
1

出國報告（出國類別：國際會議）

MS2015 研討會出國報告

服務機關：國立高雄師範大學軟體工程系

姓名職稱：李文廷 助理教授

派赴國家：美國

出國期間：104/6/25~104/7/5

報告日期：104/8/28

2

摘要

IEEE 行動服務國際研討會(IEEE International Conference on Mobile Service) 是行動服

務領域的重要國際研討會，此次出國目的為參與 2015 IEEE 行動服務國際研討會，發表

論文並與會議學者討論研究議題和相關技術。今年度的會議於 2015 年 6 月 27 至 7 月 2

日於美國紐約曼哈頓 Millennium Broadway Hotel 舉行，會中有來自多國的與會學者共同

參與交流，發表行動服務研究領域之論文。此次大會的議程長達六天，大會邀請了許多

服務導向領域的重量級學者進行多場 Keynote Speech 以及 Panel Discussion，從這些演講

與座談也獲得了不少的研究上的靈感。本人亦在會議中發表了一篇論文，並與國外的學

者進行討論，討論之內容對於研究之進行與推展有相當之助益。

3

目次	

一、 目的... 4

二、 過程... 4

三、 會議議程... 4

四、 報告內容... 5

五、 心得及建議... 6

六、 附錄... 8

4

MS2015 研討會出國報告

一、 目的

IEEE 行動服務國際研討會(IEEE International Conference on Mobile Service) 是行動服

務領域的重要國際研討會，此次出國目的為參與 2015 IEEE 行動服務國際研討會(2015

IEEE International Conference on Mobile Service, MS2015) 發 表 論 文 ， 論 文 題 目 為

State-Driven and Brick-Based Mobile Mashup，並與會議學者討論研究議題和相關技術。

二、 過程

IEEE International Conference on Mobile Service 是行動服務領域的重要國際研討會，

與其他數個頂尖國際研討會，如 ICWS 2015 (International Conference on Web Services)、SCC

2015 (International Conference on Service Computing)、Cloud 2015、BigData Congress 2015 共

同舉行，今年度的會議於 2015 年 6 月 27 至 7 月 2 日於美國紐約曼哈頓 Millennium

Broadway Hotel 舉行，會中有來自多國的與會學者共同參與交流，發表 Mobile Service

Personalization, Mobile Service Delivery, Mobile Service Framework, Mobile Service Security,

Mobile Service Applications 等研究領域之論文。此次大會的議程長達六天，大會邀請了

許多服務導向領域的重量級學者，如 NASA 的 Dr. Tsengdar J. Lee, Google 的 VP of

Infrastructure at Google: Dr. Eric Brewer、IBM 的 VP of Cognitive Computing: Dr. Guruduth

Banavar、Transactions of Service Computing 的主編：Prof. Ling Liu 等進行多場 Keynote Speech

以及 Panel Discussion，這些演講與座談均相當精采，令人獲益良多，從這些演講與座談

也獲得了不少的研究上的靈感。大會於 7 月 2 日順利閉幕，結束了此次長達六天的 MS

2015 研討會。

三、 會議議程

2015 IEEE行動服務國際研討會之行動應用品質會議，兩場session分別安排於6月30

日上午與下午，議場主題為行動應用品質(Mobile Application Quality,MAQ)，議程如下:

 (一) 議程 1 (Session 1): Modeling and Development for Mobile Applications (06/30 Tuesday, 9:25-10:25) 議程主

席(Session Chair): Shang-Pin Ma, National Taiwan Ocean University, Taiwan

1. 論文題目: State-Driven and Brick-Based Mobile Mashup (MS2015-3025)

作者: Shang-Pin Ma (National Taiwan Ocean University TW) Yang-Sheng Ma (National Taiwan Ocean

5

University TW) Wen-Tin Lee (National Kaohsiung Normal University TW)

2. 論文題目:The Study of Cloud-Based Testing Platform for Android (MS2015-3026)

作者:Jong Yih Kuo (National Taipei University of Technology TW) Wei Ting Yu (National Taipei University

of TechnologyTW)

3. 論文題目:Improving Resource Utilization of a Cloud-Based Testing Platform for Android Applications

(MS2015-3027)

作者:Chien-Hung Liu (National Taipei University of Technology TW) Shu-Ling Chen (Southern Taiwan

University ofScience and Technology TW) Woei-Kae Chen (National Taipei University of Technology TW)

 (二) 議程 2 (Session 2): Mobile Application Quality Assurance (06/30 Tuesday, 13:00-14:00; 4.04/4.05) 議程主

席(Session Chair): Ci-Wei Lan, IBM, Taiwan

1. 論文題目: Code Coverage Measurement for Android Dynamic Analysis Tools (MS2015-3028)

作者:Chun-Ying Huang (National Taiwan Ocean University TW) Ching-Hsiang Chiu (National Taiwan Ocean

University TW) Chih-Hung Lin (Institute for Information Industry TW) Han-Wei Tseng (National Taiwan

Ocean University TW)

2. 論文題目: Applying Genetic Programming for Time-aware Dynamic QoS Prediction (MS2015-3029)

作者:Yang Syu (National Taipei University of Technology TW) Yong-Yi Fanjiang (Fu Jen Catholic University

TW Jong-Yih Kuo (National Taipei University of Technology TW) Shang-Pin Ma (National Taiwan Ocean

University TW)

3. 論文題目: A Study of a Life Logging Smartphone App and Its Power Consumption Observation in

Location-based Service Scenario (MS2015-3030)

作者:Fu-Ming Huang (Academia Sinica TW) Yu Hsiang Huang (Academia Sinica TW) Christopher Szu

(Academia SinicaChina) Addison Y.S. Su (National Central University TW) Meng Chang Chen (Academia

Sinica TW) Yeali S. Sun (NationalTaiwan University TW)

四、 報告內容

本人在 2015 行動服務國際研討會中上午的議程中發表了一篇論文，論文題目為

State-Driven and Brick-Based Mobile Mashup，此研究目標為提供一個可建構整合前端 UI

元件與後端服務元件的行動複合應用程式。圖一為本人在研討會報告的現況，報告時間

15 分鐘回答問題 10 分鐘，報告內容為建構整合前端 UI 元件與後端服務元件的行動複

合應用程式，與會者也詢問是否可以適用此論文所開發的應用程式，討論熱絡反應良

老。研討會當天報告論文內容如附加檔案。

6

圖一、研討會論文報告

圖二、研討會報告者合影

五、 心得及建議

本人此次相當榮幸獲邀在 MS 2015 中的 special track 擔任議程委員(Program

Committee Member)，主題為 Mobile Application Quality (MAQ)，最後 MAQ 特別議程共收

錄了六篇論文，分為兩場 session 進行簡報。大會將此兩場 session 分別安排於 6 月 30 日

上午與下午，兩場均吸引了許多聽眾前來參與，會議中也就這些論文進行了深度的研

7

討。本人亦在上午的議程中發表了一篇論文，論文題目為 State-Driven and Brick-Based

Mobile Mashup，此研究目標為提供一個可建構整合前端 UI 元件與後端服務元件的行動

複合應用程式，在會議中也與國外的學者進行討論有關服務導向架構、網際服務和服務

品質等相關最新研究內容與趨勢，討論之內容相當有助於本研究之推展。

8

六、 附錄

State-Driven and Brick-Based Mobile Mashup

Shang-Pin Ma and Yang-Sheng Ma

Department of Computer Science and Engineering

National Taiwan Ocean University

Keelung, Taiwan

E-mail: albert@ntou.edu.tw, 10257039@ntou.edu.tw

Wen-Tin Lee

Department of Software Engineering

National Kaohsiung Normal University

Kaohsiung, Taiwan

E-mail: wtlee@nknu.edu.tw

Abstract—Mobile applications (i.e., mobile apps or apps) are

becoming an important software delivery model. Users can

employ a wide range of services associated with mobile apps,

such as entertainment, news, travel, and social networking.

Unfortunately, the retrieval of information from multiple apps,

services, or local resources can be time-consuming, costly, and

inconvenient. This paper proposes a novel mobile mashup

approach, referred to as brick-based, state-driven mobile

service composition (BSMSC) to overcome these difficulties.

BSMSC comprises two primary mechanisms: (1) Android-

fragment-based service bricks; and (2) a state-driven linkage

for composite RESTful services, which supports one-shot

service flow execution as well as stateful service flow execution.

The proposed BSMSC approach makes it possible to assemble

fully-fledged, reconfigurable mobile mashup applications.

Keywords-mobile mashup; service brick; RESTful service

composition

I. INTRODUCTION

Mobile applications (i.e., mobile apps or apps) are

becoming an important software delivery model. Users can

employ a wide range of services associated with mobile

apps, such as entertainment, news, travel, and social

networking. However, the retrieval of information from

multiple apps, services, or local resources can be time-

consuming, costly, and inconvenient. Despite recent

advances in service mashups, there remains very few

configurable mashup mechanisms capable of combining

information and services from front-end as well as back-end

resources for mobile devices. Most solutions in the area of

mobile mashups are based on mobile widget mechanisms,

which require the installation of a widget engine or widget

runtime [1-3]. Meanwhile, existing service composition

methods do not consider the delivery in the mobile clients.

This paper presents a novel approach to mobile mashups,

referred to as brick-based, state-driven mobile service

composition (BSMSC), which features two primary

mechanisms: Android-fragment-based service bricks and a

state-driven linkage to composite RESTful services. For the

front end of the mobile mashup, we extended our previous

work [4], by developing front-end UI components based on

Android fragment APIs and web technologies. This enables

users to create composite “service bricks” (CSB). We

adopted the popular [5] RESTful (Representational State

Transfer) services for the back end. Based on the service

composition platform JOpera [6], we devised a novel

mechanism, referred to as state-driven composite RESTful

service linkage, to enable the connection of CSB to back-

end RESTful services (atomic or composite). The proposed

mechanism supports one-shot service flow execution, in

which multiple services can be invoked according to a

specified flow sequence followed by the direct return of

combined results. The proposed mechanism also supports

stateful service flow execution, which enables the execution

of conversational services, where the front-end CSB is able

to issue requests iteratively to the same service flow in order

to obtain service results based on flow states. The proposed

BSMSC approach makes it possible to assemble fully-

fledged, reconfigurable mobile mashup applications

The remainder of this paper is organized as follows:

Section 2 presents a review of research related to mobile

mashup and RESTful service composition. Section 3

presents the details of the proposed state-driven and brick-

based approach. Illustrative examples are presented in

Section 4. The final section presents our conclusions.

II. RELATED WORK

In this section, we review several studies related to
mashups and RESTful service composition. Park [7]
introduced a platform for the integration of widgets on the
web. In that architecture, a web page comprises a number of
widgets, which can be categorized as simple or complex. The
widgets interact with each other using a mechanism called
Publish and Subscribe. Nestler et al. [8] presented ServFace
Builder, an authoring tool designed to enable individuals
without programming skills to design and create service-
based interactive applications using a graphical interface.
Users can connect two service components simply by
clicking their inputs and outputs, to simplify the creation of
new service components. Ma et al. [9] proposed a REST-
based service mashup framework, referred to as Process-
Data-Widget (PAW), which functions as a composition
model for the construction of mashup applications. That
framework enables developers to design service processes,
compose service data, and configure widgets for presentation
on a user interface (UI) simply by constructing a mashup
document (MD). The PAW mashup engine also parses the
MD and generates a corresponding mashup application and
associated RESTful services. Most of above efforts can only
produce conventional mashup applications, not for the
mobile environment. Conversely, our approach can realize
mashups for mobile devices by applying the proposed
service brick mechanism.

mailto:albert@ntou.edu.tw

Rosenberg et al. [10] provided an extensible, XML-based
language, Bite, in conjunction with an integrated
programming model for the composition of RESTful
services with interactive flow. Alarcon et al. [11] designed a
hypermedia-centric REST service description, ReLL
(Resource Linking Language), in conjunction with Petri Nets
for the modelling and simulation of service compositions.
Zhao and Dosh [12] introduced three types of RESTful
service: resource set service, individual resource service,
and transitional service, which are presented within a
situation calculus based on sate transition systems (STS) to
automate service composition. Pautasso [13, 14] introduced a
means by which to extend BPEL (Business Process
Execution Language) to invoke RESTful WSs (Web
Services) and publish a BPEL process as a RESTful Web
Service. In [15], Pautasso and Wilde proposed an
architecture for push-enabling RESTful business processes.
They also designed an engine, Push-enable RESTful Process
Execution Engine, to enable push notification of tasks and
the detection of changes in process state. In [16], Aghaee and
Pautasso proposed a Mashup Component Description
Language (MCDL), which is a domain-specific language
based on JSON (JavaScript Object Notation) to describe
heterogeneous mashup components based on various access
methods, such as POX (Plain Old XML), REST, or SOAP
(Simple Object Access Protocol). In [17], Bellido et al.
proposed a set of control-flow patterns (include sequence,
iteration, alternative, and parallel) within the context of
stateless compositions of RESTful services. All above
researches are back-end RESTful composition methods,
without considering the client side, especially for the mobile
clients. Besides, these works do not fully realize state-based
service flow execution, which is an important feature for the
mobile composite applications.

JOpera [6] is a widely-used service composition tool
based on a range of theoretical methods [13-17]. JOpera
provides a visual language with which to define control flow
and data flow for service processes as well as an execution
engine. JOpera supports numerous adapters with which to
invoke various programming languages or services, such as
Java and JavaScript as well as SOAP and RESTful services.
The method proposed in this study for the composition of
RESTful services is built atop JOpera through the provision
of a set of utility services and a service mediator to facilitate
communication between the mobile app and the JOpera
server.

III. BSMSC: STATE-DRIVEN MOBILE SERVICE COMPOSITION

In this section, we outline the proposed approach in detail,
including the system architecture, the newly-devised
Android-fragment-based composite service brick, a novel
means of linking state-driven composite RESTful services,
the role of users in the development of brick-based
applications, and the JSON-based description document for
composite RESTful services.

A. System Architecture

Fig. 1 illustrates the proposed system architecture
including the basic schema of the proposed approach. This

approach allows users to design a composite service brick
(CSB), comprising multiple service bricks used for the
display of integrated services or information. A service brick
(SB) is a rectangular UI component in an app used for the
display of specific information. We extended our previous
work [4] with the addition of a new type of service brick:
Android-fragment-based service bricks, which can be further
divided into web-enabled service bricks (using HTML,
Javascript, and CSS) as well as native service bricks. The
native Android code makes the implementation of these
bricks smoother and more efficient. In addition, BSMSC is
able to present a composite service brick as a mobile app,
which means that users need not refer to a specific URL in
order to utilize web-based service bricks via their browser.
Furthermore, source files, such as JSON-based description
documents, HTML pages, and Javascript source code, can be
stored on the client-side to decrease network flow
requirements.

Fig. 1. System Architecture

A service brick can send to and receive events from the
event engine, which is responsible for matching and
forwarding events to appropriate service bricks. In addition,
service bricks can be used to invoke resource providers to
obtain services or information. Resource providers include
client-side local resources, such as an address book or GPS
module, as well as external resources, such as the atomic and
composite RESTful services introduced in this paper.
Composite RESTful services are hosted in the JOpera server.
The service mediator is used by the composite service brick
to link JOpera services in order to invoke RESTful service
flow.

In the following sub-sections, we explain the above
concepts in greater detail.

B. Android-Fragment-Based Composite Service Brick

As mentioned previously, this study developed a new
type of service brick, the Android-fragment-based service
brick, to improve its efficiency and usability. We also
devised two sub-types of Android-fragment-based service
bricks:

(1) Web-enabled service bricks are created using

HTML, CSS, or Javascript prior to implementation in

Android WebView. All resources, such as source files for

HTML, CSS, and Javascript, and image files, are cached on

the client side; i.e., mobile devices. Thus, unlike web-based

service bricks [4], the proposed mechanism does not require

the loading of resources from the server, which enhances

overall efficiency.

(2) Native service bricks are created using pure Android

native objects to obtain additional functionalities that

conventional web pages are unable to perform. Native

service bricks make it possible to use sensor data locally and

communicate with remote services to obtain value-added

functions. For example, native service bricks are able to use

the current geospatial location to obtain weather-related data,

or use heart rate sensors or pedometers for the monitoring of

exercise performance.

This study extended these bricks in the construction of
front-end UI components based on Android fragment APIs
and web technology.

Fig. 2. Architecture used in Android-fragment-based composite service

bricks

Fig. 3. Example of Android-fragment-based composite service bricks

Fig. 2 presents the architecture of Android-fragment-

based service bricks. An Android fragment represents only
one service brick, which can be embedded into WebView or
another view in Android Layout. In a fragment-based brick,
the “FragmentCommunicator” interface is responsible for
sending and receiving data between its parent fragment and
other fragments. The “WebInterface” object is responsible

for communication between native Android objects and
Javascript in the WebView-embedded service brick, thereby
making it possible to invoke Javascript functions in
WebView. WebView includes the following two main
components: an event engine, which receives and transmits
events among service bricks, and the Javascript in a brick,
which is used to display the desired user interface. As
mentioned previously, web-based service bricks can be
implemented in the WebView of android-fragment-based
bricks to provide the same functionalities as the original
web-based service brick.

Fig. 3 presents an example android-fragment-based
composite service brick of a music composite application.
First, the singer service brick (SB) uses JavaScript to send an
event to its WebInterface object (step 1). Next, the
WebInterface object forwards the event to the
FragmentCommunicator interface (step 2). In step 3 the
FragmentCommunicator interface of the singer SB transmits
the event to the songlist SB. In steps 4 and 5, the
FragmentCommunicator interface of songlist SB submits the
event to its event engine via its WebInterface object. Finally,
in step 6, the event engine checks the event type and
forwards it to the Javascript functions in the songlist SB.
Finally (in steps 7 and 8), the songlist SB utilizes the service
invoker to connect to the music composite service in order to
display the song list that the singer submitted from the singer
SB.

C. State-Driven Composite RESTful Service Linkage

To strengthen the capability of the service bricks, we also
devised a mechanism for linking to back-end RESTful
services, referred to as state-driven composite RESTful
service linkage. The proposed mechanism is able to bridge
front-end service bricks and back-end single or composite
RESTful services in a state-driven manner; i.e., service data
can be stored and processed during the conversation between
the front-end bricks and the back-end services.

We adopted the widely-used JOpera [6] service process
engine as our underlying platform. In addition to performing
one-shot service delivery for the composite service,
supporting state-enabled service conversation between front-
end bricks and back-end services is the first requirement of
BSMSC. Second, dynamic substitution of component
services in a composition [18] is also required for the
composition of dynamic services; therefore, we also
integrated this feature in order to allow the assignment of
preferred component services in the composite brick
development phase. Third, publishing the composite
RESTful service as a normal RESTful service with JSON
output is required to ease integration. However, a composite
service in JOpera must be output in a specific format.
Transforming the service output into a validate JSON format
is another issue. Thus, we devised a service mediator as an
intermediate layer between the bricks and the JOpera, to deal
with output wrapping and state analysis and integrate two
utility services (a component service substitution module and
a session management module), into the service flow. It
should be noted that the developer of the composite RESTful
should embed the two utility services into the service flow.

Fig. 4. Workflow of stateful RESTful service composition

Fig. 4 illustrates the system process of the service

mediator. First, the service mediator invokes the composite
services of JOpera. Then, if the user assigns a new URL to
replace a component service in the service brick description,
then the service substitution module replaces the component
service according to the new configuration. Next, the service
mediator checks the flow state to determine whether the
service request is the first one in the conversion between the
front-end composite brick and service flow. If it is the first
service request in the conversation (i.e., no matching
instance of service flow is available for the session ID), then
the service mediator transfers control to JOpera to implement
service flow according to inputs from the service brick.
During the execution of service flow, all service input data
and output data is maintained by the session management
module. In cases where there is a matching instance of
service flow, then the session management module retrieves
the corresponding stored service data for the client based on
the session ID. The stored service data is then used to resume
that procedure. Finally, the service mediator wraps the
JOpera response into validate JSON format and responds to
the client with the results.

Briefly, BSMSC provides four main functionalities
associated with the linkage of composite RESTful services:

(1) One-Shot Service Flow Execution

Composite services are able to invoke several
RESTful services in the specified sequence, and then
generate an integrated result following service execution.
The results are displayed in a specific service brick.

(2) Stateful Service Flow Execution

BSMSC also supports conversational composite
services by allowing multiple service bricks in a CSB to
connect to the same composite service but display
different contents related to the state of the service
conversation retrieved in different phases of the service
flow.

(3) Service Substitution

Service substitution allows users to substitute binding
component services for composite services. Note that
the substitute service must be interface-compliant with
the original component service. For example, the user
can simply change the YouTube service embedded in
the video service brick to DailyMotion.

(4) Format Wrapping for Service Output

The service mediator is able to reformat the service
outputs produced by JOpera from the JOpera-specific
format into the widely used JSON. The front-end service
bricks then use composite RESTful services as atomic
RESTful services. The service mediator also solves
other minor issues related to the connection of the
JOpera server, such as supporting Unicode encoding and
overcoming limitations in cross-domain requests for
RESTful services.

D. Role of the User in Development of Brick-Based

Applications

In this section, we introduce the three roles assumed by
users in the proposed approach:

(1) Composite RESTful Service Developer (CRSD)

Composite RESTful Service Developers (CRSDs)
must be familiar with the use of Eclipse and the JOpera
plugin in order to develop composite RESTful services.
The CRSD must be able to provide a description
document in JSON format for the modelling of
composite RESTful services for subsequent processing
by BSMSC. Specifically, the CRSD must begin by
making a new JOpera project for the development of an
OML file, which is the specialized file format in JOpera.
Second, the CRSD can then use the JOpera design tool
to visually create a service flow, which contains the
control flow and data flow required for the composition
of multiple RESful services. Finally, the CRSD initiates
the JOpera server and tests to determine whether the
composite RESTful service has been successfully
deployed on the JOpera server.

(2) Service Brick Developer (SBD)

A service brick developer (SBD) oversees the
development of service bricks, including all resources,
such as the source files of HTML, CSS, and Javascript
as well as image/video files. The SBD can also upload
the service brick in the form of a zip file via our
developed CSB design tool [4], whereupon a preview
can be reviewed and the service brick tested.

(3) Composite service brick developer (CSBD)

A composite service brick developer (CSBD)
functions as a developer as well as an end user of
composite service bricks. The CSBD uses the visual
design tool to construct a CSB tp connect back-end
RESTful services, preview the CSB via the CSB design
tool [4], and use the CSB directly.

E. JSON-based descriptions

In this section, we outline the specifications of
descriptive documents for the RESTful composite service (as
shown in Fig. 5), which are provided by the CRSD.
Descriptive documents are in JSON format rather than XML
to reduce size and ease the difficulties associated with
parsing and processing.

Fig. 5. Description of RESTful Composite Service

Descriptions of RESTful Composite Services include the

following:
 Name: name of the RESTful composite service
 Inputs: inputs of the RESTful composite service
 Outputs: outputs of the RESTful composite service

 Activities: component services in the RESTful
composite service
－ task: the name of the RESTful component

service in the composite service.
－ sequence: the sequence in which component

services are executed. For example, if there
are three activities in the service flow to be
executed sequentially, then the sequence
properties of the three services are 1, 2, and 3,
respectively.

－ inputs: inputs of the activity.
The specifications of description documents for simple

service bricks and composite service bricks are presented in
[4]. The specifications of simple service bricks are
designated by the SBD and automatically generated by the
proposed design tool. Composite service bricks designed by
the CSBD are also generated by the CSB design tool.

IV. ILLUSTRATIVE EXAMPLES

In this section, we evaluate the proposed method using
three examples to illustrate differences in the execution flow
of composite applications.

A. Javascript minifying and checking for one-shot

service flow execution

The first example is a service brick for Javascript
minifying and checking, as shown in Fig. 6. The service
brick connects a back-end service flow used for the
sequential execution of two RESTful services: Javascript
minifying and Javascript checking services. This service
brick enables the user to input a piece of Javascript code and
then obtain minified, validated Javascript code that has been
checked for mistakes.

From the view of responsibilities of three user roles, the
CRSD first prepares two component RESTful services:
Javascript minifying and Javascript checking, and compose
them into a composite RESTful service, which can invoke
these two services in sequence. The SBD develops an
Android-fragment-based service brick to accept the user
input, link the backend composite service, and display the
service results. The CSBD, i.e. the end user, uses the CSB
design tool to choose the above service brick for
automatically generating his own brick-based mobile
application.

Fig. 6. Demonstration of one-shot service flow

B. Composite Service Brick for Music using Stateful

Service Flow Execution

The second example is a composite service brick
designed to provide music-related services in order to
demonstrate the execution of a stateful service flow.

(1) The singer service brick transmits the name of a

singer to the service mediator to check the flow state of the

service on the JOpera Server, according to the session ID.

Initially, no matching flow instance exists, which means that

the service brick has not previously communicated with the

compsosite service. In this situation, the service mediator

calls the first service (get-album-list) in the service flow.

(2) When the service mediator obtains a response from

the first service, it throws the result to the event engine at

the front end, which matches and forwards events to a

service brick which accepts this type of event. In this case,

the appropriate service brick is the songlist service brick.

The songlist service brick then displays a list of albums by

the specified singer.

(3) When the user clicks an album, the songlist service

brick sends the album ID to the service mediator. According

to the session ID, the service mediator checks the state of

that service flow instance. Because the flow instance is

matched, the service mediator calls up the get-album-songs

service. Note that the get-album-songs service requires the

name of the album and its artist as inputs in order to retrieve

the songs from the cached session data. The songlist brick

used to display the list of songs on an album is presented on

the left side of Fig. 7.

(4) When the user clicks the name of a song, the

songlist service brick sends the name to the service mediator.

As above, the service mediator determines which service

brick to call. In this case according to the session ID, the

lyric service brick is what is required, as shown on the right

side of Fig. 7. The lyric service requires the name of the

singer, name of the album, and name of the song as inputs;

however, only the name of the song is required at this point

because the other data have already been stored in the

session management module.

From the view of responsibilities of user roles, the CRSD
first prepares five component RESTful services: singer, get-
album-list, get-album-songs, lyric, and video (YouTube),
and compose them into a session-enabled composite
RESTful service, which can invoke these five services based
on the state of the service flow. The SBD develops four
Android-fragment-based service bricks: singer brick, song
list brick, lyric brick, and video brick, to accept the user
input, link the backend composite service, and display the
service results. The CSBD uses the CSB design tool to
choose preferred service bricks for automatically generating
his own music mobile application. In other words, the CSBD
can use all four service bricks in his app or select less service
bricks based on his requirements.

Fig. 7. Demonstration of stateful service conversation

Fig. 8. Illustration of service replacement

C. Service Replacement using the YouTube service

The third example is a video service brick intended to

illustrate service replacement. The original video service

brick connects to Youtube to show video clips; however,

when the user assigns a replacement URL to the

DailyMotion service, the original URL is replaced in the

JOpera work flow. The left side of Fig. 8 presents the

original YouTube service and the right side of Fig. 8

presents the new DailyMotion service.

V. CONCLUSIONS

This paper presents a novel mobile mashup approach,

referred to as Brick-based and State-driven Mobile Service

Composition (BSMSC), which features two main

mechanisms: (1) Android-fragment-based service bricks;

and (2) state-driven linkage to composite RESTful services.

Three illustrative examples in two domains are also

presented in this paper to demonstrate the feasibility of the

proposed approach.

The contributions of the proposed approach include: (1)

a loosely-coupled, component-based software framework is

provided to allow developers build client-side service bricks,

server-side RESTful services, or fully-fledged

reconfigurable mobile applications; and (2) a mobile

mashup tool is furnished to let end users visually compose

their customized mobile applications to ease further use.

ACKNOWLEDGMENT

This research was sponsored by Ministry of Science

and Technology in Taiwan under the grant MOST 103-

2221-E-019-039.

REFERENCES

[1] R. Zhou, H. Meng, X. Liu, S. Hu, J. Li, J. Rao, et al., "Design and

implementation of mobile widget composition framework and tool for

end-user," in 2012 8th International Conference on Computing

Technology and Information Management (ICCM), 2012, pp. 767-770.

[2] S. Kaltofen, M. Milrad, and A. Kurti, "A cross-platform software

system to create and deploy mobile mashups," presented at the 10th

international conference on Web engineering, Vienna, Austria, 2010.

[3] E. M. Maximilien, "Mobile Mashups: Thoughts, Directions, and

Challenges," presented at the 2008 IEEE International Conference on

Semantic Computing, 2008.

[4] S.-P. Ma, J.-S. Jiang, and W.-T. Lee, "Service Brick Composition

Framework for Smartphones," in 20th Asia-Pacific Software

Engineering Conference (APSEC 2013), 2013, pp. 459-466.

[5] R. T. Fielding, D. Software, and R. N. Taylor, "Principled Design of

the Modern Web Architecture," ACM Transactions on Internet

Technology, vol. 2, pp. 115--150, 2002.

[6] JOpera.org. JOpera: Process Support for Web Services. Available:

http://www.jopera.org

[7] I. B. Park, "Envoy: A Platform for Cooperating Widgets on the Web,"

2009.

[8] T. Nestler, L. Dannecker, and A. Pursche, "User-centric composition

of service front-ends at the presentation layer," in Service-Oriented

Computing. ICSOC/ServiceWave 2009 Workshops, 2010, pp. 520-529.

[9] S.-P. Ma, C.-Y. Huang, Y.-Y. Fanjiang, and J.-Y. Kuo, "Configurable

RESTful Service Mashup: A Process-Data-Widget Approach,"

Applied Mathematics & Information Sciences (AMIS), vol. 9, pp. 637-

644, 2015.

[10] F. Rosenberg, F. Curbera, M. J. Duftler, and R. Khalaf, "Composing

RESTful Services and Collaborative Workflows: A Lightweight

Approach," IEEE Internet Computing, vol. 12, pp. 24-31, 2008.

[11] R. Alarcon, E. Wilde, and J. Bellido, "Hypermedia-driven RESTful

service composition," in Service-Oriented Computing, ed: Springer,

2011, pp. 111-120.

[12] H. Zhao and P. Doshi, "Towards Automated RESTful Web Service

Composition," presented at the Proceedings of the 2009 IEEE

International Conference on Web Services, 2009.

[13] C. Pautasso, "BPEL for REST," in Business Process Management. vol.

5240, M. Dumas, M. Reichert, and M.-C. Shan, Eds., ed: Springer

Berlin Heidelberg, 2008, pp. 278-293.

[14] C. Pautasso, "RESTful Web service composition with BPEL for

REST," Data Knowledge Engineering, vol. 68, pp. 851-866, 2009.

[15] C. Pautasso and E. Wilde, "Push-Enabling RESTful business

processes," presented at the Proceedings of the 9th international

conference on Service-Oriented Computing, Paphos, Cyprus, 2011.

[16] S. Aghaee and C. Pautasso, "The mashup component description

language," in Proceedings of the 13th International Conference on

Information Integration and Web-based Applications and Services,

2011, pp. 311-316.

[17] J. Bellido, R. Alarc, #243, and C. Pautasso, "Control-Flow Patterns

for Decentralized RESTful Service Composition," ACM Transactions

on the Web, vol. 8, pp. 1-30, 2013.

[18] S.-P. Ma, Y.-Y. Fanjiang, and J.-Y. Kuo, "Dynamic Service

Composition Using Core Service Identification," Journal of

Information Science and Engineering (JISE), vol. 30, pp. 957-972,

2014.

http://www.jopera.org/

