
Software-related EMI test pattern auto-generation for

2-stage pipeline microcontroller
Shih-Yi Yuan

dept. of communication engineering,

Feng Chia University,

Taichung, Taiwan, R.O.C.

syyuan@fcu.edu.tw

Yung-Chi Tang
Bureau of Standards, Metrology and

Inspection

Taipei, Taiwan, R.O.C.

yc.tang@bsmi.gov.tw

Cheng-Chang Chen

Bureau of Standards, Metrology and

Inspection

Taipei, Taiwan, R.O.C.

chang.chen@bsmi.gov.tw

Abstract—Time-domain measurement on microcontroller (μC)

conducted electromagnetic interference (cEMI) is an essential

part for software-related EMI (SW-EMI) modeling. To make a

SW-EMI model, several signal process procedures should be

done. One of the procedures is the time-domain waveform test

pattern generation. Due to the SW-related issues, the test

patterns must go through all of test pattern of the target μC

machine codes (instructions). However, an efficient algorithm for

automatic test pattern generation for SW-EMI is not available.

This paper proposes an efficient pattern generation algorithm

of the testing programs, which reduces the test pattern number

from the permutation of all test patterns to some combination

test patterns without reducing the pattern coverage. The

generated test pattern size is 50% reduced by the proposed

algorithm. This algorithm is dedicated to SW-EMI modeling and

is implemented by MATLAB.

Keywords—software-related EMI, waveform cutting algorithm

I. INTRODUCTION

As technology progress faster than ever, microcontrollers
(μC) are required by many devices, and the electromagnetic
(EMI) issues are more important than ever. However,
electronic products are mostly digitized and software (SW)
controllable, the SW-related EMI (SW-EMI) becomes more
important. Therefore, SW-EMI of electronic products is
controlled by SW and indirectly controls the total system EMI.
A time-domain conducted EMI (cEMI) measurement of μC is
essential for the SW-EMI modeling. Several digital signal
process (DSP) stages (Fig. 1) are done before the SW-EMI
modeling analysis become possible. These procedures are
detailed in [1].

IEC 61967-4 test

board design

Test patter generation

Test pattern applying

to target

Time-domain cEMI

waveform

measurement

Frequency domain

analysis

SW-EMI modeling

Fig. 1. DSP procedure for SW-EMI model building process

Generally, the internal architecture of microcontroller (μC)
is unknown to EMI modelers. Different PCB boards can be
used to characterize μC SW-EMI behaviors [1]. The SW-EMI
behaviors are very fast and time-varying. The measurement
results are continuous waveforms and should be observed on
oscilloscope for fast changing fluctuation noises. These
waveforms cannot be directly used to find the relationships
among software and EMI and should be identified and cut to
single machine code.

Before the measurement and analysis procedures, testing
programs must be firstly ‘burn’ into the target μC and drive the
μC to function. After the μC is driven by program(s), the
switching noise can be observed by spectrum (frequency
domain signals) or oscilloscope (time domain signals).

This paper proposed an automatic and efficient test
program generation algorithm for switch noise test pattern
generation. The generated test program size is very small. This
algorithm is dedicated to SW-EMI modeling and is
implemented by MATLAB. Although MATLAB is a general
purpose DSP platform and the efficiency is not high enough, it
can be used as a preliminary algorithm development. Thus, a
high efficiency and accuracy time-domain waveform test
pattern generation algorithm is very suitable for the algorithm
development time-domain waveform.

This paper is organized as follows. Section II introduces the
concept of SW-EMI modeling procedure and the importance of
the instruction waveform test pattern automatic generation
algorithm. Section III introduces the proposed algorithms.
Section IV is the experiment result. Section V gives
conclusions.

II. SW-EMI MODELING STEPS

Package boundary

1

Ohm

1Ohm

Zpcb

Measurement Device

Impedance

Vo

LPKG

LPKG

LVdd RVdd

LVss RVss

CbDIE
CDIE

RDIE

IntCA

Die boundary

IC boundary

Internal Impedance IntZ(f) Internal Current Activity

IntCA(f)

Vdd

Vss

RPKG

RPKG

Fig. 2. Basic concept of IEC-62433 (ICEM)

The proposed method is based on IEC-62433 [2]. This is an
international standard for Integrated Circuit EMI (IC-EMI)
modeling. The concept of IEC-62433 is shown in Fig. 2. The
Internal Inductances are separately lumped as package-level
inductances (LPKG) and chip-level inductances (LVdd). The chip-
level capacitances are further modeled as die-level parasitic
capacitance (CDIE) and die-level designed capacitance (CbDIE).
The resistors are also modeled and named accordingly.

There are 2 major parameters to be estimated: IntZ (the
internal impedance) and IntCA (internal current activity). IEC-
62433 assumes that the EMI behavior is periodically quasi-
static over every clock cycle. The ‘granularity’ of the quasi-
static period is the clock period and is proved to be a roughly
adequate for most IC-EMC models. It has been successfully
used to model the power/ground signal fluctuations in many
μC, Application-specific integrated circuit (ASIC), and
programmable devices within the range between 1MHz–2GHz.

Machine Code Sequence

(test program):

Loop: I/O toggle

 nop

 ...

 nop

andwf

 movf

 bcf

 rlf

 nop

...

 nop

 goto Loop

Fig. 3. Time-domain instruction waveform measurement setups

The measurement setups and the testing program are shown
in Fig. 3. After programing the testing code, the time-domain
cEMI waveform is captured by oscilloscope which includes the
testing code’s cEMI behaviors, the clock signal, and I/O
marker signal. Clock is used to identify the code execution
begin and the I/O marker signal is used to identify the whole
sequence of code executing. And other sequence of the signal
analysis can be continued as Fig. 1 described.

Machine Code Sequence

(test program):

Loop:

 I/O toggle

 nop

 ...

 nop

 andwf

 movf

 bcf

 rlf

 nop

 ...

 nop

goto Loop

I/O Marker

Fig. 4. Time-domain instruction waveform, clock signal, and I/O marker

An example of VDD instruction waveform (Fig. 4) is
measured according to [3]. The instruction waveform (red line)
is generally periodic for every 4 clock cycles (blue line). The

first line in the loop of the test program in Fig. 4 is an I/O
toggle machine code. This code is used to generate an “I/O
marker” (green line) to indicate the beginning of the program
loop. By using the I/O marker and clock signals, each
instruction waveform can be easily identified (Fig. 4). The
identified instruction waveforms are windowed and aligned for
further process. By the help of IO marker and clock signals in
Fig. 4, the cutting algorithm and aligning algorithm are
developed for automatic instruction waveform signal process.
These algorithms are omitted here.

It should be noted that Fig. 4 is just one example. Up to 100
different testing programs are designed through the same
procedures to identify all instruction waveforms. It means more
than 100 testing programs are automatically generated. The
auto-generation algorithm and procedure for testing programs
is very important.

MUL compoEMI parameter

· Fetch AND IntCA/IntZ parameters

· Update IC-cEMI model parameters

· Do quasi-static simulation

NOT operations

· Fetch register/memory

· Do addition

· update register/memoryOR operation

· Fetch register/memory

· Do addition

· update register/memory

AND operation

· Fetch register/memory

· Do AND

· update register/memory

multiplication operations

· Fetch register/memory

· Do addition

· update register/memorysubtraction operation

· Fetch register/memory

· Do addition

· update register/memory

According to

machine

behavior

branch operation

· Check flag condition

· If condition is matched,

update PC register

jump operation

· update program

counter (PC) register

Read machine

code sequence

ISS

initialization

Machine code
sequence end?

NOT compoEMI parameter

· Fetch AND IntCA/IntZ parameters

· Update IC-cEMI model parameters

· Do quasi-static simulation

OR compoEMI parameter

· Fetch AND IntCA/IntZ parameters

· Update IC-cEMI model parameters

· Do quasi-static simulation

AND compoEMI parameter

· AND IntCA/IntZ parameters fetching

· Update SW-compoEMI parameters

· Quasi-static frequency-domain

simulation

· Quasi-static time-domain transformation

SUB compoEMI parameter

· Fetch AND IntCA/IntZ parameters

· Update IC-cEMI model parameters

· Do quasi-static simulation

ADD compoEMI parameter

· ADD IntCA/IntZ parameters fetching

· Update SW-compoEMI parameters

· Quasi-static frequency-domain

simulation

· Quasi-static time-domain transformation

addition operation

· Fetch register/memory

· Do addition

· update register/memory

jump compoEMI parameter

· jump IntCA/IntZ parameters fetching

· Update SW-compoEMI parameters

· Quasi-static frequency-domain

simulation

· Quasi-static time-domain transformation

branch compoEMI parameter

· Branch IntCA/IntZ parameters fetching

· Update SW-compoEMI parameters

· Quasi-static frequency-domain

simulation

· Quasi-static time-domain transformation

Fig. 5. The modified ISS procedure

The simulator used in this paper is a modified instruction

set simulator (ISS) [4] shown in Fig. 5 with corresponding
machine code’s sub-simulators (Fig. 5, orange dotted blocks)
inside the simulation loop. During the simulation, the simulator
not only does a normal ISS simulation but also the
corresponding quasi-static window SW-EMI IntCA/IntZ
updating and simulation. After one quasi-static period is
simulated, it continues on next quasi-static period iteration. The
design of the ISS is omitted in this paper.

A. Original Auto-gen algorithm for 2-stage pipeline μC:

permutation of all test programs

If there are n machine codes in a μC and the μC is not
pipelined, the algorithm is rather easy. It generally follows the
pseudo-code of Fig. 6. The concept is simple. It continues to
find the ‘not generated machine code’ inside set M and output
the testing program to test the code. After the machine code is
outputted, the machine code is removed from M and the
algorithm iterates until the set M is empty. The efficiency is
O(N) where N is the number of instructions.

Set machine code set M as all the legal machine codes

Set output set O as empty

while (M is not empty) do

{

 Ouput header lines of the test program

 select m∈M, M=M\{m}

 Output m op testing lines

 Output tail lines

 O=O∪{m}

}

Fig. 6. pseudo-code for non-pipeline μC SW-EMI testing program auto-
generation algorithm

Machine Code Sequence

(test program):

Loop:

 I/O toggle

 nop

 ...

 nop

 target instruction

 nop

 ...

 nop

goto Loop

Fig. 7. Testing program example for μC SW-EMI characterization

The generated testing program by Fig. 6 is something like
Fig. 7. The program is divided into 3 parts: the header, the
body, and the tail of the program. The header includes an IO
toggle code for identifying the beginning of the loop start and
numbers of ‘nop’ (no-operation) code. The body of the
program is the target instruction to be characterized, such as
add (addition), sub (subtraction), etc. The tail of the program is
a back jump code to form an infinite loop.

III. THE PROPOSED AUTOMATIC TEST PATTERN GENERATION

ALGORITHM

A. SW-EMI consideration for Pipelined μC

A 2-stage pipelined μC takes 2 machine codes inside the
μC during execution. Thus, the testing program should
consider the machine code sequence to characterize the whole
SW-EMI behaviors.

B. The auto-gen algorithm which reduces test pattern number

without reducing test coverage for 2-stage pipeline μC

The proposed algorithm is a re-arrangement of the machine
code testing program which will reduce the test pattern number
from the permutation of all patterns to some combination
testing patterns without reducing test coverage.

Consider a 2-stage pipelined μC with only 3 machine codes
{a, b, c}, the total number of the testing program shall be the
permutation of the individual testing patterns. In this example,

totally 9 programs are needed: a-a, a-b, a-c, b-a, b-b, b-c, c-a, c-
b, and c-c. Here, the test program ‘x-y’ means the machine
code sequence inside the testing program should be x first and
y afterward besides the header and tail lines. All of the testing
patterns are.

For a μC with 50 machine codes – it is a very simple μC,
generally, a RISC μC like ARM has more than 200 machine
codes. The number of testing programs can be up to
50x50=2500! This is not only a wasting of storage resource for
the testing programs but also the testing time is too long for
SW-EMI characterizations.

Take the 3-instruction μC as an example again. If the
program is written as (a-a)-(a-b)-(a-c)-…(c-c) (the bracket is
for human reading), the testing program can test all the a-a, a-b,
b-a, …, etc. in one single program. It will need 2xN

2
 machine

codes to do the SW-EMI characterization.

If we look carefully that there are some repeating testing
sequences inside the testing sequence. For example, (a-a)-(a-
b) … needs only a-a-b-… will do the same characterizations. If
all the machine codes are carefully arranged, a program like: a-
a-b-a-c-b-b-c-c-a will do all the 9 tests. The number of the
machine code inside the testing program can be 9 instead of
18 – half of the machine codes are reduced. For a μC with
many machine codes, the time saving for SW-EMI
characterization is large.

The algorithm is described as follows. Assume there are n
machine codes {1..n}, the arrangement of the machine code in
one testing program is shown in Fig. 8.

Fig. 8. The proposed SW-EMI test pattern automatic generation algorithm

The big and small number in Fig. 8 is just for reading.
According to Fig. 8, the actual permutation of a five machine
code μC {1,..5} is arranged as: 1-1-2-1-3-1-4-1-5-2-2-3-2-4-2-
5-3-3-4-3-5-4-4-5-1. The testing program’s sequence can be
found that all 5x5=25 patterns are tested by 25 machine codes
only.

IV. EXPERIMENT RESULTS

The measurement setups and test boards are designed
according to the IC-cEMI measurement standard (IEC 61967-4)
[3]. The oscilloscope is R&S RTO1002 (Fig. 9). The testing
boards are shown in Fig. 10 and the testing program is shown
in Fig. 3.

The target μC contains 67 machine codes to be
characterized. The final testing program is totally 4489 (67

2
)

testing codes inside the program. Comparing to the original
8978 machine codes, the testing program length is greatly
reduced (TABLE I).

TABLE I. Machine code reduction comparison

 Original Proposed reduction

Machine

code count
8978 4489 50%

When the testing program is running, the instruction

waveform is recorded into the oscilloscope. The oscilloscope
has 5G sample/sec and the memory depth is 1G samples. Due
to the memory depth, the program has to be divided into
fragments with the size of 200 machine codes.

Fig. 9. Oscilloscope

Fig. 10. Testing boards

TABLE II. Time saving during SW-EMI measurement

 Original Proposed reduction

Time needed

(min)

230 450 ~3.66 Hour

This means the proposed algorithm generates about 23

testing programs while the original algorithm generates 45
testing programs. Since the programs are downloaded,
measured, collected individually and manually, less number of
testing programs is desirable. In this case study, every program

can be measured at about 10 minute’s interval in our lab. The
total time saving is very large (TABLE II, about 4 hours saved).

According to [1], the PDN of different machine code can be
analyzed through the proposed algorithm and other procedures
described in Fig. 1. It is found that the internal impedance (IntZ)
of the target μC is time-varying.

V. CONCLUSION

Time-domain microcontroller (μC) electromagnetic
interference (EMI) measurement is an essential part for
software-related EMI (SW-EMI) modeling. To make a SW-
EMI model, several signal process procedures should be done
for the measure results. One of the procedures is the time-
domain waveform test pattern generation. Due to the SW-
related issues, the test patterns must go through all of test
programs of the target μC machine codes (instructions). When
the number of instruction (n) and the pipeline stage (m) get
higher, the test pattern permutation size grows with n

m
 speed.

However, an efficient algorithm for automatic test pattern
generation for SW-EMI is not available.

This paper proposes an efficient test pattern generation
algorithm for SW-EMI modeling of a 2-stage pipelined μC.
This algorithm can reduce the test pattern number from the
permutation of all test patterns to only some combinations of
the test patterns without reducing model pattern coverage. The
generated test pattern size is reduced 50% by the proposed
algorithm. In our Lab, this means 3~4 hours SW-EMI
measurement and characterization reduction.

ACKNOLOWDGEMENT
This work was technically and financially supported by

Bureau of Standards, Metrology and Inspection (BSMI),
Taiwan, Republic of China.

REFERENCES
[1] Shih-Yi Yuan and Shry-Sann Liao, “Automatic Conducted-EMI

Microcontroller Modeling,” 9th International Workshop on

Electromagnetic Compatibility of Integrated Circuits (EMC Compo)
Dec. 15-18, Nara, Japan, 2013.

[2] IEC 62433 "Models of Integrated Circuits for EMI behavioral

simulation," [Online] http://www.iec.ch
[3] IEC 61967 "Integrated circuits - Measurement of electromagnetic

emissions, 150 kHz to 1 GHz," [Online] http://www.iec.ch

[4] S. Y. Yuan, H. E. Chung, and S. S. Liao, “A Microcontroller Instruction
Set Simulator for EMI Prediction,” IEEE Trans on EMC, vol. 51, pp.

692-699, 2009.

[5] Shi-Yi Yuan, Wei-Yen Chung, Cheng-Chang Chang, Chiu-Kuo Chang,

"Software-related EMI Behavior of Embedded Microcontroller," 2014

IEEE International Symposium on Electromagnetic Compatibility,

Raleigh, NC, USA, Aug. 3-8, 2014.
[6] Shih-Yi Yuan, Jiun-Jia Huang, Chia-Yuan Hsu, Shry-Sann Liao, Chi-

Chin Tang, and Haw-Yu Wu, "IC-EMC Model Extension Based on

Internal Impulse Response Function," Asia-Pacific EMC-Symposium
(APEMC), Singapore, May 21-24, 2012.

http://www.iec.ch/
http://www.iec.ch/

