出國報告(出國類別:實習)

耐熱複合心鋁線及相關附屬器材 之應用及施工技術研習

服務機關:台灣電力公司輸變電工程處

姓名職稱:葉明志 技術一課長

派赴國家:美國

出國期間:103年9月11日至103年9月20日

報告日期:103年12月1日

行政院及所屬各機關出國報告提要

出國報告名稱:耐熱複合心鋁線及相關附屬器材之應用及施工技術研習

頁數 24 含附件:□是▽否

出國計畫主辦機關/聯絡人/電話

台灣電力公司/人力資源處/陳德隆/02-23667685

出國人員姓名/服務機關/單位/職稱/電話

葉明志/台灣電力公司/輸變電工程處/技術一課長/02-23229824

出國類別: □1 考察 □2 進修 □3 研究 □4 實習 □5 其他

出國期間:103年9月11日至103年9月20日 出國地區:美國

報告日期:103年12月1日

分類號/目

關鍵詞: 1.複合材料導線

內容摘要:(二百至三百字)

- 1.新材料之複合心鋁線可替換既設架空輸電線路之ACSR導線,在維持原弛度情況下, 大幅增加線路送電容量。複合心鋁線有著多項優越的特性,但纖維複合心材質脆性 大,韌性不若鋼心,導線彎曲半徑限制較為嚴格,須使用較大尺寸之架線機具設備, 以避免施工過程中損傷導線。
- 2.碳纖維複合心鋁線 ACCC 以碳纖維複合材質取代傳統之鋼心,因碳纖維的特性重量輕、機械強度較鋼材質高甚多,在與傳統 ACSR 相同線徑下,使用較小的截面積的碳纖維芯導線其能就能超越 ACSR 導線之機械性能。
- 3.陶瓷纖維鋁基複合心鋁線 ACCR,採用陶瓷纖維鋁基複合材質之心線取代傳統之鋼心,亦有低膨脹係數、低弛度及耐腐蝕等特點,心線導電率 24%,高容量低弛度性能與 ACCC 相近。

本文電子檔已傳至公務出國報告資訊網(http://open.nat.gov.tw/reportwork)

目 錄

壹、	、出國緣起	
	一、任務	1
	二、目的	1
	三、行程	3
貳、	、研習過程及心得	
	一、研習過程	4
	二、研習心得	4
	(一)耐熱複合心鋁線之構造特性	4
	(二)各型導線之特性構造比較	10
	(三)耐熱複合心鋁線之架線施工及附屬配件安裝	11
	(四)耐熱複合心鋁線之設計	18
參、	、感想與建議	
	一、感想	23
	二、建議事項	24

壹、出國緣起

一、任務

耐熱複合心鋁線及相關附屬器材之應用及施工技術研習。

二、目的

- (一)台灣地狹人稠,土地資源非常匱乏,隨著經濟發展及現今 政經社會環境變遷,民眾維護自我權益及環保意識高漲, 地方政府態度亦轉為符合民眾意向為原則的情勢之下,新 建架空輸電線路工程往往要數十年才有可能完成,因此如 何在不新設線路而在既有線路增加或擴充送電容量已為 重要的課題。
- (二)新材料之複合心鋁線可替換既設架空輸電線路之 ACSR 導線,在維持原弛度情況下,大幅增加線路送電容量。主導複合心鋁線技術之主要廠商包括碳纖維複合心鋁線 ACCC之美國 CTC 公司及陶瓷纖維鋁基複合心鋁線 ACCR 之美國3M公司,故除前往原計畫核定之美國 CTC 公司實習外,將增加地點前往美國 3M 公司實習陶瓷纖維鋁基複合心鋁線 ACCR 相關課題。
- (三) CTC 公司生產的 ACCC,係採用碳纖維複合材質取代傳統 之鋼心,因碳纖維的特性重量輕、機械強度較鋼材質高甚 多,故在與傳統 ACSR 相同線徑下,使用較小的截面積的 碳纖維芯導線其能就能達到超越傳統 ACSR 導線之機械性 能,相對地,亦有更大的空間可佈設鋁絞線面積以達到增 加送電容量的效用,使電氣特性亦能有顯著提升的效果。 另外碳纖維心尚有很低的膨脹係數、低弛度及耐腐蝕等特 點。而 ACCC 碳纖維心鋁絞線除使用較大截面積的鋁絞線 外,其鋁絞線的材質更進一步採用了全退火的軟鋁合金線,

其導電率達63%,因此線路損失更能較傳統導線降低3%,因此既設線路抽換該種導線除能擴充送電容量外,亦能降低損失,達到節能減碳之效。

- (四) 3M 公司生產的陶瓷纖維鋁基複合心鋁線 ACCR,係採用 陶瓷纖維鋁基複合材質之心線取代傳統之鋼心,亦有低膨 脹係數、低弛度及耐腐蝕等特點,心線導電率可達 24%, 其外層鋁線的材質採用能耐 210℃高溫之鋁合金線,整體 之高容量低弛度性能與 ACCC 相近。
- (五)雖然複合心鋁線有著以上優越的特性,但纖維複合心材質之韌性不若鋼心,屬脆性材料,導線彎曲半徑限制較為嚴格,延線施工時易造成損傷斷裂,ACCC外層軟鋁絞線質地較軟容易受損等特性,新材料之複合心鋁線目前世界各國尚未廣泛應用,故編擬本出國計畫,就ACCC與ACCR導線及其相關附屬器材之應用及施工等技術進行研習。
- (六)透過與複合心鋁線及相關附屬器材製造公司人員的實際交流,以獲取新型導線及相關附屬器材之技術知識,對新型導線有進一步的了解,並釐清相關疑慮或取得解決對策,應用於國內輸電線路,達到擴充輸電容量及節能減碳之效。

三、行程

(一)研習日期:103年9月11日至9月20日,共計10日。

(二)出國行程:

研習 日期	研習 地點	實際研習機構及訪談對象	研習目的及 討論主題
9/11, 2014	台北— 洛杉磯	往程	
9/12-15, 2014	洛杉磯	美國 CTC Global 公司 Mr. Carl Ulrich Dr. Jeff Dong 等相關人員	碳纖維複合心鋁線 ACCC 及相關附屬器材 之應用及施工技術研習。
9/16, 2014	洛杉磯— 聖保羅	中間行程	
9/17-18, 2014	聖保羅	美國 3M 公司 Mr. Doug Kuller Mr. Herve Deve 等相關人員	陶瓷纖維鋁基複合心鋁 線 ACCR 及相關附屬器 材之應用及施工技術研 習。
9/19-20, 2014	聖保羅一台北	返程	

貳、研習過程及心得

一、研習過程

- (一)出國第一站係拜訪美國 CTC Global 公司相關人員,研習主 題為:
 - 1、碳纖維複合心鋁導線 ACCC 之特性及導線架線設計時使用之相關弛度與張力(Sag and Tension)之計算方法、過程及結果等詳細資料。
 - 2、碳纖維鋁導線 ACCC 之特性試驗項目及性能。
 - 3、碳纖維鋁導線 ACCC 之架線施工方法及機具設備要求。
 - 4、參觀碳纖維心棒製造工廠及試驗設備。
- (二)第二站拜訪美國 3M 公司相關人員,研習主題為:
 - 陶瓷纖維鋁基複合心鋁導線 ACCR 之基礎知識與案例研討、導線架線設計過程及複合材料的注意事項。
 - 2、陶瓷纖維鋁基複合心鋁導線 ACCR 之定型試驗與現場試驗、品質管理系統及交貨物流系統。
 - 3、ACCR 之架線施工方法及機具設備要求。
 - 4、參觀 ACCR 導線試驗實驗室、陶瓷纖維鋁基心線製造工廠(Menomonie Plant Site)、既設 ACCR 輸電線路現場及創新研發中心(3M Innovation Center)。

二、研習心得

(一)耐熱複合心鋁線之構造特性

耐熱複合心鋁線(TACCSR)具有高容量及低弛度的特性,適用於換架既設架空輸電線路之鋼心鋁絞線 ACSR 導線,可在不須改建加高既有支持物及保持原來線下安全距離的情形下,大幅提升線路送電容量。複合心鋁導線大致可分為下列二種,其構造特性敘述如下:

1、碳纖維複合心鋁線 ACCC 之構造特性

係由高強度碳纖維複合心棒及外層之低強度軟鋁素線共 同絞合而成,素線特性說明如下:

(1)碳纖維複合心棒:

A.心棒分為二層,內層包括高強度碳纖維及耐高溫樹脂 2種材料組成,外層由玻璃纖維及樹脂組成,經加熱 至約攝氏 200 度高溫固化成單根之心棒,其具有高強 度、重量輕、極低之溫度膨脹係數等優點,本身並不 具導電功能。

- B.碳纖維心棒須靠外層之玻璃纖維及樹脂形成之保護層,以避免與外層鋁絞線發生電位腐蝕現象。
- C.碳纖維複合心棒之外觀構造如圖 1 所示。

圖 1 碳纖維複合心棒之外觀構造

(2)軟鋁素線:為純鋁線經完全退火處理所製成,其導電率可高達 63%,但具有低強度及易磨損等特點。碳纖維複合心鋁線 ACCC 之外觀構造如圖 2 所示。

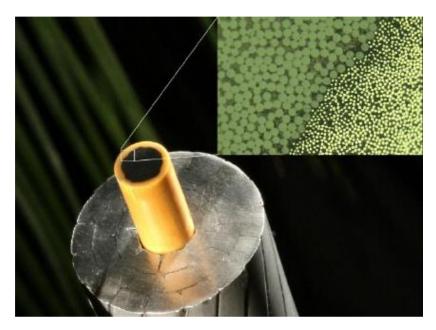


圖 2 碳纖維複合心鋁線 ACCC 之外觀構造

- (3)為確保碳纖維複合心棒之製造品質,其主要特性試驗項目可分為:
 - A.玻璃轉移溫度(Tg): 依 ASTM D7028 標準"Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA)"辨理,聚合物基複合材料之規格為 Tg 不小於 200°C,參觀工廠時實際試驗結果約在 209~225°C之間,製造廠出廠前之自主檢查要求 Tg 須大於 205°C,可更進一步確保製造品質。
 - B.耐腐蝕及脆性斷裂試驗:將心棒施加其額定破壞強度 25%之拉力,並將內裝濃度為1n之硝酸(HNO3)溶液 之聚乙烯容器附加於心線之其中一段,使該段心線暴 露於硝酸溶液中,持續96小時以上,再施行抗拉強 度試驗,以確保心棒耐腐蝕性能。
 - C.彎曲試驗後之抗拉強度試驗:將心棒繞於圓柱形心軸 上彎曲 180 度,圓柱形心軸之直徑不得大於 50 倍心 線直徑,於彎曲之心線兩端施加其額定破壞強度 15% 之拉力,持續 60 秒以上,再施行抗拉強度試驗,以

確保心棒承受彎曲能力。

- D.熱應力試驗:心棒施加其額定破壞強度 25%以上之 拉力,並加熱至 200℃,持續 1,000 小時以上,再施 行抗拉強度試驗。
- E.長期耐熱暴露試驗:將心棒加熱至200°C以上,持續52星期(8,736小時)以上,或加熱至210°C以上,持續26星期(4,368小時)以上;再施行抗拉強度試驗,以確保心棒長期耐熱性能。
- 2、陶瓷纖維鋁基複合心鋁線 ACCR 之構造特性 係由陶瓷纖維鋁基複合心素線及外層之鋁合金素線共同 絞合而成,素線特性說明如下:
 - (1)陶瓷纖維鋁基複合心素線:素線係由陶瓷纖維鋁基纖 維與純鋁燒結而成,具有高強度、低溫度膨脹係數等 優點,心絞線與外層之鋁合金絞線同為鋁基材質,故 彼此之間無電位差,不會形成電位腐蝕現象。心絞線 導電率達24%,有助於提升整體導線之送電電流。陶 瓷纖維鋁基複合心素線之外觀構造如圖3所示。

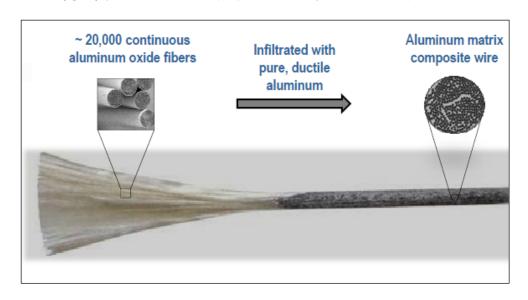


圖 3 陶瓷纖維鋁基複合心素線之外觀構造

- (2)鋁合金素線:在鋁元素中加入鋯元素製成鋁合金線, 可大幅提高耐熱性能,但導電率則略降為60%。
- (3)為確保陶瓷纖維鋁基複合心素線之製造品質,其主要 特性試驗項目可分為:
 - A.彎曲試驗後之抗拉強度試驗:將心棒繞於圓柱形心軸 上彎曲 180 度,圓柱形心軸之直徑不得大於 50 倍心 線直徑,於彎曲之心線兩端施加其額定破壞強度 15% 之拉力,持續 60 秒以上,再施行抗拉強度試驗。
 - B.熱應力試驗:心棒施加其額定破壞強度 25%以上之拉力,並加熱至 240°C,持續 1,000 小時以上,再施行抗拉強度試驗。
- 3、耐熱複合心鋁線定型試驗

為確保導線之性能、製造及安裝施工品質,其主要定型試驗項目可分為:

- (1)過滑車試驗(Sheave Test):試驗時應搭配使用相應規格之壓縮型終端夾板,依 IEEE Std 1138 第 6.4.2.1 節辦理,試驗滑車之內襯直徑須為 412.7 mm(16¼ inch)等級,可依導線特性及線徑大小選用單滑車或雙滑車組合進行試驗,滑車上導線之偏斜角度設定為 30°±2°,施加導線額定破壞強度 15%之拉力(容許差±1%),拉動導線經過滑車 2.5m 以上,來回各 15 次,再施行抗拉強度試驗,以確保延線施工過程中,不致損傷導線。
- (2)弛度特性(Sag characteristics):跨距為100公尺以上,依台電公司之架線控制條件,並裝設同購案相應規格之之終端夾板,通電加熱使導線溫度上升,在溫度穩定後,量測導線於正常運轉溫度時弛度,導線正常運轉溫度時之弛度實測值不大於設計值之105%,以確認導線低弛度性能。
- (3)高溫持續負載試驗:將導線與相應規格之壓縮型終端

夾板及壓接套管壓接裝設,施加導線額定破壞強度 15%以上之拉力,同時以AC電流將導線加熱至緊急 運轉溫度,量測終端夾板本體及跳線端子各點溫度, 持續 168 小時以上,然後切斷電流,解除拉力,施行 常溫時導線之抗拉強度試驗。

(4)溫度-電流試驗:將適當長度之導線,通以電流,並逐漸增加電流量,使其溫度上昇。於溫度達到 60℃時,紀錄當時通過導線之電流,然後溫度每升高 10℃,紀錄一次,直到緊急運轉溫度為止。導體溫度 60℃至緊急運轉溫度時之電流實測值不小於電流計算值,送電電流量依 IEEE std 738-2006 標準計算,以確認導線高送電容量性能。

(二)各型導線之特性構造比較

1、耐熱複合心鋁導線與其他各型導線之特性構造差異比較如表 1 所示。

表 1 各型導線之特性構造差異比較表

	鋼心 鋁線 ACSR	耐熱鋼 心鋁線 TACSR	超耐熱鋼 心鋁線 ZTACIR	特別耐熱 鋼心鋁線 XTACIR	陶瓷纖維 心鋁線 ACCR	碳纖維 心鋁線 ACCC
鋁素線	HAL	TAL	ZAL	XAL	ZAL	1350-O(TW)
導電率	61%	60%	60%	58%	60%	<u>63%</u>
心線	鍍鋅(或釒	呂包)鋼線	鋁包 In	var 鋼線	陶瓷纖維	碳纖維
正常運轉 溫度,℃	80	150	210	230	210	180
緊急運轉 溫度,℃	105	180	240	290	240	200
構造			(4			

2、耐熱複合心鋁導線與其他各型導線之素線機械特性差異 比較如表2所示。

表 2 各型導線之素線機械特性差異比較表

項目	鋼線/Invar鋼線/陶瓷心/碳纖維心			HAL / ZTAL / 1350-O		
線種	抗拉強度 (kgf/mm²)	彈性係數 (kgf/mm²)	線膨脹係數 (X10-6/℃)	抗拉強度 (kgf/mm²)	彈性係數 (kgf/mm²)	線膨脹係數 (X10-6/℃)
ACSR	125~135	20,400	11.5	16.2~17.9	7,030	23.0
TACSR	125~135	21,000	11.5	16.2~17.9	6,300	23.0
ZTACIR	105~110	15,500	3.7 (230℃以下) 10.8 (230℃以上)	16.2~17.9	6,300	23.0
XTACIR	95~105	15,500	3.7 (230℃以下) 10.8 (230℃以上)	16.2~17.9	6,300	23.0
ACCR	140 (1380MP a)	21,410 (210GPa)	6.3	15.8~16.8	4,950 (7040 Ksi)	23.0
ACCC	(313 Ksi)	11,470 (16.3 Msi)	<u>1.61</u>	6.0 (8.5 Ksi)	5,710 (8122 Ksi)	23.0

(三)耐熱複合心鋁線之架線施工及附屬配件安裝

複合材料心線強度高,然而脆性亦較大,故對導線彎曲半徑限制較為嚴格,須使用較大尺寸之架線機具設備,以避免施工過程中損傷導線。其各項施工要求敘述如下:

1、架線施工

(1)放線機(Tensioner):

台電公司使用可同時進行4導體架線之Bullwheel Type 放線機,其放線卷筒溝槽底部之直徑為48英寸。

- A. ACCC 所需之放線機之最小直徑為 40D(40 倍導線外徑),以 TACCSR 795 Drake 線徑規格≦28.20 mm 為例,所需之放線機卷筒最小直徑為 1,128 mm(44.4 英寸),可適用於台電公司之放線機。
- B. ACCR 建議所需之放線機之最小直徑為 60 英寸,超 過台電公司之放線機尺寸,惟經製造商進一步檢討確 認仍可適用於台電公司之 48 英寸放線機。
- C.放線場現場佈置時需注意放線機與鐵塔距離需保有 滑車高度距離 3 倍以上,以避免延線區間首座鐵塔滑 車上導線承受過大之彎曲應力而損傷導線。

(2)延線滑車(Stringing Blocks):

台電公司使用之3輪及5輪滑車外徑為20英寸等級(溝槽內襯直徑為412.75 mm(16¼ inches))。

A. ACCC 之延線施工建議使用單滑車尺寸如表 3 所示, 依不同線徑及不同場所選用 18~35 英寸單滑車。經 查表 3 資料數值,當導線線徑超過 23.55mm 時,製 造商建議延線使用之單滑車尺寸皆超過台電公司目 前使用之 20 英寸滑車尺寸,因此若單滑車尺寸不符 需求時,則須評估可否改用 20 英寸雙滑車組合,否 則須改用較大尺寸合用之滑車。

表3 ACCC 之延線施工建議使用單滑車尺寸表

ACCC® Conductor Code Name ACCC Conductor Diamet		uctor	ACCC® Core Diameter		Minimum Bend Diameter		First and Last Structure Sheave Diameter <u>Minimum Size</u>		Intermediate Structure Sheave Diameter <u>Minimum Size</u>		Sheaves Required for Change in Path Direction (Greater than 20 degrees)***	
	in	mm	in	mm	in	mm	in	mm	ln	mm	in	mm
Lisbon	0.857	21.78	0.280	7.11	18	457	20	508	20	508	20	508
Amsterdam	0.927	23.55	0.305	7.75	21	534	22	560	20	508	22	560
Stockholm	1.039	26.40	0.345	8.76	27	686	28	710	22	560	28	710
Dublin	1.108	28.15	0.375	9.53	32	813	35	890	28	710	35	890

延線滑車(Stringing Blocks)尺寸選用原則如下:

- (A)延線區間首座及末座鐵塔採用雙滑車:延線時控制 採用最小之延線張力,避免導線通過雙滑車時,承 受過大之彎曲應力。
- (B)首座及末座鐵塔採用大滑車,中間鐵塔採用小滑車: 採用 10%RTS 之延線張力,導線通過首座鐵塔雙 滑車時,增加導線鳥籠(Birdcaging)散股風險。
- (C)首座及末座鐵塔採用大滑車,中間鐵塔採用中滑車: 可採用 5~10%RTS 之延線張力。
- (D)過滑車試驗(Sheave Test):請製造廠以台電公司現 用 20 英寸滑車尺寸,依導線線徑大小選用單滑車 或雙滑車組合進行試驗,評估提出延線作業滑車選 用之可行方案。
- B. ACCR 經過滑車試驗(Sheave Test),製作延線施工滑車尺寸選用原則如圖 4 所示,以 1272 ACCR 大尺寸導線,在不同延線張力及不同導線弛角情形下,28 英寸單滑車、雙滑車或滑輪組之使用時機,製造商建議使用滑車尺寸亦超過台電公司目前使用之 20 英寸滑車尺寸。故須請製造商配合試驗評估提出供 20 英寸單滑車、雙滑車或滑輪組之使用時機資料,以利架線施工時遵行。

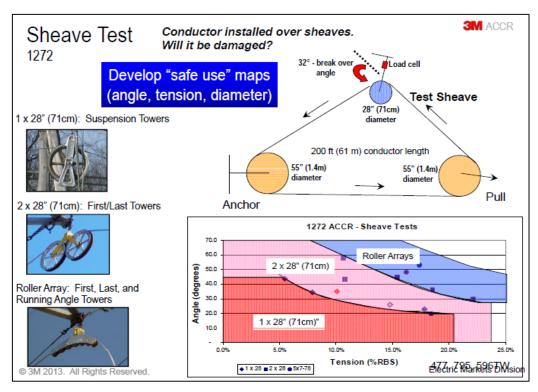


圖 4 ACCR 延線施工滑車尺寸選用原則

(3)拉線線夾(Chicago Grips):

台電公司使用之拉線線夾為適用於 ACSR 之 Chicago Grips 型式。

A. ACCC 之延緊線施工可使用拉線線夾及拉線網等一般 ACSR 所使用之施工工具,如圖 5 所示。另導線拉線端心棒需加裝如圖 5 右下角之制止器(Bug),以避免長距離區間拉線時發生心棒與外層鋁絞線間發生滑脫。

Klein Grips, Chicago Grips, Kellams, Socks, and Pre-Forms have all been employed successfully in over two dozen installations with spans of over 2,500 feet.

圖 5 ACCC 延緊線施工使用工具

B. ACCR 之緊線施工須使用緊線拉網(Pulling Grips), 每條緊線拉網僅可裝拆使用 3 次,而不可使用一般之 ACSR 導線用之拉線線夾(Chicago Grips),如圖 6 所 示。延線拉網之束緊須使用熱縮套管,不可使用鋼帶 束緊,以避免損傷導線。

- Conductor Grips Tensioning Grips (TG Grip)
 - Use wherever the cable is to be caught off.
 - Can be used 3 times. Grips are sized for the cable used.

Chicago Grips or pocket book grips are not to be used.

圖 6 ACCR 緊線施工使用之緊線拉網

- 2、附屬配件安裝
 - (1)導線間隔器(Spacer):
 - A. ACCC 使用之導線間隔器型式為類似於傳統 ACSR 使用之導線間隔器,不須加裝預型保護條,僅於間隔器之線夾內襯以橡膠緩衝層,即可適應運轉狀況,其安裝方法與傳統 ACSR 之導線間隔器並無差異。
 - B. ACCR 使用之導線間隔器須額外加裝預型保護條, 對導線加以保護,如圖7所示,因為當線路發生短路 故障時,強大電流之電磁吸引力作用,導致同相之多 導體導線吸附在一起,此時在導線間隔器線夾處之導 線將產生彎曲,為避免導線過度彎曲造成損傷,故 ACCR 所使用之導線間隔器須在線夾外部加裝保護 條,以減低線夾兩端導線承受之彎曲應力。

Keeps conductors separated in a "bundled" configuration

Spacer Design Twin 795

- Rigid spacer maintains bundle separation
- · 6 rod design reduces temperature
- Rods reduce bending at clamping point during fault

圖7 ACCR使用之導線間隔器

- (2)制震器(Damper)、跳線補強裝置及支持裝置等:
 - A. ACCC 使用之制震器、跳線補強裝置及支持裝置等配件不須裝設預型保護條,其型式類似於傳統 ACSR之配件。

B. ACCR 使用之制震器、跳線補強裝置及支持裝置等配件須裝設預型保護條,如圖 8 所示,相關配件可沿用 ACSR 導線用配件,惟須考量加設預型保護條及尺寸構造之適用性。

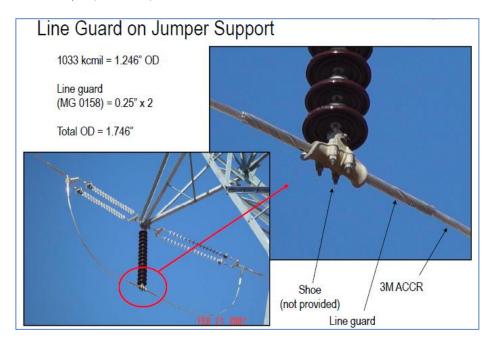


圖 8 ACCR 跳線礙子連之掛線夾板加設預型保護條

3、架線施工注意事項

製造廠依據導線特性及在世界各地之架線施工安裝指導 經驗與失敗案例中,提出下列注意事項供施工人員遵行, 以確保工作安全及導線安裝施工品質。

- (1)接地線:架線施工時須正確使用接地線,並裝設於適 當位置。
- (2)滑車尺寸:採用建議使用之滑車尺寸,避免選用太小 的滑車尺寸。
- (3)線軸架:線軸架安裝軸線必須與軸孔搭配對準。
- (4)線軸張力:線軸架之煞車系統必須設定正確並維持適 當的延線張力。
- (5)線軸控制:線軸架煞車及延線張力控制不良,導致放線機處之導線發生舞動情況。

- (6)放線機距離:放線機與首座鐵塔距離需保有滑車高度 距離3倍以上。
- (7)放線場對準:放線機與滑車間須正確對準。
- (8)軟鋁線磨痕:延線避免磨損導線外層之軟鋁線。
- (9) 導線彎曲:導線過度彎曲將致使心棒損傷或斷裂。
- (10)技師指導:技師無法監督到所有的施工人員作業,故 施工人員須經良好訓練。

(四)耐熱複合心鋁線之設計

在相同的設計條件,耐熱複合心鋁線與傳統之 ACSR 導線相較,具有高送電容量及不增加弛度的優良特性,如何來檢討評估耐熱複合心鋁線性能及選擇適當的搭配線種尺寸,用以換架既設鋼心鋁絞線 ACSR 導線,達到使用既有支持物及不減低原來線下安全距離的情形下,儘量提高送電容量的目的,相關檢討事項說明如下:

1、送電容量

- (1)架空輸電線路導線載流量計算依「IEEE 738 Standard for Calculating the Current-Temperature Relationship of bare Overhead Conductors」辦理。
- (2) IEEE 738 提供高溫時之空氣密度 ρf(lb/ft³)、空氣黏度 μf(lb/hr·ft)及空氣導熱係數 kf(watts/ft²)等資料。

2、弛度特性

- (1) ACCC: CTC 公司開發 Excel-Marten 程式,依台電公司架空輸電線路的設計條件,提供導線弛度與張力 (Sag-Tension)特性之計算功能。
- (2) ACCR:採用商用軟體 PLS-CADD 進行導線弛度與張力(Sag-Tension)特性之計算,惟須修改相關參數輸入要求,以符合台電公司架空輸電線路的設計條件。
- 3、弛度張力 Sag-Tension 計算
 - (1)台電公司架空輸電線路設計條件分為下列二種:
 - A.基準風速: 40m/sec、50m/sec。
 - B.基準速度壓: 200 kg/m²、230 kg/m²,另須考慮高度遞增因數及徑間係數。
 - (2)各型導線彈性係數之應用:
 - A. ACSR: 導線運轉溫度在遷移點(Knee Point)溫度以下, 彈性係數採線性定值, 弛度與張力特性之計算過程較

為簡單。

- B. ZTACIR: 導線運轉溫度在遷移點溫度以上,彈性係 數為分段線性值, 弛度與張力特性採用拋物線近似函 數計算。
- C. TACCSR:導線運轉溫度在遷移點溫度以上,彈性係數分為心線及鋁線多項式數值,弛度與張力特性採用雙曲線函數計算。

(3)計算應用:

- A.遷移點溫度與張力及跨距有關,非一定值。須先求出 遷移點溫度。
- B.運轉溫度於遷移點溫度以下時,特性與一般 ACSR 導線相同
- C.運轉溫度於遷移點溫度以上時,則導線之彈性係數與線膨脹係數以心線(Invar、碳纖維、陶瓷纖維)之彈性係數與線膨脹係數取代。

4、耐熱複合心鋁線之選用規劃

(1)線種之規格及性能,如表4所示:

表 4 耐熱複合心鋁線之線種規格及性能表

特性值線號	線徑 (Max) (mm)	單位 重量 (Max) (kg/m)	破壞 強度 (Min) (kgf)	正常運 轉電流 (Min) (Amp.)	正常運轉溫度 之導線弛度 (Max),(m) 跨距300m時	20℃時直 流電阻值 (Max), (ohm/km)
TACCSR 477 Hawk	21.80	0.98	8,810	1,195	8.30	0.115
TACCSR 636 Rook	24.82	1.22	10,250	1,395	8.40	0.095
TACCSR 795 Tern	27.10	1.38	10,385	1,600	8.90	0.075
TACCSR 795 Drake	28.20	1.63	14,150	1,650	9.30	0.075

(2)換線線種搭配:

A. 345 kV 導線:

規劃以耐熱複合心鋁導線 TACCSR 795 Drake (包括 ACCC 及 ACCR)替換 ACSR 795MCM(26/7) ACSR, 相關導線規格比較如表 5 所示。

表 5 替换 ACSR 795MCM(26/7)之導線規格比較表

	原導線	高容量低弛度導線				
線 種	ACSR 795MCM(26/7)	ZTACIR 340mm ² (30/7)	ACCC 1035MCM (524mm ²)	ACCR T23 715MCM (362mm ²)		
線徑(mm)	28, 143	26, 6	28, 143	27, 94		
單位重量(kg/m)	1.628	1.509	1,583	1, 335		
破壞強度(kgf)	14, 152	12, 910	18, 690	14, 288		
正常運轉最高 電流(A/條)	913	1,515 (▲1.66倍)	1,764 (▲1.93倍)	1,651 (▲1.81倍)		
弛度(m) (跨距300m)	9, 20	9. 04	8, 08	9. 0		
Rac (Ω/km) (正常運轉溫度)	0. 0865	0,1449 (1,0倍)	0,0883 (▲0,61倍)	0.12657 (▲0.87倍)		

B. 161 kV 導線:

(A)規劃以 TACCSR 795 Tern (包括 ACCC 及 ACCR) 替換 ACSR 795MCM(45/7) ACSR,相關導線規格 比較如表 6 所示。

表 6 替換 ACSR 795MCM(45/7)之導線規格比較表

	原導線	高容量低弛度導線			
線 種	ACSR 795MCM(45/7)	ZTACIR 310mm ² (30/7)	ACCC 893MCM (453mm ²)	ACCR T17 763MCM (387mm ²)	
線徑(mm)	27. 0	25, 62	26, 40	25, 15	
單位重量(kg/M)	1, 333	1.450	1, 368	1, 295	
破壞強度(kgf)	10, 387	11, 980	15, 876	14, 152	
正常運轉最高 電流(A/條)	896	1,445 (▲1.61倍)	1,609 (▲1.80倍)	1,604 (▲1.79倍)	
弛度(M) (跨距300M)	8, 69	8, 68	8, 291	9, 201	
Rac (Ω/kM) (正常運轉溫度)	0. 0879	0,1565 (1,0倍)	0,1019 (▲0,65倍)	0,1257 (▲0,80倍)	

(B)規劃以 TACCSR 636 Rook (包括 ACCC 及 ACCR) 替換 ACSR 636MCM(24/7) ACSR,相關導線規格 比較如表 7 所示。

表 7 替换 ACSR 636MCM(24/7)之導線規格比較表

	原導線	高容量低弛度導線			
線 種	ACSR 636MCM(24/7)	ZTACIR 210mm ² (24/7)	ACCC 725MCM (367mm ²)	ACCR T23 557MCM (282mm ²)	
線徑(mm)	24, 816	19, 32	23, 55	24, 638	
單位重量(kg/M)	1, 219	0. 9796	1.102	1. 0373	
破壞強度(kgf)	10, 251	8, 830	12, 480	12, 836	
正常運轉最高 電流(A/條)	788	1,070 (▲1.35倍)	1,398 (▲1.77倍)	1,397 (▲1.77倍)	
弛度(M) (跨距300M)	8, 19	7, 13	7. 384	8, 256	
Rac (Ω/kM) (正常運轉溫度)	0.1086	0,2362 (1, 0倍)	0,1256 (▲0,54倍)	0.16279 (▲0.69倍)	

(C)規劃以 TACCSR 477 Hawk (包括 ACCC 及 ACCR) 替換 ACSR 477MCM(26/7) ACSR,相關導線規格 比較如表 8 所示。

表 8 替換 ACSR 477MCM(26/7)之導線規格比較表

	原導線	高	高容量低弛度導線				
線 種	ACSR 477MCM(26/7)	ZTACIR 210mm ² (24/7)	ACCC 623MCM (316mm ²)	ACCR T22 474MCM-TW (240mm ²)			
線徑(mm)	21.8	19, 32	21.79	20, 60			
單位重量(kg/M)	0.977	0.9796	0.948	0.844			
破壞強度(kgf)	8, 813	8, 830	10, 543	10, 296			
正常運轉最高 電流(A/條)	664	1,070 (▲1.61倍)	1,265 (▲1.91倍)	1,199 (▲1.81倍)			
弛度(M) (跨距300M)	8, 24	8, 20	7. 434	8. 144			
Rac (Ω/kM) (正常運轉溫度)	0.1428	0, 2362 (1, <mark>0倍</mark>)	0,14614 (▲0,62倍)	0,2041 (▲0,86倍)			

C. 69 kV 導線:

規劃以 TACCSR 795 Drake (包括 ACCC 及 ACCR)替 換 ACSR 954MCM(45/7) ACSR,相關導線規格比較 如表 9 所示。

表 9 替換 ACSR 954MCM(45/7)之導線規格比較表

	原導線	高容量低弛度導線			
線 種	ACSR 954MCM(45/7)	ZTACIR 340mm ² (30/7)	ACCC 1025MCM (525mm ²)	ACCR T23 715MCM (362mm ²)	
線徑(mm)	29, 691	26, 6	28, 143	27, 94	
單位重量(kg/M)	1.6	0.509	1,583	1, 335	
破壞強度(kgf)	12, 202	12, 910	18, 690	14, 288	
正常運轉最高 電流(A/條)	1,001	1,515 (▲1.51倍)	1,764 (▲1.76倍)	1,651 (▲1.65倍)	
弛度(M) (跨距300M)	10, 24	9, 99	8, 26	9, 66	
Rac (Ω/kM) (正常運轉溫度)	0.07394	0,1449 (1,0倍)	0,0883 (▲0,61倍)	0,12657 (▲0,87倍)	

參、感想與建議

一、感想

- (一)本次出國遠赴美國能夠順利成行,除了要感謝各級長官之 大力支持外,首先要感謝隆翔公司,協助安排美國 CTC 公司有關碳纖維複合心鋁線 ACCC 的研習行程;其次要感 謝 3M 台灣分公司,協助安排美國 3M 公司有關陶瓷纖維 鋁基複合心鋁線 ACCR 相關參訪行程,在兩家公司的熱心 協助下,使這次研習能夠依計畫參觀導線的生產及試驗過程,並與相關人員就導線應用技術及安裝施工等議題做深 入討論,順利圓滿的達成任務。
- (二)美國 CTC Global 公司為一家小而美的公司,其掌握關鍵性 技術及材料,可針對客戶的特殊需求,做快速反應及回饋。 此次研習對其所開發生產之碳纖維複合心鋁線 ACCC 歸 納出下列發展特點:
 - 1、CTC公司依台電公司之架空輸電線路設計條件,開發所需的 Sag-Tension 計算程式(Excel-Marten),並陸續改版提升運算效率。
 - 2、主導推動將碳纖維複合心鋁線納入 ASTM 標準,草案已通過審查(ASTM B987),將於近期發行。
 - 3、在該公司推廣下,各國電力公司陸續採用碳纖維複合心 鋁線,該公司並於中國大陸設立心棒製造廠,使總產量 逐漸擴大。
 - 4、CTC 公司在加州有 32 條心棒生產線,目前配合需求每 週產量約為 115 km (半載)。
- (三)美國 3M 公司為超過百年歷史悠久的大公司,產品多達 5,000 多種,積極鼓勵員工創新,允許員工 15%的上班時 間可從事自己喜歡的創新事情。並在全球設立多個創意研

發中心(3M Innovation Center),展示及介紹其特色產品,開放供外界參觀。此次研習對其所開發製造之陶瓷纖維鋁基複合心鋁線 ACCR 歸納出下列發展特點:

- 1、陶瓷纖維為太空衣及國防航太工業材料,工廠位於美國 Wisconsin Menomonie,所製造之陶瓷纖維受政府管制出 口,製成陶瓷纖維才可外銷,工廠不開放非美國公民參 觀。
- 2、ACCR 以專案工程為導向,導線軸長可配合個案工程定製,以減少接線數量。
- 3、購案搭配提供施工人員安裝訓練。
- 4、ACCR 導線在 2006 年生產能量僅約 200 km,經陸續提 高產量,至 2014 年可達約 1,800 km。

二、建議事項

- (一)耐熱複合心鋁導線(包括 ACCC 及 ACCR)之送電容量及低 弛度性能優異,複合材料心線強度高,然而脆性亦較大, 故對導線彎曲半徑限制較為嚴格,須使用較大尺寸之架線 設備。架線施工若使用本公司現有主要用於 ACSR 導線之 較小尺寸架線設備(如放線機卷筒為48英寸及20英寸滑車 等),施工前須要求廠商做好試驗及評估,提出可行方案及 對策,以利架線安裝施工及後續運轉維護。
- (二)耐熱複合心鋁導線搭配使用之主要附屬配件(如壓縮型終端夾板、懸垂連裝置、接線套管及間隔器等)由原廠提供,其餘次要之配件(如跳線補強裝置、跳線支持裝置及制震器等)則自行開發設計採用國內產品,以節省成本。