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ABSTRACT

One of the important parts for computing M* mod N
is the modular exponentiation. where M is a
plaintext. N is a modulus, and F is a large exponent.
The performance of the modular exponentiation
algorithm depends on the numbers of modular
square and modular multiplication for the exponent.
The computational complexity for the strategy
which 1s provided to speed up the triple modular
exponentiation can be reduced to 1.875
multiplications, where j is the bit length of the
exponent.

KEYWORDS

Modular multi-exponentiation, Complement.
Complex arithmetic, Hamming weight.
Cryptography.

1 INTRODUCTION

The arithmetic computation of the modular
multi-exponentiation plays an important role in
modern cryptography. The modular multi-
exponentiation is written as AXBY mod N and
consists of five variables. where A and B are
bases, X and Y are exponents. and a modulus N
is a positive integer. The computational
operation for the modular exponentiation is
greatly time-consuming. They are based on the
numbers of modular square and modular
multiplication, which are repeatedly computed

ISBN: 978-1-941968-05-5 ©2015 SDIWC

in the modular exponentiation. The modular
multi-exponentiation is universally used in a lot
of domains such as DSA (Digital Signature
Algorithm) proposed in 1991 [1]. The kernel of
most digital signature algorithms is also multi-
exponentiation.

Generally. if we want the receiver to
understand the secret information. which we
have known, the simplest method is to tell the
receiver the secret information directly. But, not
only does the receiver know the secret
information, but also the hacker knows the
secret information, and then the secret
information is no longer confidential. How do
we let the receiver know the secret information
which we have understood? But hackers don’t
know the secret information during the
transmission processes.

For the above problem. Feige, Fiat. and
Shamir proposed “Zero-Knowledge Proof” in
1988 [1. 2]. In “Zero-Knowledge Proof”. a
transmitter will not tell any secret information
to a receiver. How does a transmitter let a
receiver know that a transmitter himself has
already understood this secret information and
the hacker doesn’t know the secret information?
Ounly the receiver knows whether a transmitter
understands the secret information or mnot.
“Zero-Knowledge Proof” can be exploited in
any place. which needs the authentication in
order to avoid any personal information being
hacked by malicious programs or hackers. We

The Proceedings of the International Conference on Digital Information Processing, Data Mining. and Wireless Communications. Dubai. UAE, 2015



don’t also let another people in government

know your secret information. Now. many

scholars are devoted to this subject [3. 4].

Feige-Fiat-Shamir’s algorithm is described as

follows. Three vectors are used

1. The private key vectors are defined as [51. 52. ..., 5&].
The private key sz and a modulus » are
relatively prime.

2. The public key vectors are defined as [y,
¥, ..., 4] and the public key 1y is equal to
[(s)*]" mod n.

3. The authentication key vectors are defined as
[e1, ¢2. .... c&] and they are randomly selected
by receivers. ¢xis 0 or 1.

The diagram for Feige-Fiat-Shamir algorithm is

shown in Figure 1.

Transmitter I Receiver

x=r"modn

[a. .

.¢] ‘

y =(r’51“ 53 5p ]modn

I—b PVIE v modn=z
The probability of "Yes" x=z

No
The probability of "No"

Figure 1. Feige-Fiat-Shamir algorithm diagram.

The authentication steps are shown as follows.
1. A transmitter computes = x mod .
2. A transmitter (ransmits x o a receiver.
3. The authentication key vectors [¢y. ¢a. .... ¢k]
are feedbacked to a transmitter by a receiver.
4. A transmitter computes (rs? 53 ...s% ) = v
mod n. where r is a random number.
5. A transmifter transmits y (o a receiver.
. : - 2 N
6. A receiver computes (v v .. v )

ISBN: 978-1-941968-05-5 ©2015 SDIWC

mod n.
7. A receiver checks whether the result z is

equal to x or not.

Based on “Zero-Knowledge Proof” and
“Improved Common-Multiplicand
Multiplication and Fast Exponentiation by
Exponent Decomposition™ [1, 6]. triple modular
exponentiation is proposed. The computational
procedures will be described in the following
sections.

2 MATHEMATICAL PRELIMINARY
2.1 Binary Method

The binary method is that the exponent E in
decimal form is transformed into a binary form
(er er1€k2 ... er)2 and it is also represented £ =

k
D e *2' e = {0. 1}, where k is the it length of
=1
the exponent E. There are two methods to
calculate the number of modular multiplications
for the modular exponentiation in binary
method. One method is “scanning” from the
right (the least important) bit to the left (the
most important) bit. It is also called “Least
Significant Bit (LSB)” method as shown in
Figure 2 [5]. For example. C = M ¥ is
calculated by using the LSB algorithm. Now,
57 1is represented (111001); in binary form,
where k = 6 and the procedures are shown as
follows.
C=M*M**M"* M
=1 J{HSH 6+32)
=M

Input: M. E = (erex_1ek2...€1)2
Output: ¢ = )/~

C=1.5=M.
fori=1to kdo
{
if(e,==1)C=C*S5:
S=5*5:
3

Figure 2 The LSB algorithm [5].
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The other method is “scanning” from the
left (the most important) bit to the right (the
least important) bit. Tt is also called “Most
Significant Bit (MSB)” method as shown in
Figure 3. For example. C = M *" is calculated
by using the MSB algorithm. The procedures
are shown as follows.

C= (2 * My** MYY)* M
=(((M )™ My)Y* M
:(((ﬂr’f ?)1)2)2* 1\'1
=M % M
=M 57

There are only “square™ and “multiplication™
operations in the above procedures. So. the
binary method is also called the square and
multiplication algorithm.

Input: M. E = (erer1€r2...€1)2

Output: ¢ = /=%

C=1.
fori=ktoldo
{

C=C*C:

if(e,==1)C=C*M:

Figure 3 The MSB algorithm [5].

2.2 ICMM Algorithm

In 1993, professors Yen and Laih proposed
a common multiplicand  multiplication
algorithm [6]. In 1997, professor Yen exploited
a 3-part division technique to improve the
common multiplicand multiplication algorithin
which was proposed in 1993 to develop ICMM
(Improved Common Multiplicand
Multiplication) algorithm. This algorithm [2]
has effectively reduced the number of
multiplications.

X*F. X*1,. and X*T;5 are computed in this
algorithm. The fundamental concept is that the
common part of all multipliers is computed one

ISBN: 978-1-941968-05-5 ©2015 SDIWC
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time and then the common part of all
multiplicands can be avoided computing
repeatedly. So, the numbers of multiplications
can be computed in binary form. Variables are
defined in Equations (1) - (7) as follows.

Yeommon =AND, ¥;=1; AND 1, AND I5. (1)

T2 =(I1 AND I3) XOR Yeommon- 2)
3= (11 AND T3) XOR Yeommon. (3)
Y5 3= (T2 AND T3) XOR Yeommon- “)

¥1=¥1 XOR 11 2 XOR T1 3 XOR Veommon.  (5)
75 . =11 XOR 11,2 XOR 15 3 XOR Yeommen. (6)
73 .=11 XOR 173 XOR 15 3 XOR Yoommen- (7)

In Equations (1) - (7). "AND” and “XOR”
mean “AND gate” and “XOR gate” in logical
operation. All commeon bits of ¥; are recorded
in the ¥ogmmen through “AND gate™ operation as
shown in Equation (1), where ¥; means 13, 1o,
and Y. T1 means the first multiplier, 1> means
the second multiplier, and Y3 means the third
multiplier. ¥pmmon means the same bits for 17,
T>. and T3. X means the multiplicand. Some of
the same bits are recorded in the T3 ». T3 3, and
¥> 3 through “AND gate” and “XOR gate”
operations as shown in Equations (2) - (4).
These records are different from Y. ,mmon. BUL
some of these records are still the same as
Yeommon. At last. the total different bits are
recorded in the T; .. 1> .. and T3 . through
“XOR gate” operation as shown in Equations (5)
- (7). Three multipliers are defined, respectively
as follows.

Yl = Yl,c + Yl, 2t 1’1,3 + Ycommon-
Y2 = YZ,( + Yl, 2t 1’2,3 + Ycommon-
1"3 = ch + Yl, 3+ 1’273 + Ymmmon‘

According to the above definitions, the
multiplications for one common multiplicand
“X™" can be expanded as follows.

X*1 =
X5y e+ X* Yy o+ X% Yy s+ X Yoommon.
X*hh=
)L'* }’17c+_‘.}* Yl,Q +‘};* YQJ +)l'* Ycommo}r-
X* Y=

X* T+ X* Y3+ X% Vo 3+ X* Veommon.
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Obviously, when X * ¥, X * 15, and X * T3
are computed, Yepmmen 15 only computed one
time for the common part and 17 . 13 3. and T,
3 are also computed one time. The probabilities
for the computational complexity of each state
are shown in Table 1. The probability of non-

. . : oo m
zero bits which are appeared in 17 is —. where

m 1s the bit length of ¥;. The probabilities for
the computational complexity of each state are
described as follows.

State 1: The probability of non-zero bits which
R [ B B B |

are appeared in Feommon 15 3 * 3 *E =§ ‘

State 2: When 7 » = 1, the bit vector [T7 1> T3]
is equal to [l. 1. 0]. Because the
probability which a single bit is 1 or 0

is % the probability of State 2 is

1.1,1.1
2 2 8’
State 3: When 1; 5 = 1. the bit vector [¥; 1> T3]

«1
2

is equal to [L. 0, 1]. Because the

probability which a single bit is 1 or 0
is % the probability of State 3 is

1,1,1
222

_1
22 g
State 4: When 1> 5 = 1. the bit vector [T, 1> T3]

is equal to [0. 1. 1]. Because the
probability which a single bit is 1 or 0

is % the probability of State 4 is

L1

2 2 8

State 5: When 1; . = 1. the bit vector [1; 1> T3]
is equal to [L. 0, 0]. Because the
probability which a single bit is 1 or 0

L
2

ISBN: 978-1-941968-05-5 ©2015 SDIWC
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is ! . the probability of State 5 is
1,1,1_1
2228

[

State 6: When 15 . = 1. the bit vector [T, 1>, T3]
is equal to [0, 1. 0]. Because the
probability which a single bit is 1 or 0

is % the probability of State 6 is

| =

Lalul_

2 2 2

State 7: When I35 . = 1. the bit vector [T, I3, T3]
is equal to [0, 0. 1]. Because the
probability which a single bit is 1 or 0

[

is % the probability of State 7 is

*1*

2

[SAE
b2 | =
GO | —

The probability of the ICMM (Improved
Common Multiplicand Multiplication)

algorithm is and the probability of a

T . . . m
general multiplication algorithm is ¢ * 5 -

V4

where m means the bit length of the exponent
and 7 means division parts for the bit length “m”
of the exponent. So. the efficiency for the

m
r*—

ICMM algorithm is 7 2  When =3 in the
m

8

ICMM algorithm. the optimal efficiency is %

= 1.71. It means the number of multiplications
can be reduced to 1.71 for computing X' * ¥;. X
* %, and X * T3 by using the ICMM algorithm.
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Table 1. The probabilities of each state by
which uses ICMM algorithm.

States Probabilities
1 Yeommon =1 %*%*%:%
2 T12=1 %*%*%:%
3 F13=1 %*%*%:%
4 Ya3= %*%*%:é
3 Ti.=1 %*%*%:é
6 =1 é*hgzé
7 Yi.=1 %*%*%:%

In a general application. we can compare
CMM and ICMM algorithms for many
multiplication architectures which have one
common multiplicand. We list the comparison
figure for the original multiplication algorithm,
CMM algorithm, and ICMM algorithm as
shown in Figure 4.

—#—The original
number of
multiplications

~B-The number of
multiplications for
DIM algorithm"

=4=The number of
multiplications for
ICMM algorithm

0 180 300 480 1020 2046 4002 Number of bits

Figure 4. A comparison figure for different
numbers of multiplications algorithms.

3 THE PROPOSED ALGORITHM

ISBN: 978-1-941968-05-5 ©2015 SDIWC

According to the concept of ICMM
(Improved Common multiplicand
Multiplication) algorithm, we think the similar
architecture of multiplications can be adopted
in the triple modular exponentiation algorithm
to reduce the computational complexity of the
modular exponentiation effectively. We set T,
My, M,. M;. Eq, E». Es. and N positive integers.
The variables of the proposed algorithm are
defined in Equation (8).

T=2 MFmod N (8)

For the triple modular exponentiation, that is
the proposed algorithm. it can be regarded as
three multiplication groups of no common
multiplicand. We firstly record the common
bits of Ey. E,, and E3, and then parts of the same
bits are recorded. The similar architecture of an
improved common multiplicand multiplication
can be obtained. At the same situation. the
common part of all multipliers is only
computed one time, and then the thing of
computing the common part repeatedly can be
avoided. The number of modular multiplication
can be simplified. The definitions of variables
in the proposed algorithm are shown in
Equation (9) - (15).

Eommon = AND . E;= E; AND E, AND E;, (9)

El,} = (El AND E2) XOR Ecommcn‘ (10)
EI,S = (El AND E3) XOR Ecommon‘ (1 ])
E2,3 = (EE AND E3) XOR Ewmmcn‘ (12)

Eyrc=E1 XOR Ep 2 XOR Ey 3 XOR Ecommon(13)
EZ, c= El XOR El, 2 XOR E’Z, 3 XOR Ecommo}r-(14)
Es.=FE3; XOR Ey 3 XOR E; 3 XOR Ecopmon.(15)

“AND” and “XOR” mentioned in Equations
(9) - (15) are “"AND gate” and “XOR gate” in
the logical operation. The common bits of E;
are recorded in Eippmon through “AND gate”
operation as shown in Equation (9). The
different bits are recorded in Ey 5, Ey 3. Ep 3. Ey,
e Bz . and E; . through “AND gate” and “XOR
gate” operations as shown in Equations (10) -
(15). The common bits of E; and E, are
recorded in Equation (10). The common bits of
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E, and E; are recorded in Equation (11). The
common bits of E, and E; are recorded in
Equation (12). The different bits of E1. Ey 2, E1,
3. and E gumen are recorded in Equation (13).
The different bits of Es, Eq 2. E2 3. and Ecommon
are recorded in Equation (14). The different bits
of F3. Ey 3. E> 3, and Eppmen are recorded in
Equation (15).Attention, please! After logical
operations, the seven variables (E.ommon. E1. 2.
Ei 5. Ey 5. Ey .. Es . and E5 ) are “exclusive”
shown in Equations (9) - (15). That is. the result
which 2 more variables are <“1°" at the same time
is not existed. “1” is existed only for one
variable. So. three exponents E;. E,. and E; are
defined as follows.

El = El,( + El,Q + E],B + ECO?HMOH-
EQ = EE,(‘ + E‘l. 2 + E2,3 + Ecommon-
E3;= ES,(‘ +E; 3+ E2,3 + Ecommon-

According to the above definitions and an
associative law of the exponents, the
computations of the modular exponentiation are
shown as follows.

M T M = g

Mo M e (16)

M E, = Mftz,_;J: #Ey E ) = M E., ¥ M E. ¥
Moz M Mo Mo

M=* M= a7

MPT MBS s F ot

MM (18)

From Equations (16) - (18), we know if the
original modular exponentiation computations
are used, three modular exponents (37 =, 5p =

and M) need four modular exponentiation

computations. But the concepts of ICMM
(Improved Common Multiplicand
Multiplication) and CMM (Common
Multiplicand Multiplication) algorithms are
used: bases of the exponents can be adjusted
and combined again. The seven variables can
be computed again as follows.
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MPe

Ey
My

ME

(ﬂ.’[‘u"/fg) By M B2 % M, ., _
(MM3) R Ve
(MoMs) Bas = M, Fas x M3 Fra
LALM,) Femn = 0, Eowns
M Fomer M * M: * ME = AJIEV * fl‘ff?, "
(‘nf[lf!ffz) B2 % (41’1-141:{3) 2T (Afg}u-g) Bis o og
(M MLMS) E cammon 19)

# M, Econman %

From Equation (19). the proposed
algorithm (triple modular exponentiation) is
described as shown in Figure 5.

Input: m, n, x, ». and p: positive integers, p-
prime;
Output: T= (- * ME * ) mod »

Step 1: Precompute (M;M,) = a; mod P;
(.i"f]}rf}) = a2 mod P: (ﬂ‘fz}"/fj) = a3
mod P; (MM>M3) = ags mod P

Step 2: s = 1:j = max (M. M. M3)

Step 3: if (Ecommon == 1). then (S *(14) =g
mod N;

if (E2.3==1). then (s * a3) = s mod N

if (£, 3 ==1). then (s *a,) = s mod N:

if (E; ;== 1). then (s *a;) = s mod N:

if (E, .==1). then (s *M;) = s mod V.

if (E; .==1). then (s *M;) =s mod N,

if (E5 .==1). then (s *M5) = s mod NV,
Step 4: if & >= 1, then (s * 5) =5 mod p;
Step 5:j=7-1:

Step 6: if j == 0. then goto Step 5 else
output s.

Figure 5. The proposed algorithm.



4 COMPUTATIONAL COMPLEXITY
ANALYSES

The probability of each state is shown in
Table 2. In the proposed algorithm, j is one of
the largest bit length for Ey, E». and Es ie. j =
max (Ei, E», E3). If the bit lengths for Ej, Es,
and E; are not the same, “0” can be padded into
the two short exponents until the bit lengths of
the two short exponents are the same as the bit
length ;. Because the probability of non-zero

bits in E; is % the probability of each state is

described as follows.

Table 2. The probability of each state in the

proposed algorithm.

States Probabilities

1

Ecommen =1 3
1

E,,=1 g
Ei5=1 é
Eyz=1 é
Ep.=1 .
E =1 .
Es.=1 :

State 1:The probability of non-zero bits in
1,1 1

Ecommmr iS — —=—.

2 2 2 8
State 2: When E, ; = 1. the bit vector [E; E,.
E;] 15 equal to [1. 1. 0]. Because the

. . ‘ .1
probability of a single bit (1 or 0) is >
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the probability of State 2 s

1,1,1_1

2 2 2 8

State 3: When E; 3 = 1. the bit vector [E1, Ea.
E5] is equal to [1. 0, 1]. Because the

probability of a single bit (1 or 0) is %
the probability of State 3 is
1,111
2 2 8

State 4: When E» ; = 1. the bit vector [E; E».
Es5] is equal to [0. 1. 1]. Because the

*

| =

probability of a single bit (1 or 0) is %

the probability of State 4 is

1.1.11

2 02 2 8

State 5: When £ .= 1. the bit vector [E} E» E5]
is equal to [l. 0, 0]. Because the

probability of a single bit (1 or 0) is %

the probability of State 5 is

1,111

2 2 2 8

State 6;: When £ .= 1. the bit vector [E, E,» E5]
is equal to [0. 1, 0]. Because the

probability of a single bit (1 or 0) is %

the probability of State 6 is
1. 1,1 1

#* *

227y
State 7: When Fs_. = 1. the bit vector [E}. E2. E3]
is equal to [0, 0. 1]. Because the

probability of a single bit (1 or 0) is %

the probability of State 7 is
11,11
2 2 2 8

The computational complexity of the triple
modular exponentiation algorithm is related to
the numbers of “square” and “multiplication”
for the exponents. In the proposed algorithm.
Ecommon = 0 1s regarded as one multiplication
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and each of the others (am]. M™ . MmP- .

MM P2 . (MMs) . (MuMs) B, and
(MMoMG)  Eemmn ) is regarded  as  two
multiplications. According to the probabilistic
analyses in Table 4 and for (a3 *Mf: *ME)

mod N in the triple modular exponentiation
type, when the probability is 1,111 for
2 2 2 8
“Ey = E; = E; = 07 at the same time. The
number of multiplications for the computational
complexity is 1.875;. where ; is the largest bit
length of exponents E;. E,. and E5 shown in the
following equation:

1

A é)j:LSTSj

For analytic result, comparing the CMM
algorithm and the triple modular exponentiation
algorithm, we list the comparison diagram

which  describes the numbers of the
multiplications for the original multi-exponent
algorithm, the CMM algorithm, and the

proposed algorithm as shown in Figure 6.

The number of multiplications - -The original

3500 number of
3000 » multiplications for
! the multi-exponent
2 v
2500 / A 8 The number of
2000 A multiplications for
1500 ’:/" A / DIM algorithm
o i
1000 ,:-/ — ==The number of
50 ok multiplications for
SN MM aloori
0 P ICMM algorithm |
60 180 510 1020 1530 2046 3066
The number of bits

Figure 6. The comparison diagram for the
numbers of the multiplications.

5 CONCLUSIONS

The smudy of the triple modular
exponentiation is proposed in this paper.

ISBN: 978-1-941968-05-5 ©2015 SDIWC

Nobody has not yet not discussed this topic
until now. More mathematicians only discuss
the double modular exponentiation. According
to the improved common multiplicand
algorithm. we think the common bits of
associated exponents can be recorded
separately for the triple modular exponentiation
algorithm. and then a similar architecture of the
improved common multiplicand multiplication
can be obtained. It can effectively reduce the
computational complexity of the triple modular
exponentiation to simplify the number of the
modular multiplication. Finally, the average
computational complexity of the proposed
algorithm is 1.875;, where ; is the bit length of
the exponent. Comparing with the double
modular  exponent, the ftriple modular
exponentiation is more efficient.
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