OIE Regional Workshop on Enhancing Influenza A Viruses National Surveillance Systems OIE/JTF Project for Controlling Zoonoses in Asia under One Health Concept Tokyo, Japan, 26-28 August 2014

Control of avian influenza and preparedness for pandemic influenza

Hiroshi Kida, DVM, PhD

Member of the Japan Academy Distinguished Professor, Hokkaido University Head, Research Center for Zoonosis Control Head, OIE Reference Laboratory for Animal Influenza Head, WHO Collaborating Centre for Zoonoses Control

For control of avian influenza and preparedness for pandemic influenza

- 1. Is influenza eradicable ?
- 2. Why have the H5N1 HPAIVs persisted in poultry for 18 years and antigenic variants been selected in poultry birds ?
- 3. Will the HPAIVs returned to migratory birds persist in nature ?
- 4. How should HPAI be controlled ?
- 5. Does AI vaccine confer complete protective immunity in birds ?
- 6. Will H5N1 HPAIV and H7N9 LPAIV cause pandemic influenza ?
- 7. Are the measures for the control of seasonal influenza satisfactory ?

Acquisition of pathogenicity of avian influenza virus in chicken and return of the HPAIV from domestic poultry to migratory water birds

HPAI viruses isolated from wild birds in Mongolia

Status as of 12 December 2008 Latest available undate

62 Countries where H5N1 HPAIV infections were reported in wild birds, poultry, and both Japan, Republic of Korea, China, Mongolia, Myanmar, Lao PDR, Thailand, Cambodia, Viet Nam, Malaysia, Indonesia, Bangladesh, India, Pakistan; Afghanistan, Iran, Azerbaijan, Georgia, Iraq, Kuwait, Saudi Arabia, Turkey, Israel; Russian Federation, Kazakhstan, Ukraine, Romania, Bulgaria, Albania, Serbia, Hungary, Slovakia, Czech Republic, Croatia, Poland, Slovenia, Bosnia & Herzegovina; Greece, Switzerland, Austria, France, Italy, Germany, Netherlands, Denmark, Sweden, Spain, England, Ireland; Djibouti, Gaza Strip, Egypt, Sudan, Nigeria, Niger, Cameroon, Burkina Faso, Cote d'Ivoire

Confirmed human cases of H5N1 HPAIV infection

Bird flu vaccines

Vietnam:

H5N2 and H5N1 (Adjuvant inactivated vaccines)

China:

H5N1 and recombinant NDV (Reverse genetics inactivated vaccines)

Indonesia:

H5N1, H5N2, H5N9 and recombinant H5N1 (inactivated vaccines)

Egypt: since 2006

Thailand: Officially prohibited vaccination in 2006

As stockpiles

Singapore: H5N2 (Inactivated, adjuvanted vaccine)

Japan: H5N1 and H7N7 (Oil-adjuvanted inactivated vaccines)

Pakistan: H5N1, H5N2, H5N9, and H5N3 (Water based with alum hydroxide and oil based with mineral oil)

Influenza vaccine for avian influenza

- may prevent manifestation of disease signs and decrease the amount of virus shed, but does not confer protective immunity from infection.
- "Stamping-out policy" is recommended for the control of avian influenza.
- Vaccination was not recommended but later approved as one of the options applied only under DIVA based strategy.
- Country where vaccine is used is not designated as HPAI-free.
- \rightarrow leads silent spread of virus.

26TH CONFERENCE OF THE OIE REGIONAL COMMISSION FOR ASIA, THE FAR EAST AND OCEANIA Shanghai, People's Republic of China, 16-20 November 2009

RECOMMENDATION FOR THE CONTROL OF AVIAN INFLUENZA

It is considered that;

- H5N1 HPAIV strains have persisted in domestic poultry for 14 years and antigenic variants have been selected due to the misuse of vaccine.
- HPAI has been put under control in several countries.
- Stamping out policy has been the most effective measures for the control HPAI.
- Vaccine is used in 4 countries where HPAI has not been controlled yet.
- Vaccine is used instead of stamping out in 2 countries and in the other 2 countries, basically in addition to stamping out.
- Sentinel bids are put in the vaccinated poultry population in Viet Nam and not in the other 3 countries where vaccine is used.
- · Compensation for livestock owners is done in most countries in case of stamping out.

It is recommended that;

- 1. Since stamping out is the best and ultimate measure for the control of HPAI, vaccine should be used in addition to, not instead of stamping out.
- 2. The OIE should continue and develop standards on animal influenza surveillance, prevention and control.
- 3. For the preparedness for pandemic influenza, surveillance of swine flu is crucial in the countries where avian flu has not been controlled.

Global surveillance of avian influenza in autumn (1991~2009)

Outbreaks of HPAI caused by H5N1 viruses in Japan in 2010-2011 winter

HPAI virus and human pandemic virus strains

strain candidates. Their pathogenicity, antigenicity, genetic information and yield in chicken embryo have been analyzed, data-based, and opened for Web site (http://virusdb.czc.hokudai.ac.jp/vdbportal/view/index.jsp).

How should we control HPAI and prepare for pandemic influenza?

- 1. Is influenza eradicable ? No, influenza is a typical zoonosis.
- 2. Why have the H5N1 HPAIVs persisted in poultry for 17 years and been antigenic variants selected ? Misuse of Vaccine.
- 3. Will the HPAIVs returned to migratory birds persist in nature ? Started contamination of HPAIVs in the nesting lakes of migratory ducks. Eradication of the H5N1 HPAIVs from poultry throughout the world, therefore, is urgently needed.
- 4. How should avian influenza be controlled in poultry ? Enhanced surveillance, early detection, culling the flock, movement restriction, and strengthening hygiene without misuse of vaccine to contain the infection just in birds
- 5. What are the advantage and disadvantage of the use of vaccines ? Vaccine should be carefully used in addition to, not instead of stamping out.
- 6. Will H5N1 HPAIV and H7N9 LPAIV cause pandemic influenza? It is unlikely, but may occur via pigs. H5N1 or H7N9 AIVs are not only candidates of pandemic strain.
- 7. Are the measures for the control of seasonal flu satisfactory ? How to control pandemic influenza should be based on the measures for the control of seasonal influenza. Especially seasonal flu vaccine should be much more improved.
- ★ Global surveillance of avian, swine and human influenza, and drastic improvement of seasonal flu control measures by international collaboration under the One Health concept are of crucial importance.

Control of avian influenza and preparedness for pandemic influenza

- 1. For control of highly pathogenic avian influenza, Stamping-out policy that contains enhanced surveillance, early detection, culling, restriction of movement, and improved hygiene practices without too much reliance on vaccination should be applied to restrict infection to domestic birds.
- 2. The genes of all influenza viruses in birds and mammals including humans have originated from those circulating among the natural host reservoir, water fowls.
- 3. All of the 4 pandemic influenza virus strains that have emerged in the last 100 years must have been transmitted from pigs as genetic reassortants between avian and human strains. The HA genes of these strains are closely related to those of viruses circulating in the natural host, migratory ducks.
- 4. Pigs are susceptible to infection with avian influenza virus strains with each of the HA subtypes generating reassortants. This indicates that none of the 16 HA subtype viruses can be ruled out as candidates for future pandemic strains.
- 5. Methods for control of pandemic influenza should be based on the same measures for the control of seasonal influenza. For this reason, seasonal flu vaccines should be greatly improved.

OIE STANDARDS ON EVENT BASED AND ACTIVE SURVEILLANCE OF AVIAN INFLUENZA VIRUSES

WORLD ORGANISATION FOR ANIMAL HEALTH Protecting animals, preserving our future

Dr Gounalan Pavade OIE regional workshop, Tokyo, 26-28 August 2014

GENERAL MANDATE OF THE OIE

To improve animal health and welfare and veterinary public health worldwide

One of the OIE's main objective

To ensure transparency in the global animal disease situation, including for zoonosis

Notification of Animal Diseases, including Zoonoses Legal obligations by Members

- Since its creation in 1924 both the OIE and its Members have unconditional duties to disclose all relevant information about animal diseases
- These obligations are stated in the OIE Organic Statutes

OBLIGATION FOR NOTIFICATION

By deciding to join the OIE, a Member agrees to fulfil its international commitment to notify to the OIE as laid down in the Chapters 1.1. of the OIE's *Terrestrial animal health code* ("Notification and Epidemiological Information")

OIE standard setting process

 Specialized Commissions: Code Commission, Biological Standards Commission, Scientific Commission

- Ad Hoc Groups and Working Groups
- Proposed Standards sent to all OIE Delegates
- Comments from all OIE Delegates
- Consultation of major partners
- Second round of discussions with Commissions...
- Adoption in General session
- Vote of Delegates
- OIE standards are recognised by the WTO as international reference standards

Animal Health Surveillance

Chapter 1.4 of the Terrestrial Animal Health Code

- 7 Articles which defines the objectives, principles and critical elements in the surveillance system
- Methods of surveillance
- Surveillance procedures according to various situations
- Chapter provide guidance to the type of outputs that a surveillance system should generate
- Provide recommendations to assess the quality of surveillance systems

Global disease surveillance and transparency

OIE Members are responsible for global disease surveillance and report significant disease events to OIE

Outbreaks of OIE listed diseases on a regular basisSignificant epidemiological events including emerging diseases

OIE disseminates these official reports from Members to all Members via an alert system and to the public via WAHID

Joint tracking OIE, FAO, WHO - GLEWS

Infection with avian influenza viruses

WAHID Interfa

Considerable economic losses for the poultry industry

Potential threat to public health

What is the overall trend in the temporal evolution of infection with avian influenza viruses worldwide ?

OIE-reporting countries affected by avian influenza virus subtypes H5 and H7 (2006 – 2013)

()iC

Cumulative distribution of infection with avian influenza viruses of subtype H5 (2006 – May 2014)

OIE International standards and guidelines on Infection with Avian Influenza Virus

OIE standards and recommendations act as the front-line of prevention and control against the spread of disease and related challenges.

Article 10.4.27

Oie

• Surveillance for AI should be in the form of a continuing programme

• Establish country/zone/compartment is free from Al infection

• Surveillance strategies should be adopted to the local situation

• Member countries should prove the absence of Al infection at an acceptable level of confidence through scientific data

Infection with Avian Influenza Virus (Chapter 10.4)

• 33 articles including :

- 1 article on general provisions: pathogenicity and criteria for notification, incubation, case definition...

- 6 articles for importing safe commodities after destruction of the virus
- 3 article on determination of self AI status for a country/zone/ compartment
- 14 articles on recommendations for importing of commodities
- 2 articles on inactivation of the virus
- 7 articles on surveillance (Articles 10.4.27 to 10.4.33)
- The articles on surveillance define the principles and provides a guide for the surveillance of AI in accordance with Chapter 1.4.

Article 10.4.28

• A surveillance system in accordance with Chapter 1.4

OA formal and ongoing system for detection and investigation of outbreaks

OA procedure for rapid collection and transport of samples to a laboratory

- OA system for recording and analysing diagnostic and surveillance data
- The AI surveillance programme should include:

OAn early warning system throughout production, marketing and processing for reporting suspicious cases

ORegular and frequent clinical inspection and serological and virological testing of high risk groups of animals

Article 10.4.29

- Surveillance strategies
- Cover all the susceptible poultry species within the country/zone/compartment
- Random and targeted approaches using molecular, virological, serological and clinical methods
- Active and passive surveillance should be ongoing
- •Design the surveillance programme through competent professionals and according to prevailing epidemiological situation
- •Clinical, virological, serological surveillance
- •Virological and serological surveillance in vaccinated populations

Article 10.4.30

Documentation of freedom from AI or HPAI in poultry

Additional surveillance requirements for MC declaring freedom of the country, zone or compartment from AI or HPAI in poultry

- Provide evidence for the existence of an effective surveillance programme
- Demonstrate absence of infection during the preceding 12 months in susceptible poultry populations (vaccinated and non-vaccinated)
- Additional requirements that practice vaccination
- ✓ Virological and serological tests to ensure absence of infection
- ✓ Tests repeated every six months or at shorter intervals
- ✓ Evidence to show the effectiveness of vaccination programme

- Article 10.4.31 Oce Additional surveillance requirements for countries/zone/ compartment declaring that they have regained freedom from AI or HPAI following an outbreak
 - Surveillance incorporating virus detection and antibody tests
 - Randomized representative sample of the populations at risk
 - ✓ Report the results of the surveillance programme

Article 10.4.32

- Additional surveillance requirements for AI free establishments
- ✓ Demonstration of absence of infection with AI viruses
- Birds in these establishments should be randomly tested using virus detection or isolation tests and serological methods
- Frequency of testing should be based on the risk of infection and at a maximum interval of 21 days

Article 10.4.33

- The use and interpretation of serological and virus detection tests
- Procedure in case of positive test results if vaccination is used
- Procedure in case of test results indicative of infection with AI viruses
- Schematic representation of laboratory tests for determining AI infection through serological surveys in unvaccinated and vaccinated populations (DIVA)
- Schematic representation of laboratory tests for determining infection through virological methods

Thank you for your attention!

ECTAN Emergency Centre for Transboundary Animal Diseas

FAO initiatives on control of Influenza A viruses

OIE Regional Workshop on Enhancing Influenza A viruses National Surveillance Systems Tokyo, Japan, 26th August 2014

Acknowledgement

- FAO teams at country, regional and HQ levels
- Colleagues from national authorities
- National and international experts

ECTAD Emergency Centre for Transboundary Animal Dise

Update on Activities Related to Avian Influenza (AI)

- Background of FAO activities related to HPAI control
- On-Going activities
- Current regional strategies
- Key findings
- FAO H7N9 activities
- Moving toward One-Health and Global Health Security Agenda

FAO Activities Related to AI Control

Since 2004 FAO has been at the forefront of the fight against highly pathogenic avian influenza (HPAI) and other influenzas in over 95 countries.
 FAO has mobilized over USD 445 million to combat influenza and emerging disease threats through prevention, surveillance, and control at the country, regional and global levels.

FAO Activities Related to HPAI Control

Technical and Operational Assistance

- National level
 - Assess country disease situation
 - Support diagnostic and surveillance
 - Guide and design strategies
 - Tools for outbreak investigation and management
 - Provide equipment and laboratory consumables
- Regional level
 - Emergency regional coordination assistance for control of AI in Southeast, South and East Asia
 - Emergency regional support for post AI rehabilitation
 - Strengthening AI control through improved transboundary animal disease information management system in Asia
 - Sub-Regional surveillance and diagnostic laboratory network
- Global level
 - Emergency Center for Transboundary Animal Diseases

ECTAD Emergency Contre for Transboundary Animal Diseases

FAO Immediate Response to HPAI

Objective:

• To assist countries to contain outbreaks at timely manner to minimize the clinical loss

Activities:

- Inform and communication
- Coordinate with the international, regional and national agencies
- Provide technical and operational assistance assist countries to contain the outbreaks
- To assist understanding disease epidemiology

ECTAD Emergency Centre for Transboundary Animal Dises

FAO Medium Term HPAI Activities

- Assist the country in develop national strategies, action plan and contingency plan with the focus on better coordination mechanisms between animal health and public health sectors
- Support regional organizations to develop the regional strategic frameworks related to HPAI control
 - ASEAN Task Force for HPAI Control and Prevention
 - ASEAN HPAI Road Map being revised to accommodate other animal influenzas

Current Regional Strategies

- Strategic Approach to HPAI Prevention and Control 2010 – 2015
 - Gaining better understanding of risk factors for HPAI transmission and maintenance
 - Improving HPAI outbreak response
 - Reducing HPAI incidence by risk management
 - Collaborative regional activities

11

FAO Long Term HPAI Activities

- Strengthen disease control related systems of veterinary services from central level to the field
 - Improve/develop legislation and policies towards preparedness purpose
 - Support design and implementation of compensation
 - Strengthen surveillance
 - Strengthen reporting system and data flow
 - Improve communication
 - Community animal health workers

ECTAD Emergency Centre for Transboundary Animal Disease:

ECTAD Emergency Centre for Transboundary Animal Diseas

FAO Long Term HPAI Activities

- Improve understanding of disease epidemiology including risks and drivers
- Improve HR capacities
- Facilitate surveillance and laboratory networking
 - Sharing of information and biologic materials
 - Sharing experience
 - Sharing resources
- Facilitate cross-border dialogue to manage risks of HPAI spread across the border

On-Going Activities

- Regional and country programmes
 - Support planning and coordination
 - Strengthen field epidemiology
 - Strengthen laboratory diagnosis
 - Surveillance
 - Risk management at cross-border

12

10

Strengthen Linkage and Communication Pathway across Network of Laboratories FAO-OIE-WHO Collaboration

Regional Capacity and Networking for Epidemiology 4 Strategic Goals

Development of regionally-coherent, national organizational structures and systems to support functions of veterinary epidemiology

Enhancement and promotion of linkages, partnerships, networks, coordination and collaboration among AMS, development partners and stakeholders to maximize efficient and sustainable uses of available resources

Strengthening human resources capacity and management to ensure effective use of trained veterinary epidemiologists and to effectively deliver national animal health programs in compliance with international standards

Enhancement and promotion of awareness and understanding of veterinary epidemiology to provide support, to ensure science base decision-makings, and to efficiently mobilize resources based needs

Consolidation and Application of Capacities for AI Surveillance and Control

- Risk assessment
 - Baseline information animal population/census
 - value chain
 - social network analysis
 - Ecological studies dog and wildlife
- Risk-based surveillance
- Planning for risk management field, national, cross-border levels

23

Regional Poultry Supply Chain

Linking Molecular Epidemiology and Value Chain Data

Key Findings

- Capacity on laboratory and epidemiology of human resources in the region has been improved;
- Better understanding of risks trade & clade
 - Capacity built to be able to update risk information

Key Findings

- Ability to apply both lab and epidemiology capacity to other emerging diseases as well as high impact endemic diseases: H7N9, FMD, ND, Rabies, PRRS, Anthrax, etc.
- Existing regional networks for epidemiology and laboratory for HPAI should be good platform for future emerging diseases for the region e.g. existing HPAI H5N1 capacity and infrastructure allowed for rapid deployment of surveillance and other emergency measures for H7N9

ECTAD Emergency Centre for Transboundary Animal Diseas

26

FAO H7N9 activities (Regional level)

- Value chain analysis to identify markets trading birds coming from affected areas in China and identify CCPs
- Contingency planning assistance (AH and PH) and desk-top simulation exercises;
- Communication and awareness materials/campaigns;
- Joint animal/public health risk assessment (JRA) methodology.

 Hand hygiene: Wash y food; after you use the your hands are dirty; ar is sick.

- Respiratory hygiene: cover her/his mouth an the used tissue into a c contact with respiratory
- When visiting live bird Avoid direct contact wit contaminated with poultr
- Food safety measures: properly handled during through consuming well-₈

FAO H7N9 activities (Global level)

- Emergency consultations with international and regional experts;
- Distribution of technical updates and information sharing through daily e-mails and regular skype conferences;
- Data sharing coordinated between international experts and country teams;
- Tripartite collaboration and consultation;
- Guidelines;

31

ECTAD Emergency Centre for Transhoundary Animal Disease

Moving Toward One-Health/ Global Health Security Agenda

- Diminish and minimize global impact of epidemics and pandemics due to emerging infectious diseases of humans and animals
- Address health risks at the animal-human-ecosystems interfaces

FAO Role in One Health/GHSA

- FAO seeks to operationalize thinking that disease emergence needs to be addressed together with
 - Poverty
 - Natural resource management
 - Sustainable agriculture and farming system
 - Rural development
 - Building generic One Health capacity
 - Blending insights gained from epidemiology, agro-ecology, socio-economics and communication

Delivering One Health/GHSA

- Delivering **One Health** Advocacy
 - Strengthen coordination and collaboration across sectors and disciplines
 - Capacity building
 - Long term approach
 - Immediate to produce scientific evidence for prevention purpose

33

ECTAD Emergency Centre for Transboundary Animal Diseases

Promoting Public Health Security Addressing Avian Influenza A Viruses and Other Emerging Diseases

Masaya Kato, WHO Viet Nam OIE Regional Workshop on Enhancing Influenza A viruses National Surveillance Systems 26-28 August 2014, Tokyo, Japan

What we aims to achieve

To build sustainable national and regional capacities and partnership to ensure public health security through preparedness planning, prevention, early detection and rapid response to emerging diseases and other public health emergencies.

Goal, Asia Pacific Strategy for Emerging Diseases 2010

Influenza pandemics: Health Security Threats

Credit: US National Museum of Health & Medicine

1918: "Spanish Flu" 20-40 million deaths A(H1N1)

2

1957: "Asian Flu" 1-4 million deaths A(H2N2)

1968: "Hong Kong Flu" 1-4 million deaths A(H3N2)

Overview

- 1. WHO Strategy and approaches for emerging diseases
- 2. Influenza surveillance Standards, case definitions, lessons learned
- 3. Case study A/H7N9

International Health Regulations (IHR) 2005 as Global Instrument

• A global legal framework for protecting global public health security

5

- In force since June 2007
- Facilitate strengthening of countries' core capacity to detect, assess, notify and respond to public health threats.
- All human infections with non-seasonal influenza viruses are notifiable to WHO under the IHR (2005)

Asia Pacific Strategy for Emerging Diseases APSED 2010

- A regional tool to help two WHO Regions (SEAR and WPR) meet IHR core capacity requirements
- Developed in 2005 and updated in 2010
- A common framework highlighting a shared vision and a set of agreed priorities
- To ensure public health security through preparedness planning, prevention, early detection and rapid response to emerging diseases and other public health emergencies

World Health Organiz<u>ation</u>

6

APSED 2010: Priority areas for investment

- P\$ED
- 1. Surveillance, Risk Assessment and Response
- 2. Laboratory
- 3. Zoonosis
- 4. Infection Prevention and Control
- 5. Risk Communication
- 6. Public Health Emergency Preparedness
- 7. Regional Preparedness, Alert and Response
- 8. Monitoring and Evaluation

APSED 2010: Surveillance, risk assessment and response framework

Indicator-based Surveillance **Event-based Surveillance** Rapid detection, reporting, Routine reporting of cases of confirmation and assessment of disease, including: public health events including: • notifiable disease surveillance clusters of disease systems rumours of unexplained deaths sentinel surveillance Commonly: laboratory-based surveillance • Immediate reporting Commonly: Health care facility-based reporting • Weekly, monthly reporting **Risk Assessment** Response Linked to surveillance National and subnational capacity to respond to alerts

Norld Health

Organization

Vorld Health

Organization

Risk assessment: Regional risk assessment algorithm

WPRO's response to Outbreaks & Emergencies

• WHO Emergency Response Framework (ERF):

Clarifies WHO's roles and responsibilities and provides a common approach and standards for its work in emergencies

- WPRO Emergency Operation Center (EOC):
 - Provides a hub and technical platform to support and conduct event management during outbreak and health emergencies

Zoonosis: Coordination between animal health and human health sectors

- Sharing of surveillance information
- Coordinated response
- Risk reduction

10

WHO: Global Epidemiological Surveillance Standards for Influenza (2014)

- Background: Historically, influenza surveillance focused on virological monitoring and collection of specimens to guide vaccine strain selection.
- Global standards for the collection, reporting, and analysis of seasonal influenza epidemiological surveillance data.
 - Case definition, site selection and sampling, minimum data set
- Enable countries to compare epidemiology, transmission, and impact of influenza with those of other countries

World Health

Organization

Organization

WHO: Global Epidemiological Surveillance Standards for Influenza (2014)

	Influenza-like illness (ILI)	Severe acute respiratory infection (SARI)
Case definition	 An acute respiratory infection with: measured fever of ≥ 38 C°; and cough; with onset within the last 10 days. 	 An acute respiratory infection with: history of fever or measured fever of ≥ 38 C°; and cough; with onset within the last 10 days; and requires hospitalization.
Intended settings	outpatient treatment centres	inpatient hospital settings
13		World He

Lessons learned in existing early warning alert and outbreak response systems

- Influenza surveillance system fit for purpose monitoring flu trends or detection of novel influenza (One size does not fit all)
 - Selection of sentinel sites / sentinel populations
 - > Quality assurance (e.g. geographical representativeness)
- Seasonal influenza surveillance supports detection of novel strains
 - Establishes syndromic case definitions that capture human infections with novel influenza viruses
 - Develops laboratory capacity for detection of non-seasonal influenza A subtypes
- Sustainability of influenza surveillance systems
 - Reliance on donor funding, including reagents and equipment
 - > High staff turnover, especially in rural sites
- Challenges in inter-sectoral collaboration e.g. animal and human health

Country experiences in identifying novel respiratory viruses

Indonesia A(H5N1)

- First case identified by an ICU physician in a private hospital
- Most H5N1 have been severe cases admitted to ICU, only 3/197 cases detected through ILI surveillance

Bangladesh A(H5N1)

First case was identified in 2008 in one of the largest urban slums in Dhaka, during seasonal surveillance activities

China A(H5N1) and A(H7N9)

- Most cases identified through Unknown Aetiology Pneumonia Surveillance, conducted in all public hospitals
- Some mild H7N9 cases identified through ILI surveillance

Malaysia A(H7N9) and MERS-CoV

> Both cases detected by healthcare workers using national case definitions

lth

ion

Case Study: A/H7N9

World Health

Organization

Provinces reported H7N9: 1st wave

Age and gender of H7N9 cases (as of 21 Aug 2014)

Provinces reported H7N9: 2nd wave

22

Viet Nam: Response to A/H7N9

- Elevated risk (towards Vietnamese New Year)
- Government prompt and high level response
 - Prime minister's telegraph
 - High level steering committees; Close coordination between animal and human health sector
 - > Surveillance systems enhanced; EBS, ILI, SARI
 - National plans and guidelines
 - Lab: H7N9 test kits and reagents supplied

MARD-MOH-WHO-FAO joint action

- Joint risk assessment
- Joint press release

Organization

23

- World Health Organization

Viet Nam: Response to A/H7N9

Coordination between human and animal health sectors

WHO response

Information sharing:

- Event Information Site (EIS)
- Disease Outbreak News (DON)
- Technical expertise:
 - Framework for action, tools, materials for diagnosis and treatment in cooperation with partners
- Joint risk assessment
- Logistics
 - > e.g. Facilitate antiviral stockpile
- 26

World Health

Organization

Summary

- WHO works with countries and partners to promote public health security through *preparedness planning*, *prevention, early detection and rapid response* to emerging diseases and other public health emergencies
- Influenza surveillance:
 - > Provides information to detect, assess and respond
 - Combination of surveillance approaches, e.g. Event-based and Indicator-based (e.g. ILI, SARI, laboratory)
 - Global standards for the collection, reporting, and analysis of epidemiological surveillance data
 - Information sharing and joint response between animal and human health sectors

Acknowledgement

Angela Merianos

Sarah Hamid

Chin-Kei Lee

Nguyen Thi Phuc

Do Thi Hong Hien

HPAI Situation in ASEAN

Contributors

- ASEAN RSU
- FAO ECTAD RAP
- ASEAN Member States
- ASEAN Secretariat

Country	No.	of outbre	aks*	
Country	2011	2012	2013	Total of 2948 outbreaks* Hot spot in
Japan	65	0	0	
Korea, R	58	0	0	man hand had the
Korea, DPR	0	0	1	and the second second
China	1	6	1	
China HK	9	23	0	the second second
Mongolia	0	0	0	
Vietnam	45	55	29	
Laos	0	0	1	
Cambodia	13	4	7	3 hot spots
Myanmar	1	2	0	in 2011-13
Indonesia	1164	588	447	
Bangladesh	147	25	2	and and share to
India	3	12	7	Name and the second
Nepal	1	14	204	
Bhutan	0	11	2	
Total	1507	740	701	tofficially reported capes except West Asia (Source: Empres i Asia)

H5N1 Epi-zones* in Asia

*Epi-zone: Geographical area where closely related viruses were shared, and frequent virus incursion/exchange is expected. Epi-zones are dynamic and changing.

Reports of HPAI in human: 2003 - 2014

	20	03	20	04	20	05	20	06	20	07	20	08	20	09	20	10	20	11	20	12	20	13	20	14	To	tal
Country	Cases	Deaths																								
Cambodia	0	0	0	0	4	4	2	2	1	1	1	0	1	0	1	1	8	8	1	1	26	14	9	4	56	37
Indonesia	0	0	0	0	20	13	55	45	42	37	24	20	21	19	9	7	12	10	9	9	3	3	2	2	197	165
Lao	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2
Myanmar	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Thailand	0	0	17	12	5	2	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	25	17
Vietnam	3	3	29	20	61	19	0	0	8	5	6	5	5	5	7	2	0	0	4	2	2	1	2	2	126	63
Total	3	3	46	32	90	38	60	50	54	45	31	25	27	24	17	10	20	18	14	12	31	18	13	8	464	316

Update - 2014

Since January 2014, there were a total of 13 human cases with 9 deaths reported from:

- Cambodia 9 cases with 5 fatalities (Kampong Cham 2, Kampong Chhnang 1, Kampong Thom 1, Kandal 2 and Kracheh 2)
- Indonesia 2 case, 2 fatalities (Central Java and Jakarta)
- Viet Nam, 2 cases, 2 fatalities (Binh Phuoc and Dong Thap)

ian Nations

ASEAN: HPAI in animals, 2004 - 2013

Country					Ye	ar					Total
	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	
Cambodia	15	2	6	1	1	1	2	8	1	7	44
Indonesia	1	2	223	2,751	1,162	1,048	1,216	1,155	588	540	8,686
Lao PDR	19	0	1	0	4	1	1	0	0	0	26
Malaysia	0	0	5	1	0	0	0	0	0	0	6
Myanmar	0	0	78	15	0	0	3	10	2	0	108
Thailand	1,753	194	5	4	4	0	0	0	0	0	1,960
Viet Nam	2,406	1,068	36	73	71	46	44	38	48	25	3,855
Total	4,194	1,266	354	2,845	1,242	1,096	1,266	1,211	639	572	14,685

H5N1 in 2014- ASEAN

Domestic poultry: Since the beginning of 2014, there were 324 outbreaks of HPAI H5N1 reported from 7 countries in Asia, including 3 from ASEAN (297):

- Cambodia, 5 outbreaks were reported from (5 areas)
- Indonesia, 248 H5N1 events were reported (22 areas)
- Vietnam, 44 outbreaks were reported (33 Provinces)

Spatial distribution of H5N1 in Asia in 2014

H5N1...and the future...

- Continue to sustain efforts to build capacity to assess risks and needs, to improve understanding (dynamic factors...)
- 2. Capacity to prevent and respond must be continuously strengthened
 - Planning for effective actions relies on science/evidence base information on the ground
 - Effective monitoring of program implementation to measure progress

ASEAN Economic Community

- 3. Ability to predict (allows preparation) must be considered
 - Search for pandemic progenitor viruses
 - Identify/ understand drivers
- Understand not only HPAI but overall→ animal influenza
- 5. Strengthen collaboration with partners

ASEAN Economic Community

ASEAN Coordinating Centre for Animal Health and Zoonoses (ACCAHZ)

- SOM-AMAF/AMAF Endorsed Proposal for Establishment and Creation of Preparatory Committee
- Ongoing development and finalisation of Establishment Agreement
- Target of signing: 2015
- Technical Units: Veterinary Epidemiology, Communication, Laboratory, and disease specific Program

Launched the ASEAN Animal Health Cooperation Website

27 September 2013, Kuala Lumpur, Malaysia at the 35th AMAF Meeting

How to do Poultry Surveillance in the Presence or Absence of Vaccination

Southeast Poultry Research Laboratory

ne AVIAN

NFI II FN7

David E. Swayne OIE Collaborating Centre for Research On Emerging Avian Diseases, FAO Reference Centre for Avian Influenza, and Exotic & Emerging Avian Viral Diseases Research Unit SEPRL, ARS, USDA, Athens, Georgia, USA

Introduction

Vaccination Issues:

- Monitoring of vaccination effectiveness (seromonitoring)
- Surveillance for AIV (virus) or AIV infection (antibodies)
 - Syndromic a clinical case initiates diagnostic investigation (also termed passive surveillance)
 - Active predesigned program to look for AIV or AIV infections on non-syndromic sampling

Introduction

What is the goal of avian influenza surveillance?

- Find AI virus (agent) or AI virus infections (antibodies)
- Within a defined population of animals
- At a minimum detection rate
- Confident that results are accurate
- BUT, vaccination creates challenges for serological surveillance as vaccinated birds have antibodies to hemagglutinin and possibly neuraminidase of interest

Key Areas

- Is the disease (or infection) there? Optimize diagnostic process to detect the agent
- Basics of sample collection, packaging, transport, laboratory testing and use of laboratory data in a practical surveillance system
- Collecting the right biological sample, handling it correctly (preserving the disease agent / antibodies etc.), not cross-contaminating it
- Reliable and accurate laboratory diagnostic tests sensitive and specific; standardized and validated
- Careful lab technique, especially rRT-PCR; separate steps in different rooms, and proficiency testing of individual laboratorians

Key Areas

- Subset of samples for virus isolation attempts for biological characterization
- Correct interpretation of results (including understanding sensitivity and specificity of tests)
- Good data management, integrate with field metadata
- Molecular epidemiology clues to source, clade monitoring, reassortments, future to determine farm-to-farm spread, etc.
- Available capacity of laboratory for maximum sample test numbers and financial support for such tests; including emergency surge capacity/finances and sustainable capacity/finances

Tests for AIV or AIV Infection

- Current AIV tests
 - rRT-PCR
 - Virus isolation: will not be replaced: isolates needed for confirmation and characterization
 - Antigen detection immunoassays ("pen side" test)
- Adequately sensitive and specific for defined use
- Current AIV serology tests
 - Type A influenza virus tests (screening): agar gel immunodiffusion (AGID) and ELISA
 - Subtype tests: HA (HI or ELISA) & NA (NI, IFA or ELISA)

Big issues:

•Surveillance for early detection (syndromic and active) •Transparency in reporting ("who you tell")

1. Monitoring of Vaccination Effectiveness

- Hemagglutinin subtype specific antibodies; hemagglutination inhibition assay (HI) – e.g. H5 and H7
 - Titers of 1:32 or greater are protective from death
 - Titers of 1:128 and greater give best protection from virus replication and shedding
 - Need \geq 80% with protective antibody titers
- Vaccinated flocks should be boosted if < 80% have titers ≥ minimum established titer by control authority

Solution: Monitor all vaccinated flocks, and boost as needed to determine herd immunity in *at risk* population

2a. AI Diagnostic/Surveillance Overview: Non-

- *Syndromic surveillance presented with sick or dead birds for diagnostics
- With eradication goals speed and accuracy are essential

With surveillance goals - vaccination complicates HA serology

2b. Surveillance for AIV infection

Active Serological Surveillance for AIV Infection; i.e. where is the field virus circulating?

- Heterologous neuraminidase vaccine specific antineuraminidase antibodies (NI, IFA or ELISA) in vaccinated poultry
- Example:
 - H7N3 HPAI outbreak
 - H7N2 vaccine
 - Antibodies to N3 indicates H7N3 infection in vaccinated poultry
- Cannot do active serological surveillance in non-vaccinated sentinel chicken for HPAIV; i.e. dead, but can for LPAIV

2b. Surveillance for AIV

Syndromic Surveillance ('Biosensor')

•Identifiable, susceptible population

- Non-vaccinated sentinel birds that die (defined, tagged population; ex. Hong Kong vaccination program)
- Daily mortality or sick vaccinated birds (undefined)
 - Antibody negative birds missed during vaccination
 - Poorly immunized birds poor immune response to vaccine or low quality vaccine

•Rapid sensitive detection methods

- Pooled oral swabs, maximum of 11/tube
- Screen with flockside antigen-capture tests: '+/-' should be confirmed in sensitive/specific lab test
- Confirmatory testing:
 - RRT-PCR: 3 hour laboratory test
 - Virus isolation HPAI virus in 48 hours

2b. Surveillance for AIV infection

Active Serological Surveillance for AIV Infection; i.e. where is the field virus circulating?

•<u>Recombinant vaccine with HA only</u> - Specific anti-NP/M antibodies (AGID or ELISA) in vaccinated poultry

- •Example:
 - H7N3 HPAI outbreak
 - rHVT-H7 vaccine

Antibodies to NP/M indicates active virus infection – need to identify the virus subtype (HA and NA using Hi and NI, respectively)

•Issues with sensitivity of tests to identify infection within vaccinated population and sampling strategies to identify such infected birds

OTHER ISSUES: SAMPLE TYPES AND PROCESSING METHODS

Species/ Sample Type	Recommended Specimen	Suggested Processing Method	Notes
Gallinaceous Poultry (chickens, turkeys, quail)	Tracheal or oropharyngeal swab	RNeasy or Ambion Magnetic bead RNA extraction, then RRT-PCR	Virus primarily replicates in the respiratory tract (LPAI)
Waterfowl- ducks	Wild birds - CI Swabs; Domestic waterfowl – oral & CI swabs	Ambion Magnetic Bead RNA extraction then RRT-PCR	Virus primarily replicates in the intestinal tract. RNA extraction method must be modified for cloacal samples
Any species	Tissue samples	Macerate with glass beads in Trizol and then Magnetic beads	For HPAI viruses high levels of virus may be in tissues.
Environmental samples	(Swab)	Virus isolation to detect live virus	RRT-PCR can detect inactivated virus, so may be inappropriate

OTHER ISSUES: SAMPLE TYPES

- Oropharyngeal and trachea swabs optimal for poultry
- Cloacal swabs (poultry or wild-bird) must be processed differently and should be run with an internal positive control
- **Tissue: Lung best for LPAIV and HPAIV**
- Samples from "epidemiological unit", not individual animal

TESTS ARE FOR DETECTING: USE UNDER CORRECT PROGRAM

*****Active infection

- 1° Virus genetic material (RNA)
 rRT-PCR: Matrix and subtype tests (H5, H7, others)
- 2° Virus isolation and characterization
 - Chicken embryo inoculation
 - HA activity, AGID, rRT-PCR
 - HI and NI subtyping
- **3°** Immunoassays /Antigen detection tests

***Prior exposure**

- Antibody influenza A group
 AGID
 - ELISA
- Positives followed with HI and NI tests for subtype determination
- Outbreak scenarios or endemic situations – may do subtype-specific HI as surveillance test
- May be difficult to collect sera at LPM, better on farm

Virology Laboratory Tests

- □ Appropriate test by design: Screening (pen-side & syndromic surveillance), detection AIV (rRT-PCR) or isolation AIV (VI eggs)
- Virus Isolation verses rRT-PCR (latter better in low virus titer samples and more rapid)
- Virus Isolation: 9-11-day-embryonating chickens eggs >>> cell culture
- Fresh specimen for virus isolation w/cold chain vs preserve nucleic acids (watch organic material to media ratio – don't overwhelm protectant or preservative)
- Problems of bacterial and other viral contaminants in VI samples
- Lab cross contamination during amplification steps

Lateral flow devices – screening tool

□ Pros

- **Rapid and on site- 15 minutes**
- **•** Highly specific- positives are reliable
- □ Inexpensive (US kits -\$8-10 per test)
- **Can use same sample types as other tests**
- Not species specific

Type A specific

- Some subtype specific tests are available regionally-subtype specific tests less reliable
- **Can be used with HP or LP AIV but best when** presented with dead birds and in syndromic surveillance programs

Lateral flow devices

□ Cons

- Low sensitivity- 10⁴ to 10⁵ EID₅₀/ml needed in sample
 - False negatives possible
 - Best during peak of shed (2-4 days post infection for an individual bird)
- Weak positives may be difficult to see for untrained personnel, especially seen with autolytic specimens

Swab Type

- **Public health** research has shown differences in respiratory virus detection among swab types

- **Capture and release**
- Current swab most commonly used in the US Non-flocked/wound (dacron/nylon tipped), plastic shaft
- Newer types
 - **Flocked** (nylon)
 - **•** Foam (urethane)
- All cost the same (~\$0.10 USD)
- □ All have the same head size

Swab type: rRT-PCR OP

1, 2, 3, 4 DPI- 100% positive

Swab Titers

10 and 14 DPI- All negative

swabs

Swab Pooling

- No difference in the number positive by virus isolation or rRT-PCR OP swabs
- **D** Too few CL swabs were positive to draw conclusions

- No difference in the number positive by virus isolation or rRT-PCR for OP swab
- Pooling up to 11 OP swabs did not affect rRT-PCR or virus isolation

Recommendations for all tests

Flocked swabs

- No wooden shafts, No Calcium Alginate swabs, avoid cotton
- No dry swabs
 BHI (or similar protein containing buffered
- media)
 - Antibiotics preferred (unless bacteriological examination will be conducted with the same specimen)
- Up to 11 swabs per vial (5.5ml media and larger tube)
 - Puts all you swabs in one tube; no back-up if loss or breakage occurs
- Transport vial with swab in or out; Impacts work flow/logistics at the lab, particularly if the swabs are left in
- 5. Keep samples cool (e.g. on ice). Do NOT freeze samples (-20C kills virus)
- Transport to the lab within 24 hrs

Conclusions

- Surveillance for AIV (virus) or AIV infection (antibodies) uses a combination of syndromic (clinical case diagnostics) and active (non-clinical case) surveillance
- Surveillance in vaccinated populations is more complex than in non-vaccinated populations
 - Antibodies to HA, NP/M and other proteins in the vaccine interferes with routine tests used in serosurvellance
 - Examination for virus must be focused on susceptible population;
 i.e. clinically-ill/dead non-vaccinated sentinels or vaccinated chickens
 - Serosurveillance is dependent on type of vaccine used
 - Heterologous neuraminidase test for NA antibodies
 - HA recombinant vaccine NP/M antibody tests (AGID/ELISA)
 - Inactivated whole virus vaccine only can use non-vaccinated sentinels

Thank You!

Animal Influenza Meetings: 12-17 April 2015

9th International Symposium on Avian Influenza

• 12-15 April, 2015

- University of Georgia, Athens, Georgia, USA
- Co-chairs: David Swayne, Ian Brown, David Stallknecht

- Questions: <u>David.Swayne@ars.usda.gov</u>
- OFFLU Meeting, 15 (afternoon) April 2015, secretariat@offlu.net
- 3rd International Neglected Influenza Viruses meeting, 15 (beginning in evening)-17 April 2015
 - Co-Chairs: Tom Chambers; <u>tmcham1@uky.edu</u> Stacey Schultz-Cherry; <u>stacey.schultz-</u> <u>cherry@stjude.org</u>

OIE Regional Workshop on Enhancing Influenza A Viruses National Surveillance, Tokyo, Japan, August 26-28, 2014

H5N1 avian influenza vaccination in China

Hualan Chen

Harbin Veterinary Research Institute, CAAS

The most important poultry disease

- Resulting in the death or culling of over 250 million poultry and wild birds
- Involved multiple countries; infected wild birds
- Endemic in several developing countries impossible to control the disease by "stamping out"

Vaccination is an alternative

- Oil adjuvant inactivated vaccines: the naturally isolated low pathogenic virus or attenuated high-growth virus generated by reverse genetics as seed strains
- Live virus-vectored vaccines: Recombinant fowlpox virus, recombinant Newcastle disease virus

Challenge 1

• Frequently antigenic variation of the field strains requests timely update of the vaccine seed virus

Challenge 1

- Frequently antigenic variation of the field strains requests timely update of the vaccine seed virus
- Re-1 (GS/GD/96, clade 0); Re-4 (CK/SX/06, calde 7.2); Re-5 (DK/AH/06, clade 2.3.4); Re-6 (DK/GD/12, clade 2.3.2); Re-7 (CK/LN/11, clade 7.2)

Challenge 1

- Frequently antigenic variation of the field strains requests timely update of the vaccine seed virus
- Re-1 (GS/GD/96, clade 0); Re-4 (CK/SX/06, calde 7.2); Re-5 (DK/AH/06, clade 2.3.4); Re-6 (DK/GD/12, clade 2.3.2); Re-7 (CK/LN/11, clade 7.2)

Challenge 1

- Frequently antigenic variation of the field strains requests timely update of the vaccine seed virus
- Re-1 (GS/GD/96, clade 0); Re-4 (CK/SX/06, calde 7.2); Re-5 (DK/AH/06, clade 2.3.4); Re-6 (DK/GD/12, clade 2.3.2); Re-7 (CK/LN/11, clade 7.2)

Challenge 1

- Frequently antigenic variation of the field strains requests timely update of the vaccine seed virus
- Re-1 (GS/GD/96, clade 0); Re-4 (CK/SX/06, calde 7.2); Re-5 (DK/AH/06, clade 2.3.4); Re-6 (DK/GD/12, clade 2.3.2); Re-7 (CK/LN/11, clade 7.2)

Challenge 1

- Frequently antigenic variation of the field strains requests timely update of the vaccine seed virus
- Re-1 (GS/GD/96, clade 0); Re-4 (CK/SX/06, calde 7.2); Re-5 (DK/AH/06, clade 2.3.4); Re-6 (DK/GD/12, clade 2.3.2); Re-7 (CK/LN/11, clade 7.2)

Seed virus generated		Dose	s used in	n each y	ear (bill	ions)"					Total
Seed name	HA and/or NA gene donor virus (HA clade)	2004	2005	2006	2007	2008	2009	2010	2011	2012	
A/Turkey/England/N-28/73 (H5N2) (N-28)	Not applicable	2.5	4.08	3.6	/	/	/	/	/	/	10.18
H5N1/PR8 (Re-1)	A/goose/Guangdong/1/1996 (0)	0.57	3.3	4.57	9.6	4.6	/	/	/	1	22.64
H5N1/PR8 (Re-4)	A/chicken/Shanxi/2/2006 (7.2)	1	1	0.84	0.42	0.59	0.54	0.95	0.24	0.025	3.605
H5N1/PR8 (Re-5)	A/duck/Anhui/1/2006 (2.3.4)	1	1	1	1	4.4	7.20	6.80	6.77	3.71	28.88
Re-1/Re-4	2	1	1	1	2.2	1.5	1	1	1	1	3.7
Re-4/Re-5	-	1	1	1	1	1.5	9.08	7.51	7.67	4.03	29.79
H5N1/PR8 (Re-6)	A/duck/Guangdong/ S1322/2006 (2.3.2)	/	1	/	1	/	/	/	/	3.66	3.66
Re-4/Re-6	-	1	1	1	1	1	1	1	1	4.23	4.23
H5N1/PR8 (Egypt-1)	A/chicken/Egypt/18-H/09 (2.2.1.1)	1	1	1	1	1	1	1	0.25	0.2	0.45
rFPV-HA-NA	A/goose/Guangdong/1/1996 (0)	1	0.615	1	/	/	/	/	1	1	0.615
rLH5-1	A/goose/Guangdong/1/1996 (0)	1	1	2.6	1.3	0.5	1	/	1	1	4.4
rLH5-5	A/duck/Anhui/1/2006 (2.3.4)	1	1	1	1	0.7	1.47	1.74	1.71	1.03	6.65
rLH5-6	A/duck/Guangdong/S1322/2006 (2.3.2)	1	1	1	1	1	1	1	1	0.72	0.72

Seed virus generated		Doses used in each year (billions) ^a									
Seed name	HA and/or NA gene donor virus (HA clade)	2004	2005	2006	2007	2008	2009	2010	2011	2012	
A/Turkey/England/N-28/73 (H5N2) (N-28)	Not applicable	2.5	4.08	3.6	1	/	/	/	/	/	10.18
H5N1/PR8 (Re-1)	A/goose/Guangdong/1/1996 (0)	0.57	3.3	4.57	9.6	4.6	/	/	/	1	22.64
H5N1/PR8 (Re-4)	A/chicken/Shanxi/2/2006 (7.2)	1	7	0.84	0.42	0.59	0.54	0.95	0.24	0.025	3.605
H5N1/PR8 (Re-5)	A/duck/Anhui/1/2006 (2.3.4)	1	/	1	1	4.4	7.20	6.80	6.77	3.71	28.88
Re-1/Re-4	-	/	,	1	2.2	1.5	1	/	/	7	3.7
Re-4/Re-5	-	1	1	1	1	1.5	9.08	7.51	7.67	4.03	29.79
H5N1/PR8 (Re-6)	A/duck/Guangdong/ S1322/2006 (2.3.2)	/	1	/	/	/	/	1	/	3.66	3.66
Re-4/Re-6	-	1	1	1	1	1	1	1	1	4.23	4.23
H5N1/PR8 (Egypt-1)	A/chicken/Egypt/18-H/09 (2.2.1.1)	1	1	1	1	1	1	1	0.25	0.2	0.45
rFPV-HA-NA	A/goose/Guangdong/1/1996 (0)	/	0.615	1	/	1	1	1	/	1	0.615
rLH5-1	A/goose/Guangdong/1/1996 (0)	1	1	2.6	1.3	0.5	1	1	1	1	4.4
rLH5-5	A/duck/Anhui/1/2006 (2.3.4)	1	1	1	1	0.7	1.47	1.74	1.71	1.03	6.65
rLH5-6	A/duck/Guangdong/S1322/2006 (2.3.2)	1	1	1	1	1	1	1	1	0.72	0.72

Seed virus generated			Doses used in each year (billions) ^a											
Seed name	HA and/or NA gene donor virus (HA clade)	2004	2005	2006	2007	2008	2009	2010	2011	2012				
A/Turkey/England/N-28/73 (H5N2) (N-28)	Not applicable	2.5	4.08	3.6	/	/	/	/	/	/	10.18			
H5N1/PR8 (Re-1)	A/goose/Guangdong/1/1996 (0)	0.57	3.3	4.57	9.6	4.6	/	/	/	1	22.64			

Over 100 billions doses have been used in China, Vietnam, Indonesia, Egypt, and several other countries

	S1322/2006 (2.3.2)	1	'	1	/	ľ.	/	'	1	3.00	3.00
Re-4/Re-6	-	1	1	1	1	1	1	1	1	4.23	4.23
H5N1/PR8 (Egypt-1)	A/chicken/Egypt/18-H/09 (2.2.1.1)	1	1	1	1	1	1	1	0.25	0.2	0.45
rFPV-HA-NA	A/goose/Guangdong/1/1996 (0)	1	0.615	1	1	1	1	1	1	1	0.615
rLH5-1	A/goose/Guangdong/1/1996 (0)	1	1	2.6	1.3	0.5	1	1	1	1	4.4
rLH5-5	A/duck/Anhui/1/2006 (2.3.4)	1	1	1	1	0.7	1.47	1.74	1.71	1.03	6.65
rLH5-6	A/duck/Guangdong/S1322/2006 (2.3.2)	1	1	1	1	1	1	1	1	0.72	0.72

Challenge 2

• Vaccination coverage rate is difficult to reach to the level (>70%) that is required for the national population immunity

Challenge 2

• Vaccination coverage rate is difficult to reach to the level (>70%) that is required for the national population immunity

Species	Breeder chickens and layers	
Rough amount	4-5 billions	
Vaccination coverage rate	>80%	

Challenge 2

• Vaccination coverage rate is difficult to reach to the level (>70%) that is required for the national population immunity

Species	Breeder chickens and layers	Waterfowl s (ducks)	
Rough amount	4-5 billions	4 billions	
Vaccination coverage rate	>80%	<30%	

Challenge 2

• Vaccination coverage rate is difficult to reach to the level (>70%) that is required for the national population immunity

Species	Breeder chickens and layers	Waterfowl s (ducks)	Broilers
Rough amount	4-5 billions	4 billions	8 billions
Vaccination coverage rate	>80%	<30%	<20%

Ducks

• Though H5N1 strains are lethal for chickens, most of them replicate in ducks asymptomatically.

Duck enteritis virus (DEV)

 Duck viral enteritis is acute contagious disease in susceptible flocks of domestic waterfowl caused by DEV, a herpesvirus.

Duck enteritis virus (DEV)

- Duck viral enteritis is acute contagious disease in susceptible flocks of domestic waterfowl caused by DEV, a herpesvirus.
- Live attenuated DEV vaccine has been widely used to control the disease in duck producing area. In China, more than 70% ducks received at least two doses of this vaccine.

Duck enteritis virus (DEV)

- Duck viral enteritis is acute contagious disease in susceptible flocks of domestic waterfowl caused by DEV, a herpesvirus.
- Live attenuated DEV vaccine has been widely used to control the disease in duck producing area. In China, more than 70% ducks received at least two doses of this vaccine.
- Can a recombinant DEV-HA virus work as a bivalent vaccine in ducks against both DEV and H5N1 virus?

80

100

120

140

160

20

40

60

ul

Protection against to the lethal DEV Challenge

Protection against to the lethal H5N1 Challenge

Field test in ducks

Field test in ducks

These results demonstrated that the recombinant DEV expressing the H5N1 virus HA gene could work as an ideal live virus bivalent vaccine against both the DEV and H5N1 virus in ducks!

Challenge 2

• Vaccination coverage rate is difficult to reach to the level (>70%) that is required for the national population immunity

Species	Breeder chickens and layers	Waterfowls (ducks)	Broilers
Rough amount	4-5 billions	4 billions	8 billions
Vaccination coverage rate	>80%	<30%	<20%

Challenge 2

• Vaccination coverage rate is difficult to reach to the level (>70%) that is required for the national population immunity

Species	Breeder chickens and layers	Waterfowls (ducks)	Broilers
Rough amount	4-5 billions	4 billions	8 billions
Vaccination coverage rate	>80%	>80%	<20%

3 Broilers: fast-growing meat chickens 4 50g 50g 50g 0 1 2 3 4 5 6 Age of broilers (weeks)

Challenge 2

• Vaccination coverage rate is difficult to reach to the level (>70%) that is required for the national population immunity

Species	Breeder chickens and layers	Waterfowls (ducks)	Broilers
Rough amount	4-5 billions	4 billions	8 billions
Vaccination coverage rate	>80%	>80%	<20%

Problems of currently vaccines in broilers:

- 1. Live virus vaccines were affected by maternal antibodies against to the vector viruses, two doses are needed
- 2. Killed vaccine needs 2-3 weeks to induce enough protection

Test in broilers

1

Birds: 100 birds in each group

Inoculations: rDEV-re6, DEV, inactivated vaccines, PBS

Birds: 100 birds in each group

Inoculations: rDEV-re6, DEV, inactivated vaccines, PBS

HI antibody titers in broilers

These results demonstrated that the recombinant DEV expressing the H5N1 virus HA gene could work as an ideal single dose live virus vaccine against lethal H5N1 virus infection in broilers!

Summary

• The low vaccination coverage rate in ducks and broilers is the major challenge for the complete control or eradicate the disease in China

Summary

- The low vaccination coverage rate in ducks and broilers is the major challenge for the complete control or eradicate the disease in China
- We, for the first time, developed a platform to generate recombinant DEV and demonstrated that the rDEV expressing H5N1 HA gene could work as a bivalent live vaccine for DEV and H5N1 in ducks and as a single dose vaccine for H5N1 virus in broilers.

Does vaccination drive the variation of influenza viruses?

- <u>No, I do not think so!</u> Because in China, the use of vaccine have made several clades of H5N1 viruses disappeared.
- H6 subtype virus as an example.

The H6 viruses detected in China from 2008-2011 show clear antigenic difference

	HI antibody titer of antiserum against virus (HA group)":						
Virus (HA group)	CK/GD/S1312/10 (H6N2) (1)	DK/HuB/S1114/09 (H6N2) (2)	DK/ZJ/S4204/10 (H6N6) (3)	DK/GD/S4192/08 (H6N2) (4)	DK/GD/S1419/1 (H6N6) (5)		
CK/GD/S1312/10 (H6N2) (1)	640	80	40	<10	<10		
DK/GD/S1328/10 (H6N2) (1)	640	80	80	<10	<10		
GS/GD/S1384/10 (H6N2) (1)	640	80	80	<10	<10		
DK/GD/S1289/10 (H6N2) (1)	320	40	80	<10	<10		
DK/HuN/S3047/09 (H6N2) (1)	320	40	80	<10	<10		
CK/GD/S1453/10 (H6N2) (1)	640	80	80	<10	<10		
DK/HuB/S4135/10 (H6N2) (1)	320	40	80	<10	<10		
CK/GD/S1414/10 (H6N6) (1)	640	80	80	<10	<10		
DK/ZJ/S1023/10 (H6N6) (1)	320	80	160	<10	<10		
DK/GD/S3180/10 (H6N6) (1)	640	80	80	<10	<10		
DK/HuN/S4273/10 (H6N6) (1)	320	80	80	<10	<10		
CK/GD/S1311/10 (H6N6) (1)	640	80	40	<10	<10		
CK/HuN/S4495/10 (H6N6) (1)	320	40	80	<10	<10		
CK/HuN/S3003/09 (H6N6) (1)	320	40	80	<10	<10		
DK/HuB/S1114/09 (H6N2) (2)	320	160	40	<10	<10		
DK/HuB/S4170/08 (H6N2) (2)	160	160	40	<10	<10		
DK/HuN/S1284/09 (H6N2) (2)	320	160	160	<10	<10		
DK/GD/S4018/10 (H6N6) (2)	160	80	160	<10	<10		
DK/GD/S1663/09 (H6N6) (2)	80	80	160	<10	<10		
CK/GX/S4029/10 (H6N6) (2)	160	80	80	<10	<10		
DK/ZJ/S4204/10 (H6N6) (3)	80	<10	320	<10	<10		
CK/HuN/S4191/09 (H6N2) (3)	80	<10	320	< 10	<10		
DK/HuN/S4386/09 (H6N2) (3)	80	<10	320	<10	<10		
DK/HuB/S1366/09 (H6N2) (3)	80	<10	320	<10	<10		
CK/GX/S4381/10 (H6N6) (3)	40	<10	320	<10	<10		
DK/GX/S4111/10 (H6N6) (3)	80	<10	320	<10	<10		
DK/GD/S4192/08 (H6N2) (4)	80	<10	160	160	<10		
DK/GD/S1566/09 (H6N2) (4)	40	<10	160	80	<10		
DK/GD/S1419/11 (H6N6) (5)	40	20	20	<10	1280		
CK/GD/S2346/09 (H6N2) (5)	40	40	80	<10	160		
DK/FJ/S4081/08 (H6N2) (5)	40	40	40	<10	160		
DK/GD/S4251/10 (H6N6) (5)	20	20	20	<10	640		
GS/GD/1/96 (H5N1) ^b	<10	<10	<10	<10	<10		
Newcastle disease virus (LaSota strain) ^b	<10	<10	<10	<10	<10		

	Group of each gene segment in the phylogenetic tree					_				
Virus	HA	NA	PB2	PB1	PA	NP	М	NS	Genotyp	e
DK/GD/S1328/10 (H6N2)	1	1	1	1	1	1	1	1	A1	
GS/GD/S1384/10 (H6N2)	1	1	1	1	1	1	1	1	A1	- F
DK/GD/S1289/10 (H6N2)	1	1	1	1	1	1	1	2	A2	
DK/HuN/S3047/09 (H6N2)	1	1	1	1	2	1	1	1	A3	
CK/GD/S1453/10 (H6N2)	1	1	2	2	1	1	1	2	A4	
CK/GD/S1312/10 (H6N2)	1	5	1	5	1	1	5	5	A5	· · · · ·
DK/HuB/S4135/10 (H6N2)	1	5	6	5	4	5	5	5	A6	
DK/HuB/S4170/08 (H6N2)	2	2	5	4	5	2	4	4	A7	
DK/HuB/S1114/09 (H6N2)	2	3	1	1	1	1	1	1	A8	f
DK/HuN/S1284/09 (H6N2)	2	4	1	2	2	1	1	3	A9	I
CK/HuN/S4191/09 (H6N2)	3	1	1	1	1	1	1	1	A10	
DK/HuN/S4386/09 (H6N2)	3	1	4	1	1	1	1	2	A11	
DK/HuB/S1366/09 (H6N2)	3	2	1	1	1	1	1	2	A12	(
DK/GD/S4192/08 (H6N2)	4	1	1	1	3	1	1	2	A13	, c
DK/GD/S1566/09 (H6N2)	4	2	1	1	3	1	1	2	A14	
CK/GD/S2346/09 (H6N2)	5	2	5	4	5	2	4	4	A15	
DK/FJ/S4081/08 (H6N2)	5	2	5	4	5	2	4	4	A15	(
CK/GD/S1414/10 (H6N6)	1	1	1	1	1	1	1	1	B1	
DK/ZJ/S1023/10 (H6N6)	1	1	1	1	1	1	1	1	B1	
DK/GD/S3073/10 (H6N6)	1	1	1	1	1	1	1	1	B1	
GS/GD/S4362/09 (H6N6)	1	1	1	1	1	1	1	1	B1	
DK/GD/S1155/11 (H6N6)	1	1	1	1	2	2	1	2	B2	
DK/GD/S3180/10 (H6N6)	1	1	1	1	3	1	1	1	B3	
DK/HuN/S4273/10 (H6N6)	1	1	1	3	2	1	1	2	B4	
CK/GD/S1311/10 (H6N6)	1	1	1	5	1	1	5	5	B5	
DK/ZJ/S1134/11 (H6N6)	1	1	2	1	1	1	1	1	B6	
DK/GD/S3225/10 (H6N6)	1	1	2	1	1	1	1	1	B6	
DK/GD/S3468/10 (H6N6)	1	1	2	2	1	1	1	1	B7	
CK/HuN/S4495/10 (H6N6)	1	1	5	3	2	3	1	4	BS	147
CK/HuN/S3003/09 (H6N6)	1	3	1	1	2	1	3	1	B9	VVa
DK/GD/S4018/10 (H6N6)	2	1	2	1	1	1	1	2	B10	
DK/GD/S1663/09 (H6N6)	2	3	1	1	1	1	1	1	B11	
CK/GX/S4029/10 (H6N6)	2	3	2	2	1	1	1	1	B12	
CK/GX/S4381/10 (H6N6)	3	1	1	1	1	1	1	1	B13	
DK/GX/S4111/10 (H6N6)	3	1	1	1	1	1	1	1	B13	
DK/ZJ/S4204/10 (H6N6)	3	1	1	2	2	1	1	1	B14	
DK/GD/S4251/10 (H6N6)	5	2	3	2	1	4	2	3	B15	
DK/GD/S1419/11 (H6N6)	5	2	3	2	1	4	2	3	B15	

Thirty-eight H6 subtype viruses formed <u>30</u> different genotypes.

Wang et al., JVI, 2014

Thanks!

Vaccine efficacy against H5N1 virus

SPF ducks: 12 groups of 11 ducks

Inoculation: rDEV-ul41HA, rDEV-us78HA, DEV, PBS

Challenged virus replication in organs of ducks

Vaccine efficacy against H5N1 virus

SPF ducks: 12 groups of 11 ducks

Inoculation: rDEV-ul41HA, rDEV-us78HA, DEV, PBS

Challenge: 100-fold DLD50 of H5N1 virus at 3, 7, and 21 days post vaccination, respectively

Challenge virus shedding in the broilers received different vaccines

Cl. II		1	No. of swa	bs shedding virus	/total no. c	on day p.c. ^b	
(post-vaccination)	Vaccine	3		5		7	
		Oropharyngeal	Cloacal	Oropharyngeal	Cloacal	Oropharyngeal	Cloaca
	rDEV-re6	3/8	5/8	1/5	0/5	0/5	0/5
	Inactivated vaccine	6/8	7/8	3/5	0/5	NA ^c	NA
3 days	DEV	5/6	6/6	3/3	3/3	NA	NA
	PBS	4/5	5/5	4/4	4/4	NA	NA
	rDEV-re6	1/11	2/11	1/11	0/11	0/10	0/10
1 week	Inactivated vaccine	5/5	4/5	NA	NA	NA	NA
	DEV	4/7	5/7	2/2	2/2	NA	NA
	PBS	7/8	6/8	1/1	1/1	NA	NA
() () () () () () () () () ()	rDEV-re6	0/12	0/12	0/12	0/12	0/12	0/12
2	Inactivated vaccine	2/11	2/11	2/11	3/11	1/11	0/11
2 weeks	DEV	3/6	4/6	3/3	3/3	NA	NA
	PBS	7/7	6/7	4/5	4/5	NA	NA
	rDEV-re6	0/12	0/12	0/12	0/12	0/12	0/12
2	Inactivated vaccine	0/12	0/12	0/12	0/12	0/12	0/12
3 weeks	DEV	6/8	7/8	NA	NA	NA	NA
	PBS	3/5	5/5	NA	NA	NA	NA
	rDEV-re6	0/12	0/12	0/12	0/12	0/12	0/12
6	Inactivated vaccines	0/12	0/12	0/12	0/12	0/12	0/12
5 weeks	DEV	8/9	9/9	3/3	3/3	NA	NA
	PBS	6/7	6/7	NA	NA	NA	NA

National Strategies for Controlling Avian Influenza Viruses Bangladesh

Background information

Animal population

Birds	Million	Animal	Million
Chicken	249	Cattle	23.34
Duck	47.2	Buffalo	1.45
		Goat	25.27
		Sheep	3.14

Major animal diseases of concerns

Birds		Animal		
NCD	IBD	FMD	PPR	
HPAI	Salmonellosi s	Anthrax	H.S	
Mycoplasm a	Duck Plague			

Influenza (H5N1)outbreaks history

Year	Commercial	Backyard	Total	
2007	44	25	69	
2008	208	18	226	
2009	23	09	32	
2010	29	02	31	•
2011	168	03	171	
2012	23	0	23	•
2013	3	0	3	
2014	2	0	2	
Grand Total	500	57	557	

Clade/sub clade: 2.2.2 (2.2),

- 2.3.4, 2.3.2.1
- Up tp 2010: only one subclade (2.2.2) exist
- From 2011 (Jan): two more sub clades evolved
- Temporal distribution:
- Less humid and dry part of the year
- Spatial distribution

OIE Regional Workshop on

Enhancing Influenza Viruses

National Surveillance Systems, Tokvo, 26–28 August 2014

- 52 districts affected
 Not reported from hilly districts
- H7N9 is not yet detected in Bangladesh

National control strategy

- Intensive surveillance
- Strengthening diagnostic capability
- Early detection and stamping out and compensation
- Decontamination, movement restriction
- > Enhanced biosecurity in poultry farms
- Hygienic improvement of live bird markets
- Public Awareness
- Strengthening coordination with Public health and environment sector

ivational surveillance programme

Avian Influenza Surveillance Types

Actives Surveillance	Passive Surveillance
≻Actives Diseases search-Field man and Animal Workers collcet the seram,clocak and oropha sample from Ducks ,chicken,pig for antibodies and virues identification.	Farmers reports even to Veterinary Authorities
>Live Birds Market - Animal Health Wokers collect the sample from the LBM	Fields Veterinarians Reports to Epidemiology Unit ,DLS
➢Farms- Labs, person collect the sample from the farms	Volunteers to Reports Local Upazlla Office
>Backyeards - Animal Health Worker regularly serum and swab sample collect from Backyeard chicken .	Laboratories Reports to Epidemiology Unit
≻Environments-Field workers collect the sample from LBMs.	
>Wetlands-Faces sample collected	

Vaccination programme

- > Titles: Avian Influenza Vaccination Trial in Bangladesh
- Duration- 2012-2013
- Object : To reduce avian influenza outbreaks to a level that can be responded effectively through conventional stamping out procedure

Location- Two Districts Type of Vaccine:

• Inactivated Vaccine :

- Inactivated AIV H5N1 Re-6 vaccine (Merial)
- Nobilis Influenza H5, Inactivated H5N2 (Intervet)
- Vector-vaccine :

Vectormune HVT-AIV vaccine (CEVA-Biomune)

Laboratories Diagnosis

Diagnosis Center	Number	Facilities Available
District Veterinary Hospital	35	Necropsy, Rapid Al Antigen Detection (RAD) .
Central Veterinary hospital	01	
Field disease investigation laboratory	09	Necropsy, RAD, serology and bacteriological analysis
Central disease investigation laboratory	01	
Bangladesh Livestock Research Institute	01	National Reference Laboratory for Avian Influenza
Regional Reference Laboratory for PPR	01	Serology, Molecular test PPR

Sualey of vacunation

The vaccination trial was implemented through

public-private partnership under the control of DLS

Vaccination targets

- all existing breeder stocks
- all DOCs produced by the breeder farms
- all existing commercial layers
- Vaccines: Inactivated vaccines for breeders and layers and live vector vaccine for DOCs
- Post-vaccination serological monitoring using Clade 2.2 and clade 2.3.2.1 antigens
- Intense clinical and virological surveillance

Serological monitoring

- Blood samples ware tested at CDIL, BLRI and BAU
- Samples was tested for HI antibody titre using antigen prepared from Clade 2.2 and Clade 2.3.2.1 viruses
- **Result** Antibody titer of the vaccination birds ware satisfactory.
- 2nd Avian Influenza Vaccination Trial is going on for detection of antibodies and identification of shading viruses after vaccination in nine districts.

OIE Regional Workshop on Enhancing Influenza Viruses National Surveillance Systems, Tokyo, 26-28 August 2014

Lessons learnt

- Containing the disease is more challenging than presumed
- Early reporting, rapid diagnosis and quick response is very important
- Bio-security of farms and markets should be given highest priority.
- LBMs are one of the main source of spreading AI virtues.
- Quarantine, movement control, monitoring of trades are very important
- Prudent communications may reduce the risk of market collapse and prevent more cases in both humans and animals
- Effective vaccination need high farm Bio-security, proper surveillance and monitoring, Good performance of veterinary Service. early
- Strengthen Public and Privet partnership is very import for AI control.

Future plan

- Risk-based surveillance to complement existing passive and active surveillance systems
- Integration of human and animal surveillance systems using One Health Approach
- Integration of Community Animal Health Worker-based participatory approaches to increase sensitivity of the surveillance system
- Restructuring of live bird markets (LBMs) and poultry production and marketing practices towards more bio-securety approach that will ensure food safety and public health
- Encouragement of community bio-security practices for better compliance
- Extended vaccination program, monitoring and evaluation of vaccine and exist from vaccination.

National Strategies for Controlling Avian Influenza Viruses

Indonesia

Muhammad Azhar Hendra Wibawa

OIE Regional Workshop on Enhancing Influenza Viruses National Surveillance Systems, Tokyo, 26–28 August 2014

Outline

- Background information
- Influenza outbreak history
- National control strategy
- National surveillance programme
- Development influenza virus monitoring
- Vaccination programme
- Lessons learn
- OIE Regional Workshop on Enhancing Influenza Viruses Natio Surveillance Systems, Tokyo, 26–28 August 2014

Animal Population

No	Types of Animals	2011	2012	2013
A.	Ruminant (Cattle, Buffalo Buffalo Goat, Sheep)	45,463,000	49,357,000	47,821,000
В	Non Ruminant (Pig, Horse, Horse, Rabbit)	864,000	9,412,000	9,182,000
С	Poultry			
1	Broiler chicken	1,177,991,000	1,244,402,000	1,344,191,000
2	Layer chicken	124,636,000	138,718,000	146,622,000
3	Native chicken	264,340,000	274,564,000	276,777,000
4	Duck	43,488,000	49,296,000	51,355,000
5	Quail	7,357,000	12,234,000	12,553,000
6	Pigeon	1,209,000	1,806,000	2,139,000
	Total Poultry	1,619,021,000 00	1,721,020,000 00	1,833,637,000 00
Surveilla	nce Systems, Tokyo, 26–28 August 2014			

25 Major Animal Diseases

Decree of Minister of Agriculture No. 4026/Kpts/OT.140/04/2013 , Date 1 April 2013

Anthrax	SE	Jembrana	Campylobact.				
Rabies	Nipah	Surra	Cysticercosis				
Salmonellosis	IBR	Para TB	Q Fever				
Brucellosis (B. Abortus)	Bovine TB	Toxoplasmosis	FMD*				
AI	Leptospirosis	CSF/HC	BSE*				
PRRS	Brucellosis (B. Suis)	Swine Influenza	RVF*				
Helminthiasis							
Blue: Priority Diseases		Red*) Exo	Red*) Exotic Diseases				

HPAI Outbreak in Backyard Poultry Monthly, 2009 - July 2014

HPAI Outbreak in Backyard Poultry in 2012, by Province

HPAI Outbreak in Backyard Poultry in 2013, by Province

HPAI Control and Eradication Strategies to Achieve Free Status 2020 (Roadmap)

- 1. Bio-security
- 2. Vaccination
- 3. Depopulation
- 4. Movement control
- 5. Surveillance
- 6. Compartmentalization and zoning
- 7. Poultry market chain improvement
- 8. Supporting by: IEC, PPP, Legislation, management

National Surveillance Programme

Emphasizing Avian Influenza Surveillance:

- Continue risk based surveillance of poultry
- Live Bird Market Survey
- H7N9 Emergency Surveillance
- Influenza Virus Monitoring (IVM)

On going process to develop integrated National Animal Health Information System (i-SIKHNAS)

OIE Regional Workshop on Enhancing Influenza Viruses Nationa Surveillance Systems, Tokyo, 26-28 August 2014

Surveillance Strategy

- 1. Enhancing the field animal health network's capability to conduct passive surveillance nationally in accordance with World Animal Health Organization (OIE) standards, and strengthen the national disease reporting system
- 2. Enhancing the epidemiological and scientific basis of active surveillance programme to ensure they are risk based
- 3. Increasing the scope of laboratory capacity and optimizing the investment in laboratories by developing a network.
- 4. Expanding **quality assurance and accreditation** within the public sector laboratories.
- 51 Regional Workshop on Scheduler and Laboratory linkage Surveillance Systems, Tokyo, 26–28 August 2014

Surveillance Influenza Virus by 8 DICs

- In 2009/2010 Conducting Influenza Virus A/H1N1 Risk Based Surveillance by 8 DICs, collected 3.960 samples (2.804 samples for PCR and 1.156 serum) from pig population in Sumatera, Java, Bali, Kalimantan and Sulawesi. The results of laboratory testing that not found clinical signs and not found Influenza A/H1N1 novel virus.
- Surveillance Influenza Virus A/H5N1 collected samples (Swab, serum, organ, feather, egg etc) form poultry 21.141 samples (2010), 33.829 (2011), 33.162 (2012), 41.342 (2013).
- Surveillance Influenza Virus A/H7N9 in 2012/2013 collected environmental samples from 263 Live Bird Markets in Greater Jakarta, Surabaya, Medan: 864 samples. Result: 33,7 % Matrix (+) dan 0 % H7N9.

LBM Surveillance of H5N1 in Greater Jakarta, 2009-2013

Decreasing prevalence of H5 subtype from 2009-2012
In 2013, H5 prevalence increase in the same time of new clade outbreak (actually surprising peak from June/ July after the peak but coinciding with duck outbreaks during that time on Java, see map)

Overall Results LBMs Surveillance

Greater Jakarta, since 2009

7632 environmental swab samples collected 47% influenza A virus (+) and 27% H5 subtype (+)

Surabaya

Up to September 2013, 292 environmental swab samples collected with PCR result 40% influenza A virus (+) and 6% H5 subtype (+)

Medan

Up to October 2013, 295 environmental swab samples collected with PCR result 2% influenza A virus (+) and 2% H5 subtype (+)

Result of H7 PCR Testing Environment Sample from LBMs

Region	year	month	Total	Matrix	Matrix	H7	H7	%M+	%H7
			Sample						
				Pos	Neg	Pos	Neg		
JABODETABEK	2012	November	77	32	45	0	32	41,6	0
JABODETABEK	2013	February	71	29	42	0	29	40,8	0
JABODETABEK	2013	March	76	39	37	0	39	51,3	0
JABODETABEK	2013	April	102	46	56	0	46	45,1	0
JABODETABEK	2013	May	208	86	122	0	86	41,3	0
JABODETABEK									
Total	2013		534	232	302	0	232	43,4	0
MEDAN	2013	March	74	1	73	0	1	1,4	0
MEDAN	2013	May	74	1	73	0	1	1,4	0
MEDAN Total			148	2	146	0	2	1,4	0
RAWAKEPITING	2013	May	36	16	20	0	16	44,4	0
SURABAYA	2013	March	73	25	48	0	25	34,2	0
SURABAYA	2013	April	73	16	57	0	16	21,9	0
SURABAYA									
Total	2013		146	41	105	0	41	28,1	0
Grand Total			864	291	573	0	291	33,7	0

Proportion prevalence of Clade 2.1.3 and Clade 2.3.2.1 in LBM Greater Jakarta Nov 2012 – Oct 2013

Development of Influenza Virus Monitoring (IVM) Network for Animal Health

Membership of the current IVM laboratory network with a description of their main role with respect to this monitoring network

Outcomes of IVM Network:

- The most innovative aspect of the IVM network: **the formalization of an objective system to assist decision makers** following the detection of a variant or newly introduced H5N1 virus, clade 2.3.2.1;
- These lead to the successful and timely development of an AI vaccine (*Afluvet*) based on the characterization of a local H5N1 clade 2.3.2.1 isolate;
- Development of pre-screening and full screening protocols for antigenic characterization using standardised panels of reagents;
- Development of the web-based database and bioinformatics tools (IVM Online) for antigenic and genetic characterisation and visualisation;
- Updated molecular diagnostics techniques (PCR for Type A, H5N1 and H5N1 clade 2.3.2.1);
- Increased capacity of Indonesian animal health laboratories to do own antigenic and genetic characterization (standarized HI and sequencing methods for AI);
- Improved knowledge of circulating H5N1 viruses; which helped HPAI control policies, including vaccination by ensuring H5N1 vaccines remain effective in the face of field virus antigenic drift and multiple clades circulation. This may include recommendations for updated challenge and vaccine

IVM Network:

- The IVM network shows the successful implementation of coordinated and integrated monitoring system for H5N1 HPAI virus in Indonesia and help decision makers in respond with the detection of a variant or newly introduced virus into Indonesia.
- The IVM network has relevance for other countries seeking to establish national laboratory networks for the surveillance of avian influenza and other pathogens.

Evolution of H5(N1) Subtype Virus in Indonesia

Genetic Mapping of H5N1 virus in Indonesia between 2008 and 2013

The benefits of the IVM network approach to HPAI surveillance

- e.g. the detection of the introduction of a new clade (2.3.2.1) H5N1 virus into Indonesia

Vaccination Programme

- 1. Since 2011: stop imported vaccines, then using national vaccine products with local H5N1 (clade 2.1.3) strain master seed. 5 National AI Vaccine Producers (1 Gov & 4 Private)
- 2. Outbreak of new clade 2.3.2 in December 2012, then June 2013: produce local Vaccine H5N1 (clade 2.3.2.1). All vaccines should be tested by National Veterinary Drug Assay Laboratory before registered at Ministry of Agriculture.
- 3. 2014: plan to produce new bivalent vaccine (clade 2.1.3. and 2.3.2) for chicken and duck. Strain isolates of master seed and challenge test recommended by results of IVM online
- 4. Since 2009: changed from mass vaccination to targeted vaccination strategy. 3 keys proper vaccination : (1) registered vaccine (2) programme/booster (3+2) and (3) OIE Report Vaccine and the rest in the strategy of the s

Comparison of Imported and Local H5N1 Vaccines Used

Lessons learnt (Constrains)

- In the specific case of the IVM network, such a change in process (*e.g sequencing followed by antigenic cartography*) would need to be considered carefully, as the benefits of introducing new technology must be weighed up against the potential loss of data consistency and the cost.
- Lack of local government support on budget allocation, veterinary services institution, number of veterinarian.
- Lack of small scale commercial poultry farmer's awareness in implementing minimal standard procedures of Bio-security (→ 3 zones Bio-security), Vaccination (→3 proper Vaccination), Reporting outbreak, Depopulation (→PVUK/CPVS).

No law enforcement on movement control of poultry from prinfected farm into poultry market chains

Future Plan

- Indonesia Roadmap to achieve HPAI Free Status 2020
- 3 Key principles to implement the strategies:
- 1. Comprehensive \rightarrow all poultry sectors and market chains
- 2. Sustainability
- 3. Involvement of all stakeholders

OIE Regional Workshop on Enhancing Influenza Viruses National Surveillance Systems, Tokyo, 26–28 August 2014

Thank you Terima kasih

IE Regional Workshop on Enhancing Influenza Viruses Na urveillance Systems, Tokyo, 26–28 August 2014

National Strategies for Controlling Avian Influenza Viruses

Australia

OIE Regional Workshop on Enhancing Influenza Viruses National Surveillance Systems, Tokyo, 26–28 August 2014

Influenza outbreaks history

- Avian influenza
 - HPAI 1976, 1985, 1992, 1994, 1997, 2012, 2013
 - All ≤ 3 farms
 - All eradicated by stamping out
 - LPAI (H5, H7) 1976, 1992, 2006, 2012, 2013
 - All ≤ 2 farms
 - All but 2006 eradicated by stamping out

Background information

- 1600 commercial poultry farms
 - 560 million broilers per year
 - 22.5 million layers 4.8 billion eggs
- 1.5 million chickens in backyard flocks
- Major animal diseases
 - Avian influenza in wild birds only
 - Country freedom for HPAI
 - No H5N1 or H7N9

OIE Regional Workshop on Enhancing Influenza Viruses National Surveillance Systems, Tokyo, 26-28 August 2014

National control strategy

Avian influenza – eradicate the disease from domestic and zoo birds and re-establish Australia's HPAI-free status in the shortest possible time.

- Quarantine and stamping out
- Decontamination
- Tracing and surveillance
- Enhanced biosecurity
- Cost-sharing arrangements (HPAI 80:20; LPAI 50:50)

OIE Regional Workshop on Enhancing Influenza Viruses Surveillance Systems, Tokyo, 26-28 August 2014

OIE Regional Workshop on Enhancing Influenza Viruses National Surveillance Systems, Tokyo, 26–28 August 2014

National surveillance programme

- Outbreak investigations to rule out influenza in disease events
 - 1200 poultry samples annually
- Wild bird surveillance
 - 9000 samples annually
 - 2% prevalence of AI infection in duck species
 - Lower prevalence in other species
 - All H types and all N types present
 - All low pathogenicity strains

OIE Regional Workshop on Enhancing Influenza Viruses National Surveillance Systems, Tokyo, 26–28 August 2014

Laboratory diagnosis

- Seven state/territory laboratories
 - All with capacity to test for influenza viruses
 - Confirmatory testing must be done at AAHL
- Australian Animal Health Laboratory
 - OIE reference laboratory for AI
 - Full range of techniques for diagnosing influenza viruses
 - Hemagglutination, HI, immunodiffusion, ELISA, PCR
 - Identification of all H and all N types

DIE Regional Workshop on Enhancing Influenza Viruses № Surveillance Systems, Tokyo, 26-28 August 2014

Vaccination programme

- No vaccination used for avian influenza to date
- Prepared to use vaccine if standard procedures do not control an outbreak

OIE Regional Workshop on Enhancing Influenza Viruses National Surveillance Systems, Tokyo, 26–28 August 2014

Lessons learnt

- Recent movements to very large, free range flocks may increase the risk of AI outbreaks in commercial poultry farms.
- Growing size of poultry farms requires consideration of different approaches to culling infected birds compared with historical approaches

DIE Regional Workshop on Enhancing Influenza Viruses Surveillance Systems, Tokyo, 26-28 August 2014

Future plan

- Maintenance of national freedom from highly pathogenic avian influenza by strict border controls and stamping out of outbreaks.
- Survey of poultry farms to identify factors associated with AI infection
- National surveillance strategy

OIE Regional Workshop on Enhancing Influenza Viruses Nationa Surveillance Systems, Tokyo, 26-28 August 2014