenergetic ’Li(p,n) neutron source with
246 and 389 MeV protons set at seven angles (0°, 2,5° 5°, 10°, 15°, 20° and 30°), using a time-of-flight
(TOF) method employing organic scintillators N8213 at the Research Center for Nuclear Physics (RCNP) of
Osaka University. The energy spectra of the source neutrons were precisely deduced down to 2 MeV at 0°

-and 10 MeV at other angles. The cross-sections of the peak neutron production reaction at 0° were on the

35-40 mb line of other experimental data, and the peak neutron angular distribution agreed well with the
Taddeucci formula. Neutron energy spectra below 100 MeV at all angles were comparable, but the shapes
of the continuum above 150 MeV changed considerably with the angle. In order to consider the correction
required to derive the response in the peak region from the measured total response for high-energy
neutron monitors such as DARWIN and Wendi-2, the authors showed the subtractions of H*(10) obtained

- at larger angles (10°, 15°, 20° and 30°) from the 0° data in the continuum part for the 246 and 389 MeV

"Li{p.n) reactions. It was found that subtracting the dose equivalent at about 20° from the 0° data almost
eliminates the continuum component. This method has petential to eliminate problems associated with

continuum correction for high-energy neutron monitors.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Radiation fields behind accelerator shielding and flight altitudes
are characterized by a large contribution of neutrons with energies
above 20 MeV. When investigating neutron fields in such places,
integrating detectors such as Bonner spheres, ionization chambers

“and dosimeters have been used with newly developed methods.
Determining the reliability of detector response matrices requires
calculations using Monte Carlo codes and calibration measure-
ments. Quasi-monoenergetic neutron reference beams are of
special importance for calibrating the detectors. They are also used

* Correspondence to: 2-4 Shirakatashirane, Tokai-mura, Na'ka-gun, Ibaraki
319-1195, Japan. Tel.: +81 29 282 6704; fax: +81 29 282 6122.
’ E-mail address: iwamoto,yosuke@jaea.go.jp (Y. I o).
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efficiently for shielding benchmark experiments and cross-section
studies of neutron-induced reactions, taking advantage of the
narrow energy distribution at the peak.

Facilities such as the Tri University Meson Facility (TRIUMF) [1],
iThemba 2} and RIKEN [3] have quasi-monoenergetic neutron fields
with energies up to 200 MeV using ’Li(p,n)’Be (g.5.+0.429 MeV,
Q=-1.64 and —2.075MeV). On the other hand, the Research
Center for Nuclear Physics (RCNP) cyclotron facility [4-6] has

* neutron fields in energy regions up to 400 MeV, and fleutron energy

spectra at 0° for 140-400 MeV protons have been measured {7.8].
These neutron energy spectra at 0° have not only peak neutrons but
also low-energy continua caused by breakup and spallation reac-
tions. The fraction of the peak component in the neutron spectrum is
around 50%, but data correction for the contribution of continuum
neutrons disturbs to derive the response in the peak region from the
measured total response. Nolte et al. [9] reported an interesting



