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Abstract—Time-domain measurement on microcontroller (μC) 

conducted electromagnetic interference (cEMI) is an essential 

part for software-related EMI (SW-EMI) modeling. To make a 

SW-EMI model, several signal process procedures should be 

done. One of the procedures is the time-domain waveform test 

pattern generation. Due to the SW-related issues, the test 

patterns must go through all of test pattern of the target μC 

machine codes (instructions). However, an efficient algorithm for 

automatic test pattern generation for SW-EMI is not available. 

This paper proposes an efficient pattern generation algorithm 

of the testing programs, which reduces the test pattern number 

from the permutation of all test patterns to some combination 

test patterns without reducing the pattern coverage. The 

generated test pattern size is 50% reduced by the proposed 

algorithm. This algorithm is dedicated to SW-EMI modeling and 

is implemented by MATLAB. 
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I.  INTRODUCTION  

As technology progress faster than ever, microcontrollers 
(μC) are required by many devices, and the electromagnetic 
(EMI) issues are more important than ever. However, 
electronic products are mostly digitized and software (SW) 
controllable, the SW-related EMI (SW-EMI) becomes more 
important. Therefore, SW-EMI of electronic products is 
controlled by SW and indirectly controls the total system EMI. 
A time-domain conducted EMI (cEMI) measurement of μC is 
essential for the SW-EMI modeling. Several digital signal 
process (DSP) stages (Fig. 1) are done before the SW-EMI 
modeling analysis become possible. These procedures are 
detailed in [1].  
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Fig. 1. DSP procedure for SW-EMI model building process 

Generally, the internal architecture of microcontroller (μC) 
is unknown to EMI modelers. Different PCB boards can be 
used to characterize μC SW-EMI behaviors [1]. The SW-EMI 
behaviors are very fast and time-varying. The measurement 
results are continuous waveforms and should be observed on 
oscilloscope for fast changing fluctuation noises. These 
waveforms cannot be directly used to find the relationships 
among software and EMI and should be identified and cut to 
single machine code.  

Before the measurement and analysis procedures, testing 
programs must be firstly ‘burn’ into the target μC and drive the 
μC to function. After the μC is driven by program(s), the 
switching noise can be observed by spectrum (frequency 
domain signals) or oscilloscope (time domain signals).  

This paper proposed an automatic and efficient test 
program generation algorithm for switch noise test pattern 
generation. The generated test program size is very small. This 
algorithm is dedicated to SW-EMI modeling and is 
implemented by MATLAB. Although MATLAB is a general 
purpose DSP platform and the efficiency is not high enough, it 
can be used as a preliminary algorithm development. Thus, a 
high efficiency and accuracy time-domain waveform test 
pattern generation algorithm is very suitable for the algorithm 
development time-domain waveform. 

This paper is organized as follows. Section II introduces the 
concept of SW-EMI modeling procedure and the importance of 
the instruction waveform test pattern automatic generation 
algorithm. Section III introduces the proposed algorithms. 
Section IV is the experiment result. Section V gives 
conclusions. 

II. SW-EMI MODELING STEPS 
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Fig. 2. Basic concept of IEC-62433 (ICEM) 

 



The proposed method is based on IEC-62433 [2]. This is an 
international standard for Integrated Circuit EMI (IC-EMI) 
modeling. The concept of IEC-62433 is shown in Fig. 2. The 
Internal Inductances are separately lumped as package-level 
inductances (LPKG) and chip-level inductances (LVdd). The chip-
level capacitances are further modeled as die-level parasitic 
capacitance (CDIE) and die-level designed capacitance (CbDIE). 
The resistors are also modeled and named accordingly. 

There are 2 major parameters to be estimated: IntZ (the 
internal impedance) and IntCA (internal current activity). IEC-
62433 assumes that the EMI behavior is periodically quasi-
static over every clock cycle. The ‘granularity’ of the quasi-
static period is the clock period and is proved to be a roughly 
adequate for most IC-EMC models. It has been successfully 
used to model the power/ground signal fluctuations in many 
μC, Application-specific integrated circuit (ASIC), and 
programmable devices within the range between 1MHz–2GHz.  

 

Machine Code Sequence

(test program):

Loop: I/O toggle    

              nop    

              ...

              nop

andwf

              movf

              bcf

              rlf

              nop

...

              nop    

              goto  Loop

 
Fig. 3. Time-domain instruction waveform measurement setups 

The measurement setups and the testing program are shown 
in Fig. 3. After programing the testing code, the time-domain 
cEMI waveform is captured by oscilloscope which includes the 
testing code’s cEMI behaviors, the clock signal, and I/O 
marker signal. Clock is used to identify the code execution 
begin and the I/O marker signal is used to identify the whole 
sequence of code executing. And other sequence of the signal 
analysis can be continued as Fig. 1 described. 

 

Machine Code Sequence

(test program):

Loop:  
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Fig. 4. Time-domain instruction waveform, clock signal, and I/O marker 

An example of VDD instruction waveform (Fig. 4) is 
measured according to [3]. The instruction waveform (red line) 
is generally periodic for every 4 clock cycles (blue line). The 

first line in the loop of the test program in Fig. 4 is an I/O 
toggle machine code. This code is used to generate an “I/O 
marker” (green line) to indicate the beginning of the program 
loop. By using the I/O marker and clock signals, each 
instruction waveform can be easily identified (Fig. 4). The 
identified instruction waveforms are windowed and aligned for 
further process. By the help of IO marker and clock signals in 
Fig. 4, the cutting algorithm and aligning algorithm are 
developed for automatic instruction waveform signal process. 
These algorithms are omitted here.  

It should be noted that Fig. 4 is just one example. Up to 100 
different testing programs are designed through the same 
procedures to identify all instruction waveforms. It means more 
than 100 testing programs are automatically generated. The 
auto-generation algorithm and procedure for testing programs 
is very important.  
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Fig. 5. The modified ISS procedure 

 
The simulator used in this paper is a modified instruction 

set simulator (ISS) [4] shown in Fig. 5 with corresponding 
machine code’s sub-simulators (Fig. 5, orange dotted blocks) 
inside the simulation loop. During the simulation, the simulator 
not only does a normal ISS simulation but also the 
corresponding quasi-static window SW-EMI IntCA/IntZ 
updating and simulation. After one quasi-static period is 
simulated, it continues on next quasi-static period iteration. The 
design of the ISS is omitted in this paper. 

A. Original Auto-gen algorithm for 2-stage pipeline μC: 

permutation of all test programs 

If there are n machine codes in a μC and the μC is not 
pipelined, the algorithm is rather easy. It generally follows the 
pseudo-code of Fig. 6. The concept is simple. It continues to 
find the ‘not generated machine code’ inside set M and output 
the testing program to test the code. After the machine code is 
outputted, the machine code is removed from M and the 
algorithm iterates until the set M is empty. The efficiency is 
O(N) where N is the number of instructions. 



Set machine code set M as all the legal machine codes

Set output set O as empty

while (M is not empty) do

{

     Ouput header lines of the test program

     select m∈M, M=M\{m}

     Output m op testing lines

     Output tail lines

     O=O∪{m}

}

 

Fig. 6. pseudo-code for non-pipeline μC SW-EMI testing program auto-
generation algorithm 

Machine Code Sequence

(test program):

Loop:  

        I/O toggle    

                  nop

                  ...

                  nop

         target instruction

                  nop

                  ...

                  nop    

goto  Loop

 

Fig. 7. Testing program example for μC SW-EMI characterization 

The generated testing program by Fig. 6 is something like 
Fig. 7. The program is divided into 3 parts: the header, the 
body, and the tail of the program. The header includes an IO 
toggle code for identifying the beginning of the loop start and 
numbers of ‘nop’ (no-operation) code. The body of the 
program is the target instruction to be characterized, such as 
add (addition), sub (subtraction), etc. The tail of the program is 
a back jump code to form an infinite loop.  

III. THE PROPOSED AUTOMATIC TEST PATTERN GENERATION 

ALGORITHM 

A. SW-EMI consideration for Pipelined μC 

A 2-stage pipelined μC takes 2 machine codes inside the 
μC during execution. Thus, the testing program should 
consider the machine code sequence to characterize the whole 
SW-EMI behaviors.  

B. The auto-gen algorithm which reduces test pattern number 

without reducing test coverage for 2-stage pipeline μC 

The proposed algorithm is a re-arrangement of the machine 
code testing program which will reduce the test pattern number 
from the permutation of all patterns to some combination 
testing patterns without reducing test coverage. 

Consider a 2-stage pipelined μC with only 3 machine codes 
{a, b, c}, the total number of the testing program shall be the 
permutation of the individual testing patterns. In this example, 

totally 9 programs are needed: a-a, a-b, a-c, b-a, b-b, b-c, c-a, c-
b, and c-c. Here, the test program ‘x-y’ means the machine 
code sequence inside the testing program should be x first and 
y afterward besides the header and tail lines. All of the testing 
patterns are. 

For a μC with 50 machine codes – it is a very simple μC, 
generally, a RISC μC like ARM has more than 200 machine 
codes. The number of testing programs can be up to 
50x50=2500! This is not only a wasting of storage resource for 
the testing programs but also the testing time is too long for 
SW-EMI characterizations. 

Take the 3-instruction μC as an example again. If the 
program is written as (a-a)-(a-b)-(a-c)-…(c-c) (the bracket is 
for human reading), the testing program can test all the a-a, a-b, 
b-a, …, etc. in one single program. It will need 2xN

2
 machine 

codes to do the SW-EMI characterization. 

If we look carefully that there are some repeating testing 
sequences inside the testing sequence. For example, (a-a)-(a-
b) … needs only a-a-b-… will do the same characterizations. If 
all the machine codes are carefully arranged, a program like: a-
a-b-a-c-b-b-c-c-a will do all the 9 tests. The number of the 
machine code inside the testing program can be 9 instead of 
18 – half of the machine codes are reduced. For a μC with 
many machine codes, the time saving for SW-EMI 
characterization is large. 

The algorithm is described as follows. Assume there are n 
machine codes {1..n}, the arrangement of the machine code in 
one testing program is shown in Fig. 8. 

 

Fig. 8. The proposed SW-EMI test pattern automatic generation algorithm 

The big and small number in Fig. 8 is just for reading. 
According to Fig. 8, the actual permutation of a five machine 
code μC {1,..5} is arranged as: 1-1-2-1-3-1-4-1-5-2-2-3-2-4-2-
5-3-3-4-3-5-4-4-5-1. The testing program’s sequence can be 
found that all 5x5=25 patterns are tested by 25 machine codes 
only.  

IV. EXPERIMENT RESULTS 

The measurement setups and test boards are designed 
according to the IC-cEMI measurement standard (IEC 61967-4) 
[3]. The oscilloscope is R&S RTO1002 (Fig. 9). The testing 
boards are shown in Fig. 10 and the testing program is shown 
in Fig. 3.  

The target μC contains 67 machine codes to be 
characterized. The final testing program is totally 4489 (67

2
) 



testing codes inside the program. Comparing to the original 
8978 machine codes, the testing program length is greatly 
reduced (TABLE I).  

TABLE I. Machine code reduction comparison 

 Original Proposed reduction 

Machine 

code count 
8978 4489 50% 

 
When the testing program is running, the instruction 

waveform is recorded into the oscilloscope. The oscilloscope 
has 5G sample/sec and the memory depth is 1G samples. Due 
to the memory depth, the program has to be divided into 
fragments with the size of 200 machine codes.  

 

 
Fig. 9. Oscilloscope 

 

  
Fig. 10. Testing boards  

TABLE II. Time saving during SW-EMI measurement 

 Original Proposed reduction 

Time needed 

(min) 

230 450 ~3.66 Hour 

 
This means the proposed algorithm generates about 23 

testing programs while the original algorithm generates 45 
testing programs. Since the programs are downloaded, 
measured, collected individually and manually, less number of 
testing programs is desirable.  In this case study, every program 

can be measured at about 10 minute’s interval in our lab. The 
total time saving is very large (TABLE II, about 4 hours saved). 

According to [1], the PDN of different machine code can be 
analyzed through the proposed algorithm and other procedures 
described in Fig. 1. It is found that the internal impedance (IntZ) 
of the target μC is time-varying.  

 

V. CONCLUSION 

Time-domain microcontroller (μC) electromagnetic 
interference (EMI) measurement is an essential part for 
software-related EMI (SW-EMI) modeling. To make a SW-
EMI model, several signal process procedures should be done 
for the measure results. One of the procedures is the time-
domain waveform test pattern generation. Due to the SW-
related issues, the test patterns must go through all of test 
programs of the target μC machine codes (instructions). When 
the number of instruction (n) and the pipeline stage (m) get 
higher, the test pattern permutation size grows with n

m
 speed. 

However, an efficient algorithm for automatic test pattern 
generation for SW-EMI is not available. 

This paper proposes an efficient test pattern generation 
algorithm for SW-EMI modeling of a 2-stage pipelined μC. 
This algorithm can reduce the test pattern number from the 
permutation of all test patterns to only some combinations of 
the test patterns without reducing model pattern coverage. The 
generated test pattern size is reduced 50% by the proposed 
algorithm. In our Lab, this means 3~4 hours SW-EMI 
measurement and characterization reduction.  
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