出國報告(出國類別:國際會議、其他-參訪) # 參加 11th Global Congress on Process Safety 研討會及赴 Mary Kay O'Connor 製 程安全中心參訪 服務機關:國立雲林科技大學 姓名職稱:廖光裕專案助理 派赴國家:美國 出國期間:104年4月23日~5月5日 報告日期:104年8月4日 ## 摘要 本次旅程赴德州奧斯丁參與第11屆全球製程安全會議,除了解全球製程安全領域最新研究成果及資訊,並發表論文,並將於會議中所吸收之新知,陸續整理成相關資訊, 待日後提供我國相關主管機關及業者參考。隨後赴美國德州大學Mary Kay O'Connor製程安全研究中心,了解美國於製程安全之科學研究,並就我國實際產業情況,與該中心研究人員進行學術交流,其中包括如異常情況之管理、工廠設施選址之重要性、定量風險評估及安全氛圍等研究項目。 # 目次 | _ | 、目的 | -1 | |----------|-------|----| | <u>-</u> | 、過程 | -2 | | 三 | 、心得 | -3 | | 兀 | 、建議事議 | -8 | | 五 | 、附錄 | -9 | ## 一、目的 本次出國考察之目的: - 1. 參觀於製程安全領域聞名國際的德州農工大學 Mary Kay O'Connor 製程安全中心, 瞭解其研究主題,並針對我國現況有所助益之研究,如異常情況之管理、工廠設施選址 之重要性、定量風險評估及反應性化學品等項目,與該中心研究人員進行交流探討,藉 此體認歐美先進國家於製程安全上之發展趨勢與管理方式,並將相關概念作為國內相關 產業強化製程安全及管理之基礎。 - 2. 全球製程安全會議 GCPS (The Global Congress on Process Safety),為國際化學製程安全領域規模最大的會議,每年舉辦一次,今年為第 11 屆,舉辦會議地點位於德州奧斯丁,本次與會除了汲取全球製程安全領域最新研究成果及資訊,於會議上由國立雲林科技大學環境事故應變中心洪肇嘉主任□頭報告發表"A Case-Study of a Fire Incident of Trichlorosilane Process and Response Measures"研究成果,並與中台科技大學曾若鳴副教授合作發表海報論文"Exothermal test for green plastics materials by DSC"。 ## 貳、過程 本次赴赴德州奧斯丁參與第 11 屆全球製程安全會議,104 年 4 月 26 日起,美國化學工程師協會(AIChE)2014 年會暨第十屆全球過程安全大會(2014 AIChE Spring Meeting and 10th Global Congress on Process Safety)在美國舉行,來自全球 30 餘個國家和地區的 1200 多位元專家學者參加會議研討會,本次研討會包含 Process Safety Culture、Risk Analysis/Risk Based Decision 等 13 項主題共計 114 篇文章,本人分別與洪肇嘉教授及中台科技大學增若鳴教授共同發表"。A Case-Study of a Fire Incident of Trichlorosilane Process and Response Measures"及"Exothermal test for green plastics materials by DSC"。 CCPS 為世界化工製程安全會議之頂尖會議。本次會議邀請在全球領先的安全專家出席並報告他們的工作,經由世界級專家的報告及討論,會使與會者能夠提高自己於化工製程安全之知識,拓展自己的網絡及人脈,並將會議上得到之知識,應用於化工安全上,以防止製程中安全事故之發生。 4月29日起參訪美國德州農工大學,分別參訪德州農工大學 Mary Kay O'Connor Process Safety Center 及德州農工大學技術推廣服務機構(TEEX,Texas A&M Engineering Extension Service)。 玫琳凱奧康納過程安全中心(Mary Kay O'Connor Process Safety Center)成立於 1995年,主要為紀念玫琳凱奧康納的運營總監在菲利普斯石油公司因爆炸死於 1989年 10月 23日,玫琳凱奧康納畢業於密蘇里-哥倫比亞大學,主修化學工程,並從休斯敦清湖大學獲得工商管理碩士學位。 1997 年,山姆·甘露博士,因他在製程安全領域上的聲譽被任命為中心主任。該中心的使命是以促進世界各地製成安全的成長為目標,以防止未來的事故。此外,該中心開發更安全的工業技術,設備,程序和管理策略以盡量減少工業中的損失。然而,該中心意識到有必要推進製程中的安全技術,以保持該行業的競爭力。 TEEX 德州農工大學技術推廣服務機構(TEEX,Texas A&M Engineering Extension Service)位於美國德克薩斯州的 College Station 市,超過 140 個訓練項目,包括石化工廠 火災模擬訓練、槽車、飛機、及其他建物消防人員急救訓練等等,為全球最大緊急應變 訓練場,該訓練場以逼真模擬實體作為訓練場所,符合訓練應變人員實際操作訓練之需求。 本次出國其行程如表 1 及會議議程表表 2 所示。 表 1 行程一覽表 | 日期 | 行 程 | 附 註 | |-----------|---|-----| | 04/23(週四) | 搭機前往美國 ● 台灣桃園國際機場至美國休士頓布希國際機場 | 美國 | | 04/24(週五) | 抵達美國德州休士頓布希國際機場 | 美國 | | 04/25(週六) | 前往會議辦理地點德州奧斯汀 | 美國 | | 04/26(週日) | 參加 CCPS 製程安全會議 | 美國 | | 04/27(週一) | 參加 CCPS 製程安全會議 | 美國 | | 04/28(週二) | 參加 CCPS 製程安全會議 | 美國 | | 04/29(週三) | 參訪德州農工大學 Mary Kay O'Connor Process
Safety Center | 美國 | | 04/30(週四) | 參訪德州農工大學 Mary Kay O'Connor Process
Safety Center | 美國 | | 05/01(週五) | 搭機回台 | 美國 | | 05/02(週六 | 搭機回台,轉機(未支差旅費) | - | | 05/03(週日) | 休假(未支差旅費) | - | | 05/04(週一) | 休假(未支差旅費) | - | | 05/05(週二) | 抵達台灣(未支差旅費) | 臺灣 | 表二 GCPS 製程安全會議議程表(範例,詳細議程如附件一) | | SUNDAY, April 26 | |----------------------|--| | 8:00 AM – | GCPS Short Courses | | 5:00 PM | 2017 ATCLE C | | 6:30 PM –
8:00 PM | 2015 AIChE Spring Meeting and 11th GCPS Opening Reception | | 0:00 FW | Location: Conv. Ctr. Exhibit Hall 5 | | | MONDAY, April 27 | | 7:00 AM | Complimentary Breakfast | | 7.00 AN | Location: Conv. Ctr. Ballroom D | | | 2015 AIChE Spring Meeting and 11th GCPS Opening Plenary Session: | | 8:00 AM | Cheryl Teich, AIChE President and June C. Wispelwey, AIChE Executive | | | Director Location: Conv. Ctr. Exhibit Hall 5 | | | Keynote Address: Chemical Engineering – Is this the "Golden Age"? | | 0.20 43/ | Presented by Marvin O. Schlanger, Chairman of the Supervisory Board of | | 8:30 AM | LyondellBasell (Ret.) | | | Location: Conv. Ctr. Ballroom D | | 0.15 ANT | Coffee Break | | 9:15 AM | Location: Conv. Ctr. Exhibit Hall 5 | | | 11th GCPS Welcoming Plenary Session | | | Location: Conv. Ctr. Ballroom D | | | 11th GCPS Introduction and Welcome: Shakeel Kadri (Executive Director, | | | CCPS) and Rainer Hoff (GCPS Chair) | | 0.40.474 | Symposia Introductions: Samantha Scruggs (CCPS Chair), Charles A. | | 9:40 AM | Soczek (LPS Chair), Karen Study (PPSS Chair), Lisa Long (PSM2 Chair), | | | Jatin Shah (Spotlight Track Chair), Laura Turci (RPPS), and J. Wayne | | | Chastain (DIERS) | | | Presentation of William H. Doyle Award for LPS Best Paper Award and | | | PPSS Best Paper Award | | | 1 | ## 三、心得 (一) 德州農工大學 Mary Kay O'Connor Process Safety Center 製程安全技術研究成果考察: 為了紀念不幸於 1989 年 Phillips 化學公司聚乙烯工廠爆炸身亡的 Mary Kay O'Connor 女士,美國德州農工大學於 1995 年所成立的相關製程安全研究機構便命名為 Mary Kay O'Connor 製程安全中心,是國際該領域上之重要研究機構,研究之面向皆是與製程安全方面相關,其研究項目非常多元化,另該中心除了戮力於製程安全技術研究上,在人才培訓及養成方面,也不餘遺力,每年會不定時規劃舉辦相關研習課程,並邀請該領域知名的學者及實務專家進行授課及經驗分享。因其研究項目非常多元化,故本次參訪著重於對我國現況有所助益之研究,其相關研究內容簡述如下: #### (1) 異常情況之管理: 在歷年重大化災事故案例中,可發現準確的製程相關元件故障檢測與診斷有其必要性,故通過建立自動化之分析系統,有效地從製程正常運作環境中記錄其模式,並藉此進行監控檢測,判斷製程中是否有錯誤發生,以利人員掌控,進而確保製程之安全性為該研究之目的。 #### (2) 工廠設施選址之重要性: 石化工業廠區擁有眾多之設備元件,如管道、儲槽、反應器水霧防護裝置及脫硫塔等設施,且所涉及化學品多為具易燃性、毒性及反應性之物質,所以挑選適當地點及妥善等安排其設施建置,能有效降低廠區周遭社區與民眾之風險等級、減輕毒性影響、抑制火場範圍之擴大及降低爆炸帶來之損失,此外,能更安全的執行設備維護工作。 #### (3) 定量風險評估: 化工製程是一個動態複雜的過程,於不同階段皆會有不同的影響因子,如季節的變化、設備老舊、物理過程,隨機過程以及操作人員於化工製程系統中的反應時間等因素,但傳統風險評估無法有效估算其動量特性,因此一個能模擬製程中隨機事件的離散估算之定量風險評估的方法有其必要性。 #### (4) 工程之持續發展: 工程之持續發展(Engineering for Sustainable Development,ESD)為一種集成性之系統方法,旨在當前利益相關者之發展與不損害後代子孫利益兩者間之獲取平衡,並滿足經濟,生態環境,社會標準以及安全和健康之要求,然而當工程之持續發展所需標準不明確時,缺乏相關資訊及決策過程所需之具體數據,便無法做出正確之決策,所以該研 究目標即是開發出方法以利解決這些困難。 #### (5) 可燃性及燃燒研究: 許多化工製程皆有使用燃性化學品,因此瞭解易燃性化學品之閃點和可燃性相關資訊是非常重要的,該訊息能有助於提高製程運作時之安全性,目前多數可獲知的可燃性相關資訊,主要是針對純化合物,但仍有許多混合物相關可燃性數據仍是未知,尤其是非理想混合物,所以該研究之目的便是通過實驗之方式,得知混合物於含氧環境及各種溫度壓力下的可燃性相關數據。 #### (6) 液化天然氣(Liquefied Natural Gas, LNG)之安全研究: 液化天然氣是全球依賴甚深的主要能源之一,但當其不慎外洩時,易形成可燃性蒸氣雲,並導致爆炸,造成人命及財產莫大之損失,所以如何對液化天然氣蒸氣進行有效的檢測、抑制及控制,進而達到減災之目的;該研究之主要內容是探討如何運用流體動力學運算軟體預測液化天然氣蒸氣之擴散範圍,並據此作為水霧設備建置工程之基礎。 ### (7) 安全氛圍: 安全氛圍意指員工對工作機構的安全健康事宜之整體看法,如管理層是否重視職業安全、上司或同事對職業安全的關注、自身對工作安全行為的評價、作業環境是否安全等,而其指標即以安全氛圍指數示之,其指數高低可判斷此工作機構是否為一個安全之工作環境,根據研究報告指出,當安全氛圍指數越高時,可以有效促進員工的安全行為,減少事故之發生。 石油化學工業為我國重要發展產業之一,其工業主要危害是製程設備元件眾多,設備運轉環境多為高壓高溫,所涉及化學品多為高危害性物質,故潛在風險程度與其他產業相比自然高出許多,且如不慎發生事故,除了容易造成人命及財物嚴重之損失外,其後續更容易衍生出環境污染之問題,因此,落實製程安全、良好的設備維護、建立安全的作業環境及防護設施妥善之建置等製程安全相關事項,為我國未來發展亟需加強之重點,另加上台灣人口密度甚為集中,所以廠場設置地點也需經過完善之評估,將對周遭環境及民眾所帶來之衝擊降至最低;此次憑藉參訪 Mary Kay O'Connor 製程安全中心之良機,將所獲取之資訊及觀念提供給我國政府相關單位及業界參考,以期能達到事半功倍之成效。 #### (二) GCPS 製程安全會議相關議題研討及成果發表 全球製程安全會議(Global process safety Conference)由美國化學工程協會(American Institute of Chemical Engineers, AIChE)主辦,化學製程安全中心(Center for Chemical Process Safety, CCPS)承辦,廣邀全球製程安全領域相關專家學者,於美國一年舉辦一次 的大型會議,旨在交流世界各國最新製程安全相關議題及研究成果,並分享災害預防及妥善管理的觀念,進而增進與會人對於製程安全領域之重視,為目前國際該領域最重要、且最具規模的之會議,本屆會議為第 11 屆,舉辦地點位於德州奧斯丁,共近 2000 名相關領域人員參加,其會議主題可概分為 10 主題及 216 個分會議題,因議題眾多,無法參與所有議程,所以僅能選擇參與與我國工業或環境相關之議題,下列為參與議程之摘要範例: (1) 層流燃燒速度於製程安全中之應用(On the Use of Laminar Burning Velocities in Process Safety): 摘要:層流燃燒速度通常用確定火災和爆炸之潛在嚴重性,並據此選擇適當之安全措施,減輕其危害,故本研究目的於建立層流燃燒速度之數據,以評估化學製程設施中可燃氣體和蒸氣的爆炸危險性。 (2) 石化工業儲槽區之安全管理(Safety Management of Petrochemical Tank Farms): 摘要:分析石化工業系統於儲槽安全管理上之缺失,根據所得之結論與魚骨圖,可得到由 12 個一級指標,37 個二級指標所構成之儲槽安全管理評價系統。 (3) 危險品運輸的感知風險與風險管理(Hazardous Material Transportation Perceived Risks & Risk Management): 摘要:分別就運輸供應鏈、事故率及運輸系統之擴張等主要參數,建立針對危險品 運輸的風險評估模型,該風險評估模型可作為業者在制定風險管理計畫之依據。 (4) 碳納米纖維的燃燒及爆炸之相關特性(Combustion and Explosion Related Properties of Carbon Nanofibers): 摘要:為了確認納米材料燃燒及爆炸之相關參數,選用碳納米作為實驗物質,對其 進行燃燒及爆炸之相關測試,以求得其相關參數,如最大壓力、爆燃指數、最小點燃能 量、最低爆炸濃度等數據。 (5) 瞭解填充比對熱動力學數據之影響(Understanding the Effect of Fill-Ratio on Thermo-Kinetic Data): 摘要:其研究目的在於探討填充率對於熱動力學數據所造成之影響,測試合成芳香 族單體在不同填充比例時,其溫度及壓力之變化率。 本次與會除了汲取全球製程安全領域最新研究成果及資訊,並於 28 日由國立雲林科技大學環境事故應變中心洪肇嘉主任口頭報告發表之論文『三氯矽甲烷製程火災事故及應變措施(A Case-Study of a Fire Incident of Trichlorosilane Process and Response Measures)』,且中臺科技大學曾若鳴副教授也以海報方式發表綠色塑材使用示差掃描量 熱儀所進行之放熱實驗 (Exothermal test for green plastics materials by DSC) 研究報告 (相關摘要如附件 2 及附件 3 所示)。 ## 四、建議事項 - (一)從高雄氣爆事故後,工業安全議題逐漸受到社會大眾之重視,特別是在石化工業相關製程方面,尤其我國石化工業大多數都集中在同一區域,如林園工業區、大社工業區及麥寮石化專區等,且因受制國土面積之故,有些石化廠場甚至臨近人口密集處,如中油桃園廠及高雄廠,加上我國屬於海島型氣候,設備易因潮濕多鹽環境之故,而有腐蝕及材質劣化等狀況發生,故其潛在風險不容小覷,因此,強化我國在製程安全方面之能量,實為刻不容緩,建議除由政府相關單位持續派遣人員前往歐美先進國家,汲取製程安全發展經驗及相關資訊外,業者及學術單位也應盡量參與,以期能於最短時間內有效地提升我國製程安全之水準,避免再有工安憾事發生。 - (二)參與全球製程安全會議此類型之國際會議,除了可深入瞭解國際間於製程安全 技術上的發展及相關資訊外,也經由講師分享事故案例,獲取經驗教訓,並藉由發表研 究成果之契機,以提升我校於國際間之知名度,另考量到不是每個相關領域人員皆可以 出國參加此類型研討會議,所以也建議政府相關單位可每年定期辦理規模較大的研討 會,廣邀我國相關領域學者專家擔任講師,並鼓勵各相關領域從業人員參加,如此一來, 方能有效營造安全的工作環境,減低製程事故發生之概率。 ## 五、附錄 ### 附件一、與會照片 ## 104年4月26-28日(CCPS 製程安全會議) 圖 1:於主會場留影 圖 2:海報發表論文 圖 3:於小組議題教室外留影 圖 4: 與洪肇嘉教授、曾若鳴副教授合影 104年4月29.30日(德州農工大學 Mary Kay O'Connor Process Safety Center) 圖 5: MKOPSC 發表之研究報告 圖 6: 與所長 Dr.Sam Mannan 合影 圖 7: 製程安全相關心得經驗交流 圖 8:與研究人員合影 附件二、會議議程表 | | SUNDAY, April 26 | |----------------------|--| | 8:00 AM -
5:00 PM | GCPS Short Courses | | 6:30 PM -
8:00 PM | 2015 AIChE Spring Meeting and 11 th GCPS Opening Reception
Location: Conv. Ctr. Exhibit Hall 5 | | | MONDAY, April 27 | | 7:00 AM | Complimentary Breakfast
Location: Conv. Ctr. Ballroom D | | 8:00 AM | 2015 AIChE Spring Meeting and 11th GCPS Opening Plenary Session: Cheryl Teich , AIChE President and June C. Wispelwey, AIChE Executive Director Location: Conv. Ctr. Exhibit Hall 5 | | 8:30 AM | Keynote Address: Chemical Engineering – Is this the "Golden Age"? Presented by Marvin O. Schlanger, Chairman of the Supervisory Board of LyondellBasell (Ret.) Location: Conv. Ctr. Ballroom D | | 9:15 AM | Coffee Break Location: Conv. Ctr. Exhibit Hall 5 | | 9:40 AM | 11th GCPS Welcoming Plenary Session Location:
Conv. Ctr. Ballroom D 11th GCPS Introduction and Welcome: Shakeel Kadri (Executive Director, CCPS) and Rainer Hoff (GCPS Chair) Symposia Introductions: Samantha Scruggs (CCPS Chair), Charles A. Soczek (LPS Chair), Karen Study (PPSS Chair), Lisa Long (PSM² Chair), Jatin Shah (Spotlight Track Chair), Laura Turci (RPPS), and J. Wayne Chastain (DIERS) Presentation of William H. Doyle Award for LPS Best Paper Award and PPSS Best Paper Award | | | Process Safety
Spotlights | 4 th Process Safety
Management
Mentoring
(PSM ²) | 30 th Center for
Chemical Process
Safety
International
Conference
(CCPS) | 17 th Process Plant
Safety
Symposium
(PPSS) | 49 th Annual Loss
Prevention
Symposium
(LPS) | Perspectives on
Process Safety
from Around the
World | Design Institute
for Emergency
Relief Systems
(DIERS) | |----------|---|---|---|---|---|---|---| | | Executive Panel:
Opportunity
Crudes in a
Changing Market
and Process Safety
Considerations | Guidelines for
Effective
Implementation of
PSM I | Committed Culture
I | Technological
Advances and
Their Impact on
Process Safety | Fires and
Explosions I | Challenges of
Japan's Process
Safety | Effective Scenario
Identification for
Pressure Relief
and Effluent
Handling Systems | | | Location: Conv.
Ctr. Ballroom E | Location: Conv.
Ctr. Ballroom G | Location: Conv.
Ctr. Room 18B&C | Location: Conv.
Ctr. Room 17A&B | Location: Conv.
Ctr. Room 19A&B | Location: Conv.
Ctr. Room 18D | Location: Conv.
Ctr. Ballroom F | | | Co-Chairs:
Tim Olsen
Jatin Shah | Co-Chairs:
Ravi Ramasamy
Bruce K. Vaughen | Co-Chairs:
Jim Klein
Stacey Moore | Co-Chairs:
Sanjeev Saraf
Vic Edwards | Co-Chairs:
Jerome Taveau
Derek Miller | Co-Chairs:
Masaki Nakagawa
Neil Concibido | Co-Chairs:
Peter Howell,
Wayne Chastain | | 10:30 AM | Panelists Include:
Steve Arendt, ABSG
Consulting, Inc.
Carl Weaver, Baker
Hughes | Development and
Implementation of
Process Safety and
Integrity Management
(PSIM)
Frik Febby | OK so our culture
sucks! What Do We
Do Now?
Mike Broadribb, | Eli Lilly PSM
Implementation Case
Study
Robert Stankovich | Suppression of
Overpressure during a
Vapor Cloud
Explosion
Chris Buchwald | Development and Research Activities of Advanced System Safety Laboratory for Safety Education/Culture Atsuko Fumoto | Overpressure Protection of a Pressure Vessel By System Design through the Application of ASM VIII Ug-140 in Liet of a Relief Device B an Appropriate Choice of Mawp and/or By Safety Instrumented Syster Dilip K. Das | | 11:00 AM | Michael E. Webber,
Webber Energy
Group
Terry Higgins,
HART Energy | PSM Implementation
at Binh Son Refining
& Petrochemical Ltd.
- Challenges and
Strategies
Vo Hoang Vu | Leading Indicators –
The Corner Stone of a
Committed Process
Safety Culture
Anne O'Neal | Autonomous Remote
Gas Detection Using
Optical Imaging
Technology
Jonathan Morris | Deflagration Load
Generator:
Repeatability and
Application to Test
Article Blast Loading
Brad Horn | Development of
Quantitative Hazard
Analysis Method for
Inherently Safer
Chemical Processes
Yuto Mizuta | Understanding Gas
Blowby Scenario
Calculations
Nancy Faulk | | 11:30 AM | | Capital Projects:
Process Safety from
Conception through
Retirement
Robert Wasileski | Essential Practices for
Developing,
Strengthening, and
Implementing Process
Safety Culture
David Moore | An Optimal Cost-
Effective Approach to
Sensor Siting for
Industrial Facilities
Azar Shahraz | Safety Critical Items Siting Based on CFD Deterministic Fire Simulations Rafael Storch | Development of Best
Practices of Process
Safety in Japan
Masatoshi Kumamoto | Can I Use My
Cooling Water
Header As a Relief
Device?
Rahul Raman | | | Process Safety
Spotlights | 4 th Process Safety
Management
Mentoring
(PSM ²) | 30 th Center for
Chemical Process
Safety
International
Conference
(CCPS) | 17 th Process Plant
Safety
Symposium
(PPSS) | 49 th Annual Loss
Prevention
Symposium
(LPS) | Perspectives on
Process Safety
from Around the
World | Design Institute
for Emergency
Relief Systems
(DIERS) | |---------|--|--|---|--|---|---|---| | | Process Safety in
LNG and LPG I | Guidelines for
Effective
Implementation of
PSM II | Committed Culture | What You Need to
Know about
Process Safety for
Capital Projects | Fires and
Explosions II | Indicadores De
Seguridad De
Procesos | Relief
Considerations for
Low Pressure
Storage Tanks | | | Location: Conv.
Ctr. Ballroom E | Location: Conv.
Ctr. Ballroom G | Location: Conv.
Ctr. Room 18B&C | Location: Conv.
Ctr. Room 17A&B | Location: Conv.
Ctr. Room 19A&B | Location: Conv.
Ctr. Room 18D | Location: Conv. Ctr
Ballroom F | | | Co-Chairs:
Trey Morrison,
Kathy Pearson,
Victor Edwards | Co-Chairs:
Ravi Ramasamy,
Bruce Vaughen | Co-Chairs:
Jim Klein,
Stacey Moore | Co-Chairs:
Bob Wasileski,
Katherine Prem | Co-Chairs:
Jerome Taveau,
Derek Miller | Co-Chairs:
Marcela Recaman | Co-Chairs:
Casey Houston
Georges Melhem | | 1:30 PM | CFD Modeling of
Large Scale LNG
Pool Fires
Fillipo Gavelli | Implementing PSM: Perspective from a Process Engineer Turned PSM Attorney D.A. Duggar | Creating a Culture of
Chronic Unease
Laurence Pearlman | Real World
Challenges in
Meeting Risk Criteria
for Brownfield
Projects
Anne Branson | Hydrogen Jet Vapor
Cloud Explosion:
Test Data and
Comparison with
Predictions
J. Kelly Thomas | Indicadores De
Seguridad De
Procesos y
Observaciones
Planificadas De
Seguridad
Ricardo Ceskiavikus | Influence of Overpressure in Pressure Vacuum Safety Valves on Emission Reduction and Explosion Risk Minimization of Atmospheric Storage Tanks Davide Moncalvo | | 2:00 PM | CFD Modeling of
LNG Spreading and
Atmospheric
Dispersion
Anh But | Improving Risk-
Based Decision
Making By
Connecting PSM
Systems to Day-to-
Day Plant Operations
Mike Neill | Guidelines for
Creating a Process
Safety Culture
Assessment Tool
Farheen Khan | Pre-Developing an
Asset Integrity
Program during the
Capital Project
F. Russ Davis | Prediction of the
Mass Flow of Heavy
Gas Released from
Standard Gas Bottles
Christian Rauchegger | Choosing Inspections Using Composite Indicators – a New Safety's Regulator Approach in the Brazilian Continental Shelf Alex Almeida Sr. | A Comprehensive Guide to Accurately Size Pressure and Vacuum Relief Devices for Atmospheric and Lov Pressure Storage Tank Steve Streblow | | 2:30 PM | Mitigation Effect of
High Expansion
Foam on LNG Vapor
Hazard
Bin Zhang | Implementation of
Process Safety at
SABIC-Sinopec
Tianjin, China
Homoud Al-
Maynouni | Cracking the Code of
Process Safety
Culture with
Organizational
Network Analysis
Elliot Wolf | Prevention or Mitigation of Major Accident Hazards through Early Identification of Safety Critical Elements Raminaidu Girada | Engineered Floating
Beads: New Method
for Vapor
Suppression and Fire
Prevention for
Flammable Liquids
Joe Riordan | El Uso De Metricas
De PSM y Su
Impacto En La
Cultura De Seguridad
Alberto E. Vignale | Overfilling Protection
for Weak Tanks
Rahul Raman | | | Process Safety in
LNG and LPG II | Careers in PSM –
Invited Panel | Vibrant
Management
Systems | LOPA and the
Process Safety
Lifecycle | Fires and
Explosions III | Historia De Casos
y Lecciones
Aprendidas | Effectively Deal
with Evolving
Codes, Standards,
and RAGAGEP
for Pressure Relief
Systems | |---------|---|---------------------------------------
--|---|--|--|---| | | Location: Conv.
Ctr. Ballroom E | Location: Conv.
Ctr. Ballroom G | Location: Conv.
Ctr. Room 18B&C | Location: Conv.
Ctr. Room 17A&B | Location: Conv.
Ctr. Room 19A&B | Location: Conv.
Ctr. Room 18D | Location: Conv.
Ctr. Ballroom F | | | Co-Chairs:
Trey Morrison
Kathy Pearson
Victor Edwards | Co-Chairs:
Jeff Fox
Dow Corning | Co-Chairs:
Russ Ogle
Bernard Groce | Co-Chairs:
Christy Blanchard
Kimberly Mullins | Co-Chairs:
Jerome Taveau
Derek Miller | Co-Chairs:
Nestor Sposito
Luisa Lopez | Co-Chairs:
Warren Greenfield
Wayne Chastain | | 3:30 PM | The Human Factors behind Inherently Safer Design of LNG Liquefaction Terminals David Weimer | | Recent Process Safety Developments at BASF Ludwigshafen, the World's Biggest Chemical Site Hans Volkmar Schwarz | Impacts of Process
Safety Time on Layer
of Protection Analysis
Geoffrey Barnard | Risk Ranking Criteria
for Catastrophic
Vessel Failures Due
to Fire Exposure.
Vessel Wall
Dynamics &
Consequence
Analysis
Jordi Dunjó | Un Caso Real En
Ocotlan, México:
Aplicación De
analisis De Causa
Raiz y Acciones En
Base a Pareto
Hugo Hemadez | Changes Between
API STD 521 6th Ed
and 5th Ed Cataloged
Dustin J. Smith | | 4:00 PM | The Hazard We
Know: Comparing
Transportation Risk
of LPG and LNG
Ryan J. Hart | Invited Panel | Next Generation Root Cause Investigation and Analysis - Elimination of Repetitive Incidents through Strengthening Management Systems Kenan Stevick | Demonstrating
Separation and
Independence of
Automated Systems
Angela. E. Summers | Observations and Modeling of Off-Site Damage from Large Vapor Cloud Explosion (VCE) Events Raymond H. Bennett | Alineación De
Causalidad De
Accidentalidad Con
El Modelo De
Gestión ASP
Clara Ines Arbelaez | Changes Between
API STD 520 Part II
6th Ed and 5th Ed
Cataloged
John Burgess | | 4:30 PM | Experimental Study
on Propane Jet Fire
Hazards: Thermal
Radiation
Bin Zhang | | Internal Auditing of
Process Safety - a
False Sense of
Security?
Lee Allford | LOPA - More
Observations from the
Originators
William Bridges &
Art Dowell | Risk Assessment for a
Gas and Liquid
Hydrogen Fueling
Station
Jo Nakayama | Incidentes Ocurridos
En La Industria Del
Gnl
Juan G. Haitzaguerre | Evolution of Relief
Sizing at an
Operating Company
Michael J. Maness | | 5:00 PM | | | CPS Electronic and I
o-Chairs: Peter Lodal
Locat | | nda Tew, Jack Chosn | | | | | Process Safety
Spotlights | 4 th Process Safety
Management
Mentoring
(PSM ²) | 30 th Center for
Chemical Process
Safety
International
Conference
(CCPS) | 17 th Process Plant
Safety
Symposium
(PPSS) | 49 th Annual Loss
Prevention
Symposium
(LPS) | Perspectives on
Process Safety
from Around the
World | Design Institute
for Emergency
Relief Systems
(DIERS) | |---------|---|--|---|--|--|--|--| | | Human Factors I | The Day PSM Hit
Home I | Responsible
Collaboration | Process Safety
Management
Andits | Combustible Dusts
Hazards | Latest Developments in Process Safety in China I | Initial Design and
Managing
Ongoing
Operation of
Pressure Relief
Systems | | | Location: Conv.
Ctr. Ballroom E | Location: Conv.
Ctr. Ballroom G | Location: Conv.
Ctr. Room 18B&C | Location: Conv.
Ctr. Room 17A&B | Location: Conv.
Ctr. Room 19A&B | Location: Conv.
Ctr. Room 18D | Location: Conv.
Ctr. Ballroom F | | | Co-Chairs:
Tim Murphy
Amanda Chapman | Co-Chairs:
Michael Morris
Scott Haney | Co-Chairs:
Jerry Forest
John Wincek | Co-Chairs:
Jim Thompson
Donnie Carter | Co-Chairs:
Michael
Moosemiller
Henry L. Febo | Co-Chairs:
Dongfeng Zhao
Yi Liu
Meng Yi-fei | Co-Chairs:
Daniel Nguyen
Wayne Chastain | | 8:00 AM | The Psychology of
Decision Making in
Process Hazard
Analysis
Paul Baybutt | We Learn and Share
but We Don't Get
Better! Time for Huaa
Mike Bearrow | The Evolution of Process Safety Standards and Legislation Following Landmark Events - What Have We Learnt? Trish Kerin | API Process Safety
Site Assessment
Program - Promoting
a Culture of Process
Safety
Andrew Broadbent | A Theoretical-Based
and Generalized
Method for Dust and
Gaseous Deflagration
Vent Sizing
Hans K. Fauske | Safety Management
of Petrochemical
Tank Farms
Dongfeng Zhao | Overlooked Factors in
Pressure Relief
Systems Design
Steve Streblow | | 8:30 AM | Advanced Procedure Research Study - Applying Human Factor Principles to Procedure Presentation and Design Elliott Lander | Young, Inexperienced, and Learning: How Process Safety Hit Home While Attending a Conference Ashley M. Weckwerth | Industrial
Partnerships and PSM
Standards in Canada
Adrian Pierorazio | Process Safety
Auditing: Thinking
Beyond Compliance
Stephen Gill | Combustion and
Explosion Related
Properties of Carbon
Nanofibers
Jiaqi Zhang | Study on Separation Distance Determination of LNG Filling Station on Water Gujun Wan | Will It Really Make
That Much of a
Difference? Broad
Effects of Operationa
Changes on Relief
System Design
Marie Baker & Teddy
Bucher | | 9:00 AM | Examination of Events That Occur during an Alarm Flood - Their Impact on Safety and Proper Corrective Action Darwin Logerot | The Road Between
Reality and
Philosophy (aka HSE
Success within an
Engineering
Organization)
Rao Akula | AIChE/CCPS White
Paper:
Recommendations for
Establishing Process
Safety Investigation
Boards
Scott Berger | Ignorance Is No
DefenseAudit
Management Best
Practices
Mike Bearrow | Unconfined Deflagration Testing for the Assessment of Combustible Dust Flash Fire Hazards Michael C. Stern | A Case-Study of a Fire Incident of Trichlorosilane Process and Response Measures Jao-Jia Horng | Auditing Relief
Systems Design Basi:
- Best Practices
Neil Prophet | | 9:30 AM | 1990 | 7 | Coff | fee and Networking B | | | | | | Human Factors II | The Day PSM Hit
Home II | Disciplined
Adherence to and
Harmonization of
Standards | Best Practices in
Process Safety and
Risk Management
I | Facility Siting
Consequence
Analysis I | Latest Developments in Process Safety in China II | Development of Engineering Analysis Methods and Tools for Pressure Relief Valve Stability and Relief Pipe Reaction Forces | |----------|--|--|---|--|--|--|---| | | Location: Conv.
Ctr. Ballroom E | Location: Conv.
Ctr. Ballroom G | Location: Conv.
Ctr. Room 18B&C | Location: Conv.
Ctr. Room 17A&B | Location: Conv.
Ctr. Room 19A&B | Location: Conv.
Ctr. Room 18D | Location: Conv.
Ctr. Ballroom F | | | Co-Chairs:
Tim Murphy
Amanda Chapman | Co-Chairs:
Alan C. Brackey
Brenton L. Cox | Co-Chairs:
Marty Timm
John Herber | Co-Chairs:
Sandipan Laskar
Mervyn Carneiro | Co-Chairs;
Ronald J. Willey
Jean-Paul
Lacoursiere | Co-Chairs:
Dongfeng Zhao
Yi Liu
Meng Yi Fei | Co-Chairs:
Marc Levin,
Georges Melhem | | 10:15 AM | Procedural Safeguard
Reliability
Sean J. Dee | 2007 Valero McKee
Refinery Fire
Shannon Gillespie | How Does "Deviation" Become "Normal"? Jennifer Mize | Using PHA As a Framework for Effectively Addressing Evolving PSM/RMP Guidelines, Such As Damage Mechanism Hazard Reviews Steven T. Maher | Modelling Liquid
Fuel Cascades with
Open Foam
Jennifer X. Wen | Case Analysis
of Oil
and gas Pipeline
Deflagration
Accidents
Shi Li | Dynamics of Direct
Spring Operated Prv's
with Inlet Piping in
Gas Service
Kenneth Paul & Alan
Champneys & Csaba
Hos | | 10:45 AM | Changing Demographics: Preserving Safety and Increasing Performance Denise Brooks | 1987 Celanese Pampa
Butane Vapor Cloud
Explosion
Jack Mc Cavit | The Changing Tide of US Process Safety/Risk Management Regulations - How CCPS Risk Based Process Safety and Vision 20/20 Concepts Can Harmonize Future Requirements Steve Hawkins | A Case Study to
Show How Bow-Tie
Analysis Can be Used
As an Effective
Communication Tool
in Risk Assessments
Varsha Pedhireddy | Consequence
Modeling of Dynamic
Source Terms
Michael D. James | Research of Process
Safety Management
Platform Architecture
Based on Internet of
Things
Guoliang Yang | Effect of Body Bowl
Choking on Pressure
Relief Valve Stability
Hisao Izuchi | | 11:15 AM | Human and Organizational Factors Assessment and Their Use As Potential Safety Barriers Mehmood Ahmad | "Let Me Tell You" The impact of Eastman's Aniline Plant Explosion on Process Safety Awareness Pete Lodal | PSM/RMP Modernization Programs in California - Current Initiatives and What's on the Horizon Steven Maher | The Lifecycle of a
Process Safety
Recommendation
Benjamin Poblete | Toxicity-Hazard
Index and the
"Infinite Point"
Richard Prugh | Application and Optimization of Quantitative RBI on Equipment of Station Yard Shuang Liang | Modeling and Computation of Reaction Forces on Relief Piping during Depressurization Jens Concen & Gabe Wood | | 11:45 AM | | Luncheon with | "라 ♣#WWW. 'H M 그런 네 = 기존가 워크트시트, [] | adri – Process Safe
ton, Sixth Floor, Sale | ty Culture – an org
on F. G and H | anizational view | | | | - AL | | Married Married Workship | | 1 | | |---|---|---|---|--|--|---| | Process Safety
Spotlights | 4 th Process
Safety
Management
Mentoring
(PSM ²) | Chemical Process Safety International Conference (CCPS) | 17 th Process
Plant Safety
Symposium
(PPSS) | 49 th Annual Loss
Prevention
Symposium (LPS) | Perspectives on
Process Safety
from Around the
World | Design Institute
for Emergency
Relief Systems
(DIERS) | | Process Safety in
Upstream
Operations I | PSM Mastery I -
Specific examples
of the four pillars
of risk based
process
safety | Enhanced
Application of
Lessons Learned | Best Practices in
Process Safety and
Risk Management
II | Facility Siting
Consequence
Analysis II | A Importância Da
Segurança De
Processos Para o
Crescimento e
Perpetuidade Da
Industria
Quimica No
Brasil | How to Measure
the Right Data for
Reaction Systems | | Location: Conv.
Ctr. Ballroom E | Location: Conv.
Ctr. Ballroom G | Location: Conv.
Ctr. Room 18B&C | Location: Conv.
Ctr. Room 17A&B | Location: Conv. Ctr.
Room 19A&B | Location: Conv.
Ctr. Room 18D | Location: Conv.
Ctr. Ballroom F | | Co-Chairs:
Cheryl Grounds
Robert Benedetti | Co-Chairs:
Brian Dickson
Ruifeng "Ray" Qi | Co-Chairs:
Andrew Goddard
Swati Umbrajkar | Co-Chairs:
Sandipan Laskar
Mervyn Carneiro | Co-Chairs:
Ronald J. Willey Jean-
Paul Lacoursiere | Co-Chairs:
Americo Diniz
Carvalho Neto, | Co-Chairs:
Peter Ralbovsky
Wayne Chastain | | Safety Case VS SEMS: Are They Really All That Different? an Operator's Perspective Brent Dunagan | Sherlock Holmes,
Why Trees, Bow
Ties, and
Investigating Process
Incidents,
James Klein | Dow Learnings & Actions from the Deepwater Horizon Accident John Champion | Problems with HAZOPs and How to Correct Them Howard Duhon | Discharge and Dispersion for Large- Diameter CO2 Releases: Experimental Data and Data Review Jock Brown | Panel Session | Phi Correction for
Exothermic Gas
Generation Rate
Guibing Zhao | | A Modem Well
HAZOP Approach
Yaneira Saud | Ten Commandments
of Risk Based
Process Safety
Robert Rosen | Three Decades after
Bhopal: What We
Have Learned about
Effectively Managing
Process Safety Risks
Bruce Vaughen | Improving Process
Safety Performance
James Klein | Quantitative Collision
Risk Analysis for
Offshore Installations .
Susan Y. Guo | Operacional: Indicador De Cumprimento Das Rotinas'' Maria C. Saraiva, | Calorimetric Study of
the Exothermic
Decomposition of
Dimethyl Sulfoxide
B. Todd Brandes | | To Safely Go Where No Man Has Gone before: Exploring and Producing with Process Safety Mike Broadribb | Developing Credible
Scenarios for a PHA,
Nestor Paraliticci | HUAAWhen Local
Learning and Casual
Sharing Is Not
Enough
Mike Bearrow | Good till the Last
Drop – How Much Is
Too Much Valve
Leakage?
Timothy J. Wagner | Calculating Facility Siting Study Leak Sizes - Applications of the Maximum Design Leak (MDL) Approach Gary A. Fitzgerald | | Relief System Sizing
for Runaway
Chemical Reactions
a Simple
Comprehensive
Approach
Charles Kozlowski | | | Process Safety in Upstream Operations I Location: Conv. Ctr. Ballroom E Co-Chairs: Cheryl Grounds Robert Benedetti Safety Case VS SEMS: Are They Really All That Different? an Operator's Perspective Brent Dunagan A Modern Well HAZOP Approach Taneira Saud To Safely Go Where No Man Has Gone before: Exploring and Producing with Process Safety | Process Safety Spotlights Management Mentoring (PSM²) Process Safety in Upstream Operations I Location: Conv. Ctr. Ballroom E Co-Chairs: Cheryl Grounds Robert Benedetti Safety Case VS SEMS: Are They Really All That Different? an Operator's Perspective Brent Dunagan A Modem Well HAZOP Approach Faneira Sand To Safety Go Where No Man Has Gone before: Exploring and Producing with Process Safety Management Mentoring (PSM²) PSM Mastery I - Specific examples of the four pillars of risk based process safety Co-Chairs: Brian Dickson Ruifeng "Ray" Qi Sherlock Holmes, Why Trees, Bow Ties, and Investigating Process Incidents, James Klein Ten Commandments of Risk Based Process Safety Robert Rosen To Safely Go Where No Man Has Gone before: Exploring and Producing with Process Safety Developing Credible Scenarios for a PHA, Nestor Paraliticci | Process Safety Spotlights Ath Process Safety Management Mentoring (PSM²) Process Safety in Upstream Operations I Location: Conv. Ctr. Ballroom E Co-Chairs: Cheryl Grounds Robert Benedetti Safety Case VS SEMS: Are They Really All That Different? an Operator's Perspective Brent Dunagan A Modem Well HAZOP Approach Yaneira Sand To Safely Go Where No Man Has Gone before: Exploring and Producing with Process Safety Ath Process Safety Management Mentoring (PSM²) Location: Conference (CCPS) Location: Conv. Ctr. Ballroom G Co-Chairs: Brian Dickson Ruifeng "Ray" Qi Sherlock Holmes, Why Trees, Bow Ties, and Investigating Process Incidents, James Klein Ten Commandments of Risk Based Process Safety Robert Rosen To Safely Go Where No Man Has Gone before: Exploring and Producing with Process Safety Management Mentoring Management Mentoring Management Mentoring International Conference (CCPS) Enhanced Application of Lessons Learned Process Safety Andrew Goddard Swati Umbrajkar Dow Learnings & Actions from the Deepwater Horizon Accident John Champion Three Decades after Bhopal: What We Have Leanned about Effectively Managing Process Safety Risks Bruce Vaughen HUAAWhen Local Learning and Casual Sharing Is Not Enough Mile Regenerate Mapplication of Lessons Learned Application Andrew Goddard Swati Umbraje Actions from the Deepwater Horizon Accident John Champion Accident John Champion Accident Broce | Process Safety Spotlights Process Safety Safety Management Mentoring (PSM²) International Conference (CCPS) | Process Safety Spotlights Process Safety Spotlights Process Safety Spotlights Process Safety Spotlights Process Safety Management Mentoring (PSM²) Process Safety International Conference (CCPS) Process Safety Spymposium (PPSS) Process Safety Spymposium (PPSS) Process Safety International Symposium (PPSS) Process Safety Management Mentoring (PSM²) Process Safety International Conference (CCPS) Process Safety Spymposium (PPSS) Process Safety Management Mentoring Symposium (PPSS) Process Safety and Application of Process Safety and Risk Management III Process Safety and Risk Management Mentoring Consequence Analysis II Process Safety and Risk Management Mentoring Consequence Analysis II Process Safety and Risk Management Mentoring Consequence Analysis II Process Safety and Risk Management Mentoring Consequence Analysis II Process Safety and Risk Management Mentoring Consequence Analysis II Process Safety and Risk Management Mentoring Consequence Analysis II Process Safety and Risk Management Mentoring Consequence Analysis II Process Safety and Risk Management Mentoring Consequence Analysis II Process Safety and Risk Management Mentoring Consequence Analysis II Process Safety and Application of Conv. Ctr. Room 18B&C Co-Chairs: Co-Chairs: Andrew Goddard Swati Umbrajkar Safety Case VS Seffey Analysis II Problems with Accident John Champion Accident John Champion And Modern Well HAZOP Approach Fish Based Process Safety Risk Bruce Vaughen Three Decades after Bhopal. What We Deepwater Horizon Accident John Champion Safety Performance James Klein Process Safety Analysis for Offshore Installations Suzan Y. Gue Under John Champion Safety Performance James Klein Process Safety Analysis for Offshore Installations Suzan Y. Gue Under John Champion Safety Performance James Klein Process Safety Analysis for Offshore Installations Safety Performance James Klein Process Safety Analysis for Offsh | Process Safety Spotlights Process Safety Spotlights Process Safety Management Mentoring (PSM²) Process Safety International Conference (CCPS) PSM Mastery I Specific examples of fish based process safety International Conference (CCPS) PSM Mastery I Specific examples of fish based process safety I Specific examples of fish based process safety Location: Conv. Ctr. Ballroom E Co-Chairs: Cheryl Grounds Robert Benedetti Seeling Tag May Trees, Bood Developing Credible Seferal Fooducing with Process Safety Rangaman A Modern Well HAZOP Approach For Commandments of Risk Based Process Safety Robert Rosen To Safely Go Where No Man Has Gone before: Exploring and Producing with Process Safety Robert Rosen To Safely Go Where No Man Has Gone before: Exploring and Producing with Process Safety Robert Rosen To Safely Go Where No Man Has Gone before: Exploring and Producing with Process Safety Robert Rosen To Safely Go Where No Man Has Gone before: Exploring and Producing with Process Safety Robert Rosen To Safely Go Where No Man Has Gone before: Exploring and Producing with Process Safety Robert Rosen To Safely Go Where No Man Has Gone before: Exploring and Producing with Producing with Process Safety Robert Rosen To Safely Go Where No Man Has Gone before: Exploring and Producing with Process Safety Robert Rosen To Safely Go Where No Man Has Gone before: Exploring and Producing with Process Safety Robert Rosen To Safely Go Where No Man Has Gone before: Exploring and Producing with Process Safety Robert Rosen To Safely Go Where No Man Has Gone before: Exploring and Producing with Process Safety Robert Rosen To Safely Go Where No Man Has Gone before: Exploring and Producing with Process Safety Robert Rosen To Safely Go Where No Man Has Gone before: Exploring and Producing with Process Safety Robert Rosen To Safely Go Where No Man Has Gone before: Exploring and Process Safety Robert Rosen To Safely Go Where No Man Has Gone before: Exploring and Process Safety Robert Rosen To Safely Amnual Loss Preventices | | | | | Tuesday, April | 28 | | | |---------|---|--|---|---|---
--| | | Process Safety
Spotlights | 4 th Process Safety
Management
Mentoring (PSM ²) | 30 th Center for
Chemical Process
Safety International
Conference (CCPS) | 17 th Process Plant
Safety Symposium
(PPSS) | 49 th Annual Loss
Prevention
Symposium (LPS) | Design Institute fo
Emergency Relief
Systems (DIERS) | | | Process Safety in Crude
Oil Transportation | PSM Mastery II -
Specific examples of
the four pillars of risk
based process safety | Intentional
Competency
Development | Getting the Most from
Your Process Safety
Near Misses I | Facility Siting and
Consequence Analysis
III | Practical Methods
for Two Phase Flow
Estimates | | | Location: Conv. Ctr.
Ballroom E | Location: Conv. Ctr.
Ballroom G | Location: Conv. Ctr.
Room 18B&C | Location: Conv. Ctr.
Room 17A&B | Location: Conv. Ctr.
Room 19A&B | Location: Conv. Ctr
Ballroom F | | | Co-Chairs:
Dan Miller
Bernard Groce | Co-Chairs:
Nicholas N. Cristea,
Faraz Khan, Siemens | Co-Chairs:
Lizbeth Cisneros
Don Connolley | Co-Chairs:
John Champion
Colin (Chip) Howat III | Co-Chairs:
Ronald J. Willey
Jean-Paul Lacoursiere | Co-Chairs:
Davide Moncalvo
Georges Melhem | | 3:30 PM | Human Factors
Considerations: Midstream
Process Safety Integration
Denise Brooks | The Three Main Causes
of Major Process Safety
Accidents
William Bridges | Know Your Target
Audience - Building
Leader Competency in
Process Safety
Joan Bruney | Are We Really Learning from Incidents? a Discussion of Best Practices and Common Mistakes Laurence Pearlman | Development of
Quantitative Financial Risk
Tolerance Criteria
Elliot Wolf | Choked and Near-
Choked Real Gas and
Two-Phase Flow
Analysis of Discharge
Piping
Leonid Korelshtevn | | 4:00 PM | Overcoming the Process Safety Challenges in Midstream Pipeline Operations Juan E. Contreras | Efficiency and Quality
Improvements for Better
PHAs
John Alderman | Bridging Hazard Recognition Knowledge and Competency for Process and Occupational Safety Michael Fleming | Praxair's Process Safety
Metric Program and Use if
Large Data
Dan Rathgeber | Blast Resistant Design
and Retrofit of
Buildings at
Petrochemical Facilities
Paul Summers | Models for Multi-Phas
& Single-Phase Flow in
Pressure Relieving
System Using Bernoul
Integration
Freeman Self | | 4:30 PM | Invited papers | Surviving an OSHA PSM
National Emphasis
Program Audit
James Johnstone | Making Sense of Reason: A Review of the Message James Reason Put Forward for a Re-Think of Safety Management Principles Brian Dickson | Systematic Approach to
the Root Cause of Process
Safety Events at Equion
Energia Ltd
Ignacio Alonso | Thermal Radiation Analysis from Large Pool Fires in an Existing Atmospheric Storage TANK Farm to Estimate the Maximum FIRE Water Demand Marco-Antonio Medrano | How to Size a Rupture
Disk Vent Line for Two
Phase Gas/Liquid Flov
Based on Current
Engineering Practices
Juergen Schmidt | | | | Wednes | day, April 29 | | | |---------|--|---|--|---|--| | | Process Safety Spotlights | 30 th Center for Chemical
Process Safety
International Conference
(CCPS) | 17 th Process Plant Safety
Symposium (PPSS) | 49 th Annual Loss
Prevention Symposium
(LPS) | Design Institute for
Emergency Relief
Systems (DIERS) | | | Big Data Analytics Panel I | Enhanced Stakeholder
Knowledge | Application of Risk
Analysis I | Process Safety in Upstream
Operations II | New Developments in Fir
Exposure and
Depressuring Systems
Design and Evaluation | | | Location: Conv. Ctr.
Ballroom E | Location: Conv. Ctr. Room
18B&C | Location: Conv. Ctr. Room
17A&B | Location: Conv. Ctr. Room
19A&B | Location: Conv. Ctr.
Ballroom F | | | Co-Chairs:
Jatin Shah
Eric Peterson
Leo Chiang | Co-Chairs:
Brad Newman
Ryan Hart | Co-Chairs:
Phil M. Myers
Mike Broadribb | Co-Chairs:
Cheryl Grounds
Robert Benedetti | Co-Chairs:
Michael Maness,
Georges Melhem | | 8:00 AM | Panelists Include: | Enhanced Stakeholder
Knowledge through the Mary
Kay O'Connor Process Safety
Center
Sam Mannan | Dependent, Independent and
Pseudo-Independent Protection
Layers in Risk Analysis
Hui Jin | CFD Analysis and Field Tests of
Gaseous Leaks with 80% CO2
on Offshore Facilities
Jianxin Lu | Modification of the Diers Fir
Exposure Test Methodology
Peter J. Ralbovsky IV | | 8:30 AM | Ted Wasserman, Tableau Software Lyold F. Colegrove, The Dow Chemical Company Deborah Grubbe, Operations and Safety Solutions, LLC Michael Firstenberg, Waterfall | Advancing the Imperative for
Process Safety Education in
Engineering Curricula
Gord Winkel | The Societal Risk of Process
Industry Based on Integrated
Assessment of Quantitative
Risk Analysis (QRA) and
Risk-Based Inspection (RBI)
Methodologies
Vincius Esteves | Case Study: Laser-Based Gas Detection Technology and Dispersion Modeling Used to Eliminate False Alarms and Improve Safety Performance on Terra Nova FPSO Rajat Barua | Guidance for Sizing Relief
Devices That Are Installed
below Liquid Level in an
External Fire
Rahul Raman | | 9:00 AM | Security Solutions | Dow Laboratory Safety
Academy Promotes Safety
Mindset in Future Chemical
Workforce
Marabeth Holsinger | Addressing Issues in the
Design and Use of Risk
Matrices in Process Safety
Paul Baybutt | Escape Routes Selection for
Offshore Units Based on
Quantitative Risk Assessment
Results
Mariana B. Bardy | Mechanical Integrity
Considerations in LNG
Depressurization
Daniel Nguyen | | 9:30 AM | | | Coffee and Networking Break
ocation: Conv. Ctr. Exhibit Hall | | | | | Process Safety
Spotlights | 17 th Process Plant
Safety Symposium
(PPSS)
Track II | 30 th Center for
Chemical Process
Safety International
Conference (CCPS) | 17 th Process Plant
Safety Symposium
(PPSS) | 49 th Annual Loss
Prevention
Symposium (LPS) | Design Institute for
Emergency Relief
Systems (DIERS) | |----------|---|--|--|---|--|---| | | Big Data Analytics
Panel II | Getting the Most from
Your Process Safety
Near Misses II | CCPS Featured
Projects – Vision 20/20 | Application of Risk
Analysis II | Reactive Chemicals | Unique Aspects of
Pressure Relief
Systems Design and
Evaluation for
Reaction and Flare
Systems | | | Location: Conv. Ctr.
Ballroom E | Location: Conv. Ctr.
Ballroom G | Location: Conv. Ctr.
Room 18B&C | Location: Conv. Ctr.
Room 17A&B | Location: Conv. Ctr.
Room 19A&B | Location: Conv. Ctr.
Ballroom F | | | Co-Chairs:
Jatin Shah
Eric Peterson
Leo Chiang | Co-Chairs: J
ohn Champion
Colin (Chip) Howat III | Co-Chairs:
Jeff Fox
Eric Freiburger | Co-Chairs:
Phil M. Myers
Mike Broadribb | Co-Chairs:
Kathleen A. Kas
John F. Murphy | Co-Chairs:
Ken Kurko
Wayne Chastain | | 10:15 AM | Panelists Include: Ted Wasserman, Tableau Software Lyold F. Colegrove, The Dow Chemical Company Deborah Grubbe, Operations and Safety Solutions, LLC Michael Firstenberg, Waterfall Security Solutions | Process Safety Opportunities for the Refining and Petrochemical Industries Jerry J. Forest | Vision 20/20 Panel
Facilitators:
Jack McCavit &
Cheryl A. Ground | New Building Siting Using
Risk-Based Approach
John N. Dyer | Chemical
Incompatibility
Matrices
Michelle Murphy | Statistical Review of
Runaway Reaction
Kinetics
Enio Kumpinsky | | 10:45 AM | | A Miss, Amiss, a Near Miss
John Wincek | | Holistic Approach to
Barrier Integrity
San Burnett | Understanding the
Effect of Fill-Ratio on
Thermo-Kinetic Data
Swati Umbrajkar | Emergency Relief System
Design for Reactive
System Using Direct
Scale-up Method
Surendra Singh | | 11:15 AM | | Lesson Learnt and Process
Safety of Ammonia Urea
Plant
Muhammad Haider | | Identifying and Quantifying Major Hazard of Construction Lifting Activities Akhmad Harmantoro | Lending Industrial Experience through Reactive Hazard Examples in University Safety Instruction Henry T. Kohlbrand | Engineering Safe Pressur
Relief for Existing Flare
Systems
Jay Riha & Steve
Streblow | | 11:45 AM | Spring
and GCPS Joint Luncheon with Speaker: Al Sacco – You think you have safety concerns!! The flight of STS-73 Location: Hilton, Sixth Floor, Salon F, G, H, J and K | | | | | | | | Case Histories and Lessons Learned – GCPS Joint Session Location: Conv. Ctr. Ballroom D Co-Chairs: Fred Henselwood, Kathy Shell and Kendall Werts | | | | |---------|---|--|--|--| | 1:30 PM | Fire from the Cascading Failure of an Oxygen Supply System Delmar Morrison & Vijay Kumar | | | | | 2:00 PM | Lessons Learned from an Incident at a Cryogenic Gas Processing Facility Adrian Pierorazio | | | | | 2:30 PM | The Normalization of Deviation Leads to a Significant Process Safety Incident Steven Barre | | | | | 3:00 PM | Break | | | | | 3:15 PM | U.S. Chemical Safety Board's Final Investigation Report on the Chevron Richmond Refinery Rupture and Fire Lauren Grim & Mark Wingard | | | | | 4:00 PM | Bhopal 30 Years Later Ronald J. Willey & Dan Crowl | | | | | 4:45 PM | GCPS Concluding Remarks | | | | 附件三、研討會報告論文(文章摘要) ## A Case-Study of a Fire Incident of Trichlorosilane Process and Response Measures Horng Jaojia¹, Liao Kuangyu², Liou kehun¹, Yuan Paochiang³ - 1. Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Taiwan. - 2. Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Taiwan. - 3. College of Science, Engineering and Technology, Jackson State University, Mississippi, US. Prepared for Presentation at American Institute of Chemical Engineers 2015 Spring Meeting 11th Global Congress on Process Safety Austin, Texas April 27-29, 2015 UNPUBLISHED AIChE shall not be responsible for statements or opinions contained in papers or printed in its publications # A Case-Study of a Fire Incident of Trichlorosilane Process and Response Measures ## Horng Jaojia¹, Liao Kuangyu², Lioukehun¹, Yuan Paochiang³ - 1. Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Taiwan. - 2. Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Taiwan. - 3. College of Science, Engineering and Technology, Jackson State University, Mississippi, US. ## Keywords: Tricholorsilance, fire distinguisher, liquid nitrogen #### **Abstract** There was a fire occurring of a overheating Trichlorosilane (TCS) reactor in a solar panel manufacture plant in 2011. Although no injury happened, the leak-out TCS caught fire and produced acid plume creating great concerns for responding governmental agencies, nearby general public and news media. Since TCS is an important raw material for petrochemical, semi-conductor, and solar panel manufactures, its hazardous properties of low flash point, easy combustible, water-reactive, and acid-producing have created many difficulties in response as its leaking out. All incidents of chlorosilanes (CS) materials would produce large acid plume as large amount of leaking lead to burning. The fires could not be controlled by water due to their water-reactive properties. When other distinguishers such as foams were applied, the uses of water jetty were essential to cover the burning surface and to reduce the acid plume. The best practice was to continuously put foams on top until it burn out. However, this action would prolong the response and could not control the damages well. Therefore, the prevention of acid plume and the correct use of foams were essential for fire response to CS and TCS. Upon our field tests, we found that no fire distinguishing was observed for powder, carbon dioxide, water and halon on small-scale fire (3 kg) of TCS. All continuously produced acid plume and some even reacted to form harmful byproducts. The fires would be distinguished as the application of foams and liquid nitrogen. The effective practices were that 6% mixed middle-expansion foams with 15 cm of covering height and liquid nitrogen with volume (ml) of 177+0.287*(TCS volume). However, two methods adopted totally different principles for fire extinguishing. Our study indicated that when using liquid nitrogen to effectively distinguish the TCS fire was due to it adsorbed reaction heat of burning and stop the reaction. We further prove that no property change of TCS after our application. This application was safe and was different from applying foams that water actually reacted with TCS and producing dangerous hydrogen gas. This finding might be used in future development for cooling agency for CS fire application. #### 附件四、海報發表論文(文章摘要) ## Exothermal test for green plastics materials by DSC C. J. Wang^a, K.Y. Liao^b, J.J. Horng^{b*}, J. M. Tseng^a ^aDepartment of Safety, Health and Environmental Engineering, Central Taiwan University of Science and Technology, Taichung, Taiwan ^bGraduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Taiwan #### Abstract Food containers made of plastics release harmful gases and nanoparticles due to thermal decomposition, which can pose health risks during use of the containers. Differential scanning calorimetry (DSC) was applied to evaluate the thermal kinetic and basic characteristics of plastic containers, such as polyethylene terephthalate (PET), low density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), and poly lactic acid (PLA). Results indicated that PET, PS, and PLA had the lower decomposition temperature, even less than 100 °C compared to other plastics. It is expected that the obtained test results can provide useful safety information for these commonly used plastic containers. Keywords: containers, plastic, differential scanning calorimetry (DSC), thermal kinetic, safety information ^{*}Corresponding author: *E-mail*: horngjj@yuntech.edu.tw (J. J. Horng)