B S (HEER] - EfEEE#)

MS2015 WeT e H &

AR -
PR
yGINEE
B
e Y

EAVAST ST TN G M A
POE BIEEK

B

104/6/25~104/7/5

104/8/28

RS

IEEE 1781 7% BIFE W51 € (IEEE International Conference on Mobile Service) f&fTEHR
A E R EEMT S - SER B B By A28 2015 [EEE TTEIIRFEIME & > 3855
s O Bl e S A i S R AR Rl - SRV ERIN 20156 H2T 27 H 2
H 7> 5 B4 4 25 TE Millennium Broadway Hotel 2217 » & th7g 2] 2[Ry Bl 22 2 L. 5]
SR FRITEIRIBH IR Z 5w« R R GHERIEREANK KRGBHF %
g 765 28 e S B A B T T 2035 Keynote Speech PA Kz Panel Discussion » {18 2675 5%
BLSEERTELS T A/ DIVIHSE EAVEERL - RATMEF R 3R 7 —Ram 0 WY MYE
FHEEITE R 0 SR ANBE N 2 B TR A HE B o

b E L

BT e+ ee et e st 4
R T P 8 e 5

I = = T IR 6
L = RTINS 8

MS2015 bt & & H B ¥ &

— A

IEEE 778 B PR @& (IEEE International Conference on Mobile Service) &1 7EIR
BEREI Y B PR & BRI H Y Ry 8 2015 [EEE {TEIARFSEIFRIHE & (2015
[EEE International Conference on Mobile Service, MS2015) 2& 5% & 5L > & S H By
State-Driven and Brick-Based Mobile Mashup - i B % B2 =t em b 2 e s RE R I BERL i -

=~ BiE

IEEE International Conference on Mobile Service ‘&1 7B S 4E A 8 ST &
B LA BB TEAR BRI a2 > 411 ICWS 2015 (International Conference on Web Services)~ SCC
2015 (International Conference on Service Computing) ~ Cloud 2015 ~ BigData Congress 2015 3t
[EER1T » SEERERN 2015 46 A 27 £ 7 A 2 HEEARLYE05TH Millennium
Broadway Hotel #8{7 » & 752K B L E g E2E L [E S BISTR - 487% Mobile Service
Personalization, Mobile Service Delivery, Mobile Service Framework, Mobile Service Security,
Mobile Service Applications ZEAHFEEI L &S o ERARNEFHRRIEREANK » KRGHEHE T
PGB SR EE = A2 > 4 NASA /Y Dr. Tsengdar J. Lee, Google Y VP of
Infrastructure at Google: Dr. Eric Brewer ~ IBM 1Y VP of Cognitive Computing: Dr. Guruduth
Banavar Transactions of Service Computing FY 34 : Prof. Ling Liu 2 #£772535 Keynote Speech
DA Kz Panel Discussion » 8 EHEE R SSIHERE R » © A NEm B » {5t EaEH e
WIS T A/ DEIIHSE ERVEERL - K&t 7 H 2 HIEFIE R » &5 7 BEREZE /S KA MS
2015 BHETE -

= gFRE

2015 IEEEfTEIAR B BRI IH T & 2 fTEIE A an'E ek - Wisession 7y Bl ZeHF26 H 30
H EFBUNA o 55355 1 A T E A & (Mobile Application Quality, MAQ) » :BFZ40 F:
(—) =B%& 1 (Session 1): Modeling and Development for Mobile Applications (06/30 Tuesday, 9:25-10:25) &2 E
J&&(Session Chair): Shang-Pin Ma, National Taiwan Ocean University, Taiwan
1. #>SCREH: State-Driven and Brick-Based Mobile Mashup (MS2015-3025)
YEZF: Shang-Pin Ma (National Taiwan Ocean University TW) Yang-Sheng Ma (National Taiwan Ocean

4

University TW) Wen-Tin Lee (National Kaohsiung Normal University TW)

2. ZmCH H: The Study of Cloud-Based Testing Platform for Android (MS2015-3026)
VE3:Jong Yih Kuo (National Taipei University of Technology TW) Wei Ting Yu (National Taiper University
of TechnologyTW)

3. Zm R H :Improving Resource Utilization of a Cloud-Based Testing Platform for Android Applications
(MS2015-3027)
VE3&: Chien-Hung Liu (National Taipel University of Technology TW) Shu-Ling Chen (Southern Taiwan
University ofScience and Technology TW) Woer-Kae Chen (National Taiper University of Technology TW)

(=) &=RE 2 (Session 2): Mobile Application Quality Assurance (06/30 Tuesday, 13:00-14:00; 4.04/4.05) =2 E

J#(Session Chair): Ci-Wei Lan, IBM, Taiwan

1. ZmSCE H: Code Coverage Measurement for Android Dynamic Analysis Tools (MS2015-3028)
VE3&: Chun-Ying Huang (National Taiwan Ocean University TW) Ching-Hsiang Chiu (National Taiwan Ocean
University TW) Chih-Hung Lin (Institute for Information Industry TW) Han-Wer Tseng (National Taiwan
Ocean University TW)

2. ZmCE H: Applying Genetic Programming for Time-aware Dynamic QoS Prediction (MS2015-3029)
VE3&: Yang Syu (National Taiper University of Technology TW) Yong-Yi Fanjiang (Fu Jen Catholic University
TW Jong-Yih Kuo (National Taiper University of Technology TW) Shang-Fin Ma (National Taiwan Ocean
University TW)

3. M H: A Study of a Life Logging Smartphone App and Its Power Consumption Observation in
Location-based Service Scenario (MS2015-3030)
VE3& Fu-Ming Huang (Academia Sinica TW) Yu Hsiang Huang (Academia Sinica TW) Christopher Szu
(Academia SinicaChina) Addison Y.S. Su (National Central University TW) Meng Chang Chen (Academia
Sinica TW) Yeali S. Sun (NationalTaiwan University TW)

ARANIE 2015 FTEIARISEIREHE & o _EFHUESER B8R T —Ram S 0 s GEH R
State-Driven and Brick-Based Mobile Mashup > [:hH5E H A2 B it —(E] @R S Filyg Ul
Ef#?i&ﬂﬁﬁﬁﬁi%nﬁﬂ’] THHESTERAER B — AR ATEHE #i B a N - HsisfE

BB 10 778 - Hes A R R G Rl UL B T T8I
AFFH&‘E Bl B AR 2 & v DU F ham SO PRSI EHAZ =0 - STamBE R IER
& o MR EE R s LN AW IR ZE -

B - DRt e

[e
= / S 7 e . > .
i !

Bl i EEs A
f o~ OV EE

AL A 252 AE MS 2015 91#Y special track $#&{T5%f2Z= B (Program
Committee Member) * F &8 5 Mobile Application Quality (MAQ) * F% MAQ #5Hilf2 Hhili
Bk T /NRREm L 0 73 Fs W session #ETTREER RERFILRIE; session 73 Al ZEHERY 6 H 30 H
BTN MRS TIPSR AR S - gt E s s CEl T TR AV

6

& o RNITME LFHERIET 23 T —am oL 0 sm U8 H & State-Driven and Brick-Based
Mobile Mashup » FE5T B R fi—(E vl @ R S Rillm Ul o Bliim Ak 2 a1 TE)
Ea e RS s b BRI MYER E T wn A R AR S & =) 2248 - 45 AR TS R AR 7
oo EER BT R N AL, Sam s NAHEE RN A 2 = -

VAN F-S

State-Driven and Brick-Based Mobile Mashup

Shang-Pin Ma and Yang-Sheng Ma

Department of Computer Science and Engineering
National Taiwan Ocean University
Keelung, Taiwan
E-mail: albert@ntou.edu.tw, 10257039@ntou.edu.tw

Abstract—Mobile applications (i.e., mobile apps or apps) are
becoming an important software delivery model. Users can
employ a wide range of services associated with mobile apps,
such as entertainment, news, travel, and social networking.
Unfortunately, the retrieval of information from multiple apps,
services, or local resources can be time-consuming, costly, and
inconvenient. This paper proposes a novel mobile mashup
approach, referred to as brick-based, state-driven mobile
service composition (BSMSC) to overcome these difficulties.
BSMSC comprises two primary mechanisms: (1) Android-
fragment-based service bricks; and (2) a state-driven linkage
for composite RESTful services, which supports one-shot
service flow execution as well as stateful service flow execution.
The proposed BSMSC approach makes it possible to assemble
fully-fledged, reconfigurable mobile mashup applications.

Keywords-mobile mashup; service brick; RESTful service
composition

l. INTRODUCTION

Mobile applications (i.e., mobile apps or apps) are
becoming an important software delivery model. Users can
employ a wide range of services associated with mobile
apps, such as entertainment, news, travel, and social
networking. However, the retrieval of information from
multiple apps, services, or local resources can be time-
consuming, costly, and inconvenient. Despite recent
advances in service mashups, there remains very few
configurable mashup mechanisms capable of combining
information and services from front-end as well as back-end
resources for mobile devices. Most solutions in the area of
mobile mashups are based on mobile widget mechanisms,
which require the installation of a widget engine or widget
runtime [1-3]. Meanwhile, existing service composition
methods do not consider the delivery in the mobile clients.

This paper presents a novel approach to mobile mashups,
referred to as brick-based, state-driven mobile service
composition (BSMSC), which features two primary
mechanisms: Android-fragment-based service bricks and a
state-driven linkage to composite RESTful services. For the
front end of the mobile mashup, we extended our previous
work [4], by developing front-end Ul components based on
Android fragment APIs and web technologies. This enables
users to create composite “service bricks” (CSB). We
adopted the popular [5] RESTful (Representational State
Transfer) services for the back end. Based on the service
composition platform JOpera [6], we devised a novel
mechanism, referred to as state-driven composite RESTful

Wen-Tin Lee

Department of Software Engineering
National Kaohsiung Normal University
Kaohsiung, Taiwan
E-mail: wtlee@nknu.edu.tw

service linkage, to enable the connection of CSB to back-
end RESTful services (atomic or composite). The proposed
mechanism supports one-shot service flow execution, in
which multiple services can be invoked according to a
specified flow sequence followed by the direct return of
combined results. The proposed mechanism also supports
stateful service flow execution, which enables the execution
of conversational services, where the front-end CSB is able
to issue requests iteratively to the same service flow in order
to obtain service results based on flow states. The proposed
BSMSC approach makes it possible to assemble fully-
fledged, reconfigurable mobile mashup applications

The remainder of this paper is organized as follows:
Section 2 presents a review of research related to mobile
mashup and RESTful service composition. Section 3
presents the details of the proposed state-driven and brick-
based approach. Illustrative examples are presented in
Section 4. The final section presents our conclusions.

Il. RELATED WORK

In this section, we review several studies related to
mashups and RESTful service composition. Park [7]
introduced a platform for the integration of widgets on the
web. In that architecture, a web page comprises a number of
widgets, which can be categorized as simple or complex. The
widgets interact with each other using a mechanism called
Publish and Subscribe. Nestler et al. [8] presented ServFace
Builder, an authoring tool designed to enable individuals
without programming skills to design and create service-
based interactive applications using a graphical interface.
Users can connect two service components simply by
clicking their inputs and outputs, to simplify the creation of
new service components. Ma et al. [9] proposed a REST-
based service mashup framework, referred to as Process-
Data-Widget (PAW), which functions as a composition
model for the construction of mashup applications. That
framework enables developers to design service processes,
compose service data, and configure widgets for presentation
on a user interface (Ul) simply by constructing a mashup
document (MD). The PAW mashup engine also parses the
MD and generates a corresponding mashup application and
associated RESTful services. Most of above efforts can only
produce conventional mashup applications, not for the
mobile environment. Conversely, our approach can realize
mashups for mobile devices by applying the proposed
service brick mechanism.

mailto:albert@ntou.edu.tw

Rosenberg et al. [10] provided an extensible, XML-based
language, Bite, in conjunction with an integrated
programming model for the composition of RESTful
services with interactive flow. Alarcon et al. [11] designed a
hypermedia-centric REST service description, ReLL
(Resource Linking Language), in conjunction with Petri Nets
for the modelling and simulation of service compositions.
Zhao and Dosh [12] introduced three types of RESTful
service: resource set service, individual resource service,
and transitional service, which are presented within a
situation calculus based on sate transition systems (STS) to
automate service composition. Pautasso [13, 14] introduced a
means by which to extend BPEL (Business Process
Execution Language) to invoke RESTful WSs (Web
Services) and publish a BPEL process as a RESTful Web
Service. In [15], Pautasso and Wilde proposed an
architecture for push-enabling RESTful business processes.
They also designed an engine, Push-enable RESTful Process
Execution Engine, to enable push notification of tasks and
the detection of changes in process state. In [16], Aghaee and
Pautasso proposed a Mashup Component Description
Language (MCDL), which is a domain-specific language
based on JSON (JavaScript Object Notation) to describe
heterogeneous mashup components based on various access
methods, such as POX (Plain Old XML), REST, or SOAP
(Simple Object Access Protocol). In [17], Bellido et al.
proposed a set of control-flow patterns (include sequence,
iteration, alternative, and parallel) within the context of
stateless compositions of RESTful services. All above
researches are back-end RESTful composition methods,
without considering the client side, especially for the mobile
clients. Besides, these works do not fully realize state-based
service flow execution, which is an important feature for the
mobile composite applications.

JOpera [6] is a widely-used service composition tool
based on a range of theoretical methods [13-17]. JOpera
provides a visual language with which to define control flow
and data flow for service processes as well as an execution
engine. JOpera supports numerous adapters with which to
invoke various programming languages or services, such as
Java and JavaScript as well as SOAP and RESTful services.
The method proposed in this study for the composition of
RESTful services is built atop JOpera through the provision
of a set of utility services and a service mediator to facilitate
communication between the mobile app and the JOpera
server.

I1l. BSMSC: STATE-DRIVEN MOBILE SERVICE COMPOSITION

In this section, we outline the proposed approach in detail,
including the system architecture, the newly-devised
Android-fragment-based composite service brick, a novel
means of linking state-driven composite RESTful services,
the role of users in the development of brick-based
applications, and the JSON-based description document for
composite RESTful services.

A. System Architecture

Fig. 1 illustrates the proposed system architecture
including the basic schema of the proposed approach. This

approach allows users to design a composite service brick
(CSB), comprising multiple service bricks used for the
display of integrated services or information. A service brick
(SB) is a rectangular Ul component in an app used for the
display of specific information. We extended our previous
work [4] with the addition of a new type of service brick:
Android-fragment-based service bricks, which can be further
divided into web-enabled service bricks (using HTML,
Javascript, and CSS) as well as native service bricks. The
native Android code makes the implementation of these
bricks smoother and more efficient. In addition, BSMSC is
able to present a composite service brick as a mobile app,
which means that users need not refer to a specific URL in
order to utilize web-based service bricks via their browser.
Furthermore, source files, such as JSON-based description
documents, HTML pages, and Javascript source code, can be
stored on the client-side to decrease network flow
requirements.

Service Mediator
% JOpera Server

Composite Service Brick
Composite Service

=

<

v
Service Brick 3% Resource Provider

Fig. 1. System Architecture

A service brick can send to and receive events from the
event engine, which is responsible for matching and
forwarding events to appropriate service bricks. In addition,
service bricks can be used to invoke resource providers to
obtain services or information. Resource providers include
client-side local resources, such as an address book or GPS
module, as well as external resources, such as the atomic and
composite RESTful services introduced in this paper.
Composite RESTful services are hosted in the JOpera server.
The service mediator is used by the composite service brick
to link JOpera services in order to invoke RESTful service
flow.

In the following sub-sections, we explain the above
concepts in greater detail.

B. Android-Fragment-Based Composite Service Brick

As mentioned previously, this study developed a new
type of service brick, the Android-fragment-based service
brick, to improve its efficiency and usability. We also
devised two sub-types of Android-fragment-based service
bricks:

(1) Web-enabled service bricks are created using
HTML, CSS, or Javascript prior to implementation in
Android WebView. All resources, such as source files for
HTML, CSS, and Javascript, and image files, are cached on

the client side; i.e., mobile devices. Thus, unlike web-based
service bricks [4], the proposed mechanism does not require
the loading of resources from the server, which enhances
overall efficiency.

(2) Native service bricks are created using pure Android
native objects to obtain additional functionalities that
conventional web pages are unable to perform. Native
service bricks make it possible to use sensor data locally and
communicate with remote services to obtain value-added
functions. For example, native service bricks are able to use
the current geospatial location to obtain weather-related data,
or use heart rate sensors or pedometers for the monitoring of
exercise performance.

This study extended these bricks in the construction of
front-end Ul components based on Android fragment APIs
and web technology.

Fragment Activity in Android App

== Fragmentbrick 1 Fragment brick 2 Fragmentbrick 3

~—c
~——
~—
~-—
~——
-

FragmentBrick

<<Interface>>Fto F
FragmentCommunicator

FragmentBrick
<<Interface>>Fto F

FragmentCommunicatior

<<Java>> Android to IS
Weblnterface

<<Java>> Android to S
WeblInterface

- <<WehView>> —> <<WebView>>

<<lavaScript>>
Event Engine

<<JavaScript>>
Event Engine

<<JavaScript>> <<JavaScript>>
JavaScript of Brick | JavaScript of Brick
Service Invoker Service Invoker
Fig. 2. Architecture used in Android-fragment-based composite service
bricks

Fragment Activity in the Music App

Singer Brick Songlist Brick Youtube Brick

FragmentBrick

<<Interface>> F to F
FragmentCommunicator

FragmentBrick

<<Interface>> F to F
FragmentCommunicator

<<Java>> Android to IS
Weblnterface

<<Java>> Android to JS

Weblnterface
Music

> <<WebView>> > <<WebView>> Composite
1 <<JavaScript>> <<lavaScript>> | § Service
Event Engine Event Engine

<<JavaScript>> <<JavaScript>>
JavaScript of Br'\ck(] CavaScript of Brick 8
7
Service Invoker Service Invoker
Fig. 3. Example of Android-fragment-based composite service bricks

Fig. 2 presents the architecture of Android-fragment-
based service bricks. An Android fragment represents only
one service brick, which can be embedded into WebView or
another view in Android Layout. In a fragment-based brick,
the “FragmentCommunicator” interface is responsible for
sending and receiving data between its parent fragment and
other fragments. The “Weblnterface” object is responsible

for communication between native Android objects and
Javascript in the WebView-embedded service brick, thereby
making it possible to invoke Javascript functions in
WebView. WebView includes the following two main
components: an event engine, which receives and transmits
events among service bricks, and the Javascript in a brick,
which is used to display the desired user interface. As
mentioned previously, web-based service bricks can be
implemented in the WebView of android-fragment-based
bricks to provide the same functionalities as the original
web-based service brick.

Fig. 3 presents an example android-fragment-based
composite service brick of a music composite application.
First, the singer service brick (SB) uses JavaScript to send an
event to its Weblinterface object (step 1). Next, the
Weblnterface object forwards the event to the
FragmentCommunicator interface (step 2). In step 3 the
FragmentCommunicator interface of the singer SB transmits
the event to the songlist SB. In steps 4 and 5, the
FragmentCommunicator interface of songlist SB submits the
event to its event engine via its Weblnterface object. Finally,
in step 6, the event engine checks the event type and
forwards it to the Javascript functions in the songlist SB.
Finally (in steps 7 and 8), the songlist SB utilizes the service
invoker to connect to the music composite service in order to
display the song list that the singer submitted from the singer
SB.

C. State-Driven Composite RESTful Service Linkage

To strengthen the capability of the service bricks, we also
devised a mechanism for linking to back-end RESTful
services, referred to as state-driven composite RESTful
service linkage. The proposed mechanism is able to bridge
front-end service bricks and back-end single or composite
RESTful services in a state-driven manner; i.e., service data
can be stored and processed during the conversation between
the front-end bricks and the back-end services.

We adopted the widely-used JOpera [6] service process
engine as our underlying platform. In addition to performing
one-shot service delivery for the composite service,
supporting state-enabled service conversation between front-
end bricks and back-end services is the first requirement of
BSMSC. Second, dynamic substitution of component
services in a composition [18] is also required for the
composition of dynamic services; therefore, we also
integrated this feature in order to allow the assignment of
preferred component services in the composite brick
development phase. Third, publishing the composite
RESTful service as a normal RESTful service with JSON
output is required to ease integration. However, a composite
service in JOpera must be output in a specific format.
Transforming the service output into a validate JSON format
is another issue. Thus, we devised a service mediator as an
intermediate layer between the bricks and the JOpera, to deal
with output wrapping and state analysis and integrate two
utility services (a component service substitution module and
a session management module), into the service flow. It
should be noted that the developer of the composite RESTful
should embed the two utility services into the service flow.

Workflow in the .

Service Mediator

start the service flow

Workflow
in JOpera

with a replacement URL

!

No

replace service url according to the configuratiotz)

/

flow instance
matched?

\ no ves

[wrap the JOpera response into JSON as service output

initiate and run the flow according to the inputﬂ

find the corresponding stored service data of the finished tasks for the flow instance
respond to the result
B

\—_[resume the service flow instance J

Fig. 4. Workflow of stateful RESTful service composition

Fig. 4 illustrates the system process of the service
mediator. First, the service mediator invokes the composite
services of JOpera. Then, if the user assigns a new URL to
replace a component service in the service brick description,
then the service substitution module replaces the component
service according to the new configuration. Next, the service
mediator checks the flow state to determine whether the
service request is the first one in the conversion between the
front-end composite brick and service flow. If it is the first
service request in the conversation (i.e., no matching
instance of service flow is available for the session ID), then
the service mediator transfers control to JOpera to implement
service flow according to inputs from the service brick.
During the execution of service flow, all service input data
and output data is maintained by the session management
module. In cases where there is a matching instance of
service flow, then the session management module retrieves
the corresponding stored service data for the client based on
the session ID. The stored service data is then used to resume
that procedure. Finally, the service mediator wraps the
JOpera response into validate JSON format and responds to
the client with the results.

Briefly, BSMSC provides four main functionalities
associated with the linkage of composite RESTful services:

(1) One-Shot Service Flow Execution

Composite services are able to invoke several
RESTful services in the specified sequence, and then

generate an integrated result following service execution.

The results are displayed in a specific service brick.
(2) Stateful Service Flow Execution

BSMSC also supports conversational composite
services by allowing multiple service bricks in a CSB to
connect to the same composite service but display
different contents related to the state of the service
conversation retrieved in different phases of the service
flow.

(3) Service Substitution

Service substitution allows users to substitute binding
component services for composite services. Note that
the substitute service must be interface-compliant with
the original component service. For example, the user
can simply change the YouTube service embedded in
the video service brick to DailyMotion.

(4) Format Wrapping for Service Output

The service mediator is able to reformat the service
outputs produced by JOpera from the JOpera-specific
format into the widely used JSON. The front-end service
bricks then use composite RESTful services as atomic
RESTful services. The service mediator also solves
other minor issues related to the connection of the
JOpera server, such as supporting Unicode encoding and
overcoming limitations in cross-domain requests for
RESTful services.

D. Role of the User in Development of Brick-Based
Applications

In this section, we introduce the three roles assumed by
users in the proposed approach:

(1) Composite RESTful Service Developer (CRSD)

Composite RESTful Service Developers (CRSDs)
must be familiar with the use of Eclipse and the JOpera
plugin in order to develop composite RESTful services.
The CRSD must be able to provide a description
document in JSON format for the modelling of
composite RESTful services for subsequent processing
by BSMSC. Specifically, the CRSD must begin by
making a new JOpera project for the development of an
OML file, which is the specialized file format in JOpera.
Second, the CRSD can then use the JOpera design tool
to visually create a service flow, which contains the
control flow and data flow required for the composition
of multiple RESful services. Finally, the CRSD initiates
the JOpera server and tests to determine whether the
composite RESTful service has been successfully
deployed on the JOpera server.

(2) Service Brick Developer (SBD)

A service brick developer (SBD) oversees the
development of service bricks, including all resources,
such as the source files of HTML, CSS, and Javascript
as well as image/video files. The SBD can also upload
the service brick in the form of a zip file via our
developed CSB design tool [4], whereupon a preview
can be reviewed and the service brick tested.

(3) Composite service brick developer (CSBD)

A composite service brick developer (CSBD)
functions as a developer as well as an end user of
composite service bricks. The CSBD uses the visual
design tool to construct a CSB tp connect back-end
RESTful services, preview the CSB via the CSB design
tool [4], and use the CSB directly.

E. JSON-based descriptions

In this section, we outline the specifications of
descriptive documents for the RESTful composite service (as
shown in Fig. 5), which are provided by the CRSD.
Descriptive documents are in JSON format rather than XML
to reduce size and ease the difficulties associated with
parsing and processing.

Fig. 5. Description of RESTful Composite Service

Descriptions of RESTful Composite Services include the
following:

® Name: name of the RESTful composite service

® Inputs: inputs of the RESTful composite service

® Outputs: outputs of the RESTful composite service

® Activities: component services in the RESTful

composite service

— task: the name of the RESTful
service in the composite service.

— sequence: the sequence in which component
services are executed. For example, if there
are three activities in the service flow to be
executed sequentially, then the sequence
properties of the three services are 1, 2, and 3,
respectively.

— inputs: inputs of the activity.

The specifications of description documents for simple
service bricks and composite service bricks are presented in
[4]. The specifications of simple service bricks are
designated by the SBD and automatically generated by the
proposed design tool. Composite service bricks designed by
the CSBD are also generated by the CSB design tool.

component

IV. ILLUSTRATIVE EXAMPLES

In this section, we evaluate the proposed method using
three examples to illustrate differences in the execution flow
of composite applications.

A. Javascript minifying and checking for one-shot
service flow execution

The first example is a service brick for Javascript
minifying and checking, as shown in Fig. 6. The service
brick connects a back-end service flow used for the
sequential execution of two RESTful services: Javascript
minifying and Javascript checking services. This service
brick enables the user to input a piece of Javascript code and
then obtain minified, validated Javascript code that has been
checked for mistakes.

From the view of responsibilities of three user roles, the
CRSD first prepares two component RESTful services:
Javascript minifying and Javascript checking, and compose
them into a composite RESTful service, which can invoke
these two services in sequence. The SBD develops an
Android-fragment-based service brick to accept the user
input, link the backend composite service, and display the
service results. The CSBD, i.e. the end user, uses the CSB
design tool to choose the above service brick for
automatically generating his own brick-based mobile
application.

o

Type javascript code

function(data){var sys=new searchy ice(),ss=new

Results

() this inputEventPorts. push(sys) this.outputEventPorts.push(ss) $.¢ £

SyntaxError: missing ; before statement

Fig. 6. Demonstration of one-shot service flow

B. Composite Service Brick for Music using Stateful
Service Flow Execution

The second example is a composite service brick
designed to provide music-related services in order to
demonstrate the execution of a stateful service flow.

(1) The singer service brick transmits the name of a
singer to the service mediator to check the flow state of the
service on the JOpera Server, according to the session ID.
Initially, no matching flow instance exists, which means that
the service brick has not previously communicated with the
compsosite service. In this situation, the service mediator
calls the first service (get-album-list) in the service flow.

(2) When the service mediator obtains a response from
the first service, it throws the result to the event engine at
the front end, which matches and forwards events to a
service brick which accepts this type of event. In this case,
the appropriate service brick is the songlist service brick.
The songlist service brick then displays a list of albums by
the specified singer.

(3) When the user clicks an album, the songlist service
brick sends the album ID to the service mediator. According
to the session ID, the service mediator checks the state of
that service flow instance. Because the flow instance is
matched, the service mediator calls up the get-album-songs
service. Note that the get-album-songs service requires the
name of the album and its artist as inputs in order to retrieve
the songs from the cached session data. The songlist brick
used to display the list of songs on an album is presented on
the left side of Fig. 7.

(4) When the user clicks the name of a song, the

songlist service brick sends the name to the service mediator.

As above, the service mediator determines which service
brick to call. In this case according to the session ID, the
lyric service brick is what is required, as shown on the right
side of Fig. 7. The lyric service requires the name of the
singer, name of the album, and name of the song as inputs;
however, only the name of the song is required at this point
because the other data have already been stored in the
session management module.

From the view of responsibilities of user roles, the CRSD
first prepares five component RESTful services: singer, get-
album-list, get-album-songs, lyric, and video (YouTube),
and compose them into a session-enabled composite
RESTful service, which can invoke these five services based
on the state of the service flow. The SBD develops four
Android-fragment-based service bricks: singer brick, song
list brick, lyric brick, and video brick, to accept the user
input, link the backend composite service, and display the
service results. The CSBD uses the CSB design tool to
choose preferred service bricks for automatically generating
his own music mobile application. In other words, the CSBD
can use all four service bricks in his app or select less service
bricks based on his requirements.

music

IR s
adele Qo Type song's name to search lyric
Now Playing
© netng i ey
Type singer's name to search albums
1E5 = Adkins (Epworth) {E :
Adkins (Epworth)
T Rolling in the Deep (Adele) PI«L
+ Skyfall TR (M)

+ SetFire To The Rain (Remixes)
There's a fire starting in my heart

SIS F— KRR E
N Reaching a fever pitch, it's
Eching Iinthe Bear s e bringing me out the dark 2| T3
= st | SREGEMBER R
ol N e 0 Finally | can see you crystal clear
Ty LSS A E
e) B, BT EREN)

Fig. 7. Demonstration of stateful service conversation

Type song's name 1o sesrch iyric
Type song's name to search iyic

© Roliing In The Deep
© Roling In The Desp

/F3 : Adkins (Epworth) £ : Adkins (Epworth)

173 - Adkins (Epworth) fFE3 : Adkins (Epworth) Rollog in the Deep (Adele) A0 @B ¥ (EM5)

Roling in the Deep (Adels) 104 F R EINE (BA
&)

Tt o st b e b 181 AT A1

Fig. 8. lllustration of service replacement

C. Service Replacement using the YouTube service

The third example is a video service brick intended to
illustrate service replacement. The original video service
brick connects to Youtube to show video clips; however,
when the wuser assigns a replacement URL to the
DailyMotion service, the original URL is replaced in the
JOpera work flow. The left side of Fig. 8 presents the
original YouTube service and the right side of Fig. 8
presents the new DailyMotion service.

V. CONCLUSIONS

This paper presents a novel mobile mashup approach,
referred to as Brick-based and State-driven Mobile Service
Composition (BSMSC), which features two main
mechanisms: (1) Android-fragment-based service bricks;
and (2) state-driven linkage to composite RESTful services.
Three illustrative examples in two domains are also
presented in this paper to demonstrate the feasibility of the
proposed approach.

The contributions of the proposed approach include: (1)
a loosely-coupled, component-based software framework is
provided to allow developers build client-side service bricks,

server-side RESTful services, or fully-fledged
reconfigurable mobile applications; and (2) a mobile
mashup tool is furnished to let end users visually compose
their customized mobile applications to ease further use.

ACKNOWLEDGMENT

This research was sponsored by Ministry of Science
and Technology in Taiwan under the grant MOST 103-
2221-E-019-039.

REFERENCES

[1] R. Zhou, H. Meng, X. Liu, S. Hu, J. Li, J. Rao, et al., "Design and
implementation of mobile widget composition framework and tool for
end-user,” in 2012 8th International Conference on Computing

Technology and Information Management (ICCM), 2012, pp. 767-770.

[2] S. Kaltofen, M. Milrad, and A. Kurti, "A cross-platform software
system to create and deploy mobile mashups,” presented at the 10th
international conference on Web engineering, Vienna, Austria, 2010.

[31 E. M. Maximilien, "Mobile Mashups: Thoughts, Directions, and
Challenges," presented at the 2008 IEEE International Conference on
Semantic Computing, 2008.

[4] S.-P. Ma, J.-S. Jiang, and W.-T. Lee, "Service Brick Composition
Framework for Smartphones,” in 20th Asia-Pacific Software
Engineering Conference (APSEC 2013), 2013, pp. 459-466.

[5] R. T. Fielding, D. Software, and R. N. Taylor, "Principled Design of
the Modern Web Architecture,” ACM Transactions on Internet
Technology, vol. 2, pp. 115--150, 2002.

[6] JOpera.org. JOpera: Process Support for Web Services. Available:
http://www.jopera.org

[7] 1. B. Park, "Envoy: A Platform for Cooperating Widgets on the Web,"
2009.

[8] T. Nestler, L. Dannecker, and A. Pursche, "User-centric composition
of service front-ends at the presentation layer," in Service-Oriented
Computing. ICSOC/ServiceWave 2009 Workshops, 2010, pp. 520-529.

[9] S.-P. Ma, C.-Y. Huang, Y.-Y. Fanjiang, and J.-Y. Kuo, "Configurable
RESTful Service Mashup: A Process-Data-Widget Approach,”
Applied Mathematics & Information Sciences (AMIS), vol. 9, pp. 637-
644, 2015.

[10] F. Rosenberg, F. Curbera, M. J. Duftler, and R. Khalaf, "Composing
RESTful Services and Collaborative Workflows: A Lightweight
Approach," IEEE Internet Computing, vol. 12, pp. 24-31, 2008.

[11] R. Alarcon, E. Wilde, and J. Bellido, "Hypermedia-driven RESTful
service composition,” in Service-Oriented Computing, ed: Springer,
2011, pp. 111-120.

[12] H. Zhao and P. Doshi, "Towards Automated RESTful Web Service
Composition,” presented at the Proceedings of the 2009 IEEE
International Conference on Web Services, 2009.

[13] C. Pautasso, "BPEL for REST," in Business Process Management. vol.
5240, M. Dumas, M. Reichert, and M.-C. Shan, Eds., ed: Springer
Berlin Heidelberg, 2008, pp. 278-293.

[14] C. Pautasso, "RESTful Web service composition with BPEL for
REST," Data Knowledge Engineering, vol. 68, pp. 851-866, 2009.

[15] C. Pautasso and E. Wilde, "Push-Enabling RESTful business
processes," presented at the Proceedings of the 9th international
conference on Service-Oriented Computing, Paphos, Cyprus, 2011.

[16] S. Aghaee and C. Pautasso, “The mashup component description
language,” in Proceedings of the 13th International Conference on
Information Integration and Web-based Applications and Services,
2011, pp. 311-316.

[17] J. Bellido, R. Alarc, #243, and C. Pautasso, "Control-Flow Patterns
for Decentralized RESTful Service Composition," ACM Transactions
on the Web, vol. 8, pp. 1-30, 2013.

[18] S.-P. Ma, Y.-Y. Fanjiang, and J.-Y. Kuo, "Dynamic Service
Composition Using Core Service ldentification,” Journal of
Information Science and Engineering (JISE), vol. 30, pp. 957-972,
2014.

http://www.jopera.org/

