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SRR EE  Hh & 5a 7 55 E#E 28 5 Keynotes- & 25515 /A Electronic cooling,

I

Heat exchanger, Renewable energy, Microfluidics, Droplet dynamics, Nanofluids, Bubble dynamics,
Waste heat utilization, Air-conditioning, Power Plant, Pipeline and heat pump, Supercritical fluids,
Chemical reactions, Bioengineering, Molten salt and phase change material, Numerical technique,
Nuclear energy, Porous media and thermal radiation, Thermal conduction, Heat pipe, Aerodynamics
and astronautics, Thermal radiation, Jet flow 23 {358 - A& A G 3ZZ 8T Session 3 Renewable
Energy HYEFFA > WEHRRSCEETRE Y - (BF5 SCERIHE R 2 PRI 28

Applied Thermal Engineering (special issue)

International Journal of Multiphase Flow (selected papers);

Journal of Bionic Engineering (special issue)

Chinese Science Bulletin (special issues)
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F=—. Preliminary executive program of IHTS 2014

May 6 10:00-24:00 | Registration Lobhy
(Tuesday) 17:45-19:30 Reception Coffee House
7:30-8:30 Registration Lobby
8:30-9:10 Opening ceremony Beijing Hall
9:10-9:30 Photo-taking Hotel Entrance
9:30-10:05 Plerjary 1: Pool boililng on multiscale surface features by Prof. Satish Kandlikar; Beijing Hall
Chaired by Prof. Yuying Yan
10:05-10:30 | Coffee break Outside Beijing Hall
Plenary 2: Size effects on thermophysical properties of nanomaterials by Prof.
10:30-11:05 Xing Zhang; Beijing Hall
Chaired by Prof. Yuying Yan
Plenary 3: Micro to macroscale phase change heat transfer by the phase
May 7 11:05-11:40 | separation concept by Prof. Jinliang Xu; Beijing Hall
(Wednesday) Chaired by Prof. Yuying Yan
11:40-11:50 Introduction of Mechanical Engineering: Fluids and Thermal Journal in Elsevier, Beijing Hall
by Ms. Betty Chang
11:50-13:00 | Lunch Coffee House
Session 1 Electronic cooling | Beijing Hall A
Session 2 Heat exchanger | Beijing Hall B
Session 3 Renewable energy | Beijing Hall C
13:00-15:20
Session 4 Microfluidics | Kunming Hall
Session 5 Droplet dynamics Nanjing Hall
Session 6 Nanofluids Chongging Hall
Session 7 Bubble dynamics Hangzhou Hall
15:20-15:40 Coffee break Qutside Beijing Hall
Session 8 Electronic cooling Il Beijing Hall A
Session 9 Heat exchanger Il Beijing Hall B
Session 10 Renewable energy Il Beijing Hall C
15:40-17:40 Session 11 Microfluidics Il Kunming Hall
Session 12 Waste heat utilization Nanjing Hall
Session 13 Air-conditioning Chongging Hall
Session 14 Power Plant Hangzhou Hall
18:00-20:00 Welcome Banquet Coffee House
Plenary 4: Fundamental investigation of droplets evaporation: experiments and
8:30-9:10 theory by Prof. Khellil Sefiane; Beijing Hall
Chair: pending
Plenary 5: Study on heat transfer enhancement of refrigerant phase change
9:10-9:50 exchangers by Prof. Wenquan Tao; Beijing Hall
Chair: pending
9:50-10:10 Coffee break Beijing Hall
Viay 8 10:10-10:50 zlr:ear:::r;:r;;\;‘lr:cgroﬂwdlcs and lab-on-chip technology by Prof. Dongging Li; Outside Beijing Hall
(Thursday) Plenary 7: Natural solutions help improve heat transfer by Prof. Yuying Yan;
10:50-11:30 ) ) Beijing Hall
Chair: pending
11:30-13:00 Lunch Coffee House
Session 15 Pipeline and heat pump Beijing Hall A
Session 16 Supercritical fluids Beijing Hall B
13:00-15:20
Session 17 Chemical reactions Beijing Hall C
Session 18 Bioengineering Kunming Hall
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Session 19 Molten salt and phase change material Nanjing Hall
Session 20 Numerical technique Chongging Hall
Session 21 Nuclear energy | Hangzhou Hall
15:20-15:40 | Coffee break Outside Beijing Hall
Session 22 Porous media and thermal radiation Beijing Hall A
Session 23 Thermal conduction Beijing Hall B
Session 24 Heat pipe Beijing Hall C
15:40-17:40 Session 25 Aerodynamics and astronautics Kunming Hall
Session 26 Thermal radiation Nanjing Hall
Session 27 Jet flow Chongging Hall
Session 28 Nuclear energy Il Hangzhou Hall
18:00-20:00 | Dinner Coffee House
I(\::z:y) 8:30-17:30 Lab tour and farewell
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Session 3: Renewable energy |; Beijing Hall C, Chairs: Prof. Jinjia Wei and Prof. Mengchang Tsai

Wednesday, May 7, 2014

Time Paper No. Authors Title of the presentation

13:00-13:20 | Keynote 3 B.Yu Fast thermal simulation of a heated crude oil pipeline with a BFC-based POD reduced-order model
13:20-13:32 IHTS140024 1. ). Wei, L. Zhang Thermal performance of a malten salt cavity receiver

13:32-13:44 IHTS140025 H. P. Chen, R .Ma, X.L. Li, et al. Research on thermoelectric properties of concentrating PV / T cogeneration system

13:44-13:56 IHTS140066 Y. Lu, Y. Tian, H. W. Lu, et al. Study of solar heating biogas fermentation system with a phase change thermal storage device
13:56-14:08 IHTS140117 J.F. Lu, T. Yu, J. Ding Nonuniform heat transfer performances of molten salt thermocline storage system

14:08-14:20 IHTS140118 J. F. Lu, ). Ding, J. P. Yang Enhanced heat transfer performances of molten salt receiver with spirally grooved pipe
14:20-14:32 IHTS140171 Z.Z.7hao, Y. F. Gao Introduction to solar energy application in building

14:32-14:44 IHTS140286 L. Xiang, Y. Lin, P. Hao, et al. Thermal analysis of a flat heat pipe receiver in solar power tower plant

14:44-14:56 IHTS140287 M. C. Tsai, S. W. Kang, H. Y. Li, et al. | Experimental study of constant pressure two phase thermosyphon with a thermoelectric generator
14:56-15:08 IHTS140288 M. C. Tsai, S. W. Kang, H. Y. Li, et al. | Experimental study of cyclical two-phase reverse loop thermosyphon

15:08-15:20 IHTS140402 S. F. Wang, Q. B. He, S. F. Wang Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids

RN Gt TR W RATKIA TR 48 2 iR SRR A4 B4Rt
Experimental Study of Constant Pressure Two Phase Thermosyphon with a Thermoelectric

Generator
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1. AREIEEAYEE David A. McNeil > 285 The effect of substrate on boiling data on mini-pin-fin
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2. ZEENIYNEEEAE Dr. Chen Li #5322 Toward Sophisticated Controls of Flow Boiling in
Microchannels at Micro/Nanoscale - jii &4 & ( flow boiling) & —7f& i A Y EVEE = > 1
B2 FERIERE RIS - BVEERDRASTAES - Wi LB R REBUE = EVA B 5 2L
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SR B A &(E L IIPEE] - 41 bubble confinements, viscosity and surface tension
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3. A EE % S University of Lisbon Y2+ A. S. Moita 285 Heat and Mass Transfer at interfaces
between solid surfaces and Non-Newtonian Fluids - 55k AR TERL R B i oA > JEA-0E
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. A EFEE Y Dongsheng Wen Zi$% » ¢ —%& Nanomaterial transport for hydrocarbon
exploration and production - JEgf - S ACHEE T HY SRR - RSB ARSI s
B ORI EAE AT 2RV EETTIE - ZOREUTRF I AR 2R TSR e Z AU E
H - ok eI R mAvb 5/ S el e RF M - mT DA S A e
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. KEEERY Vishwas V. Wadekar {81 > 5% Industrial Vaporizers — Some Examples of
Fascinating Research and Demanding Applications - S (&7 e A T 2 ery4aik - 121
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s EV BRI ES - (B2 A TR mie th e — Ry 5 FIREPAYEE - JEE
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. ARH HZAHY Nagasaki University FY Tomohiko Yamaguchi f#i-f- » #%3% Lattice Boltzmann
simulation of liquid-gas two-phase flow with large density difference in complex boundary >
Tomohiko Yamaguchi {#L-Z8FEVE 2 — TR E AL ol IR EREEEWY R - fildl - fEFED
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Short description of IHTS 2014

Supported by the National Natural Science Foundation of China (NSFC), and the Royal Society of UK, Ministry

of Science and Technology of the People’s Republic of China, the Program of Introducing Talents of Discipline
to Universities (111 Project, B12034), the International Heat Transfer Symposium is held in North China

Electric Power University, Beijing, China from 6 to 9 May, 2014. The symposium aims to bring together leading
academic scientists, researchers and scholars from all over the world to exchange and share their experiences
and research results about heat transfer and the related applications, and discuss practical challenges

encountered and solutions adopted. The following topics are covered:

Micro/Nano scale heat transfer: Targeted for the performance improvement of high power density energy

saving devices/systems such as light-emitting diodes (LED) and other miniaturized systems, subtopics include
single-phase, multi-phase (boiling and condensation) heat transfer in micro/nano scale, radiation heat
transfer in micro/nano scale, fundamental micro/nano scale heat transfer, novel heat transfer devices,
experiments and numerical simulations of micro/nano flow and heat transfer, nature-induced heat transfer

phenomena and applications, etc.
Heat transfer in energy and power systems: Targeted for the increment of the energy utilization efficiency,

subtopics include flow and heat transfer issues in various heat exchangers, heat transfer enhancement, heat
transfer coupling with material corrosion and chemical reactions, heat transfer for low grade energy

utilization, heat transfer in chemical and nuclear reactor systems, etc.

Heat transfer in renewable energy utilizations: Targeted for the efficiency, safety and investment cost

improvement, subtopics include flow and heat transfer in solar receivers, heat transfer in solar thermal-
chemical reactors, various heat exchangers for renewable energy utilizations, coupled radiation and
convective heat transfer, experiments and numerical simulations of heat transfer in renewable energy
systems, etc.

The detailed program can be seen from the following executive program



Preliminary executive program of IHTS 2014

May 6 10:00-24:00 | Registration Lobby
(Tuesday) 17:45-19:30 | Reception Coffee House
7:30-8:30 Registration Lobby
8:30-9:10 Opening ceremony Beijing Hall
9:10-9:30 Photo-taking Hotel Entrance
9:30-10:05 Plen.ary 1: Pool boilihg on multiscale surface features by Prof. Satish Kandlikar; Beijing Hall
Chaired by Prof. Yuying Yan
10:05-10:30 | Coffee break Outside Beijing Hall
Plenary 2: Size effects on thermophysical properties of nanomaterials by Prof.
10:30-11:05 | Xing Zhang; Beijing Hall
Chaired by Prof. Yuying Yan
Plenary 3: Micro to macroscale phase change heat transfer by the phase
May 7 11:05-11:40 | separation concept by Prof. Jinliang Xu; Beijing Hall
(Wednesday) Chaired by Prof. Yuying Yan
11:40-11-50 Introduction of Mechanical Engineering: Fluids and Thermal Journal in Elsevier, Beijing Hall
by Ms. Betty Chang
11:50-13:00 | Lunch Coffee House
Session 1 Electronic cooling | Beijing Hall A
Session 2 Heat exchanger | Beijing Hall B
Session 3 Renewable energy | Beijing Hall C
13:00-15:20 . : — _
Session 4 Microfluidics | Kunming Hall
Session 5 Droplet dynamics Nanjing Hall
Session 6 Nanofluids Chongqing Hall




Session 7 Bubble dynamics Hangzhou Hall

15:20-15:40 | Coffee break Outside Beijing Hall
Session 8 Electronic cooling II Beijing Hall A
Session 9 Heat exchanger Il Beijing Hall B
Session 10 Renewable energy Il Beijing Hall C

15:40-17:40 | Session 11 Microfluidics II Kunming Hall
Session 12 Waste heat utilization Nanjing Hall
Session 13 Air-conditioning Chongqing Hall
Session 14 Power Plant Hangzhou Hall

18:00-20:00 | Welcome Banquet Coffee House
Plenary 4: Fundamental investigation of droplets evaporation: experiments and

8:30-9:10 theory by Prof. Khellil Sefiane; Beijing Hall
Chair: pending
Plenary 5: Study on heat transfer enhancement of refrigerant phase change

9:10-9:50 exchangers by Prof. Wenguan Tao; Beijing Hall
Chair: pending

9:50-10:10 Coffee break Beijing Hall

May 8 10-10-10:50 zfgirésr:lcll\illri]cgrofluidics and lab-on-chip technology by Prof. Dongqing Li; Outside Beijing Hall
(Thursday) 10'50.11:30 Plen.ary 7: Natural solutions help improve heat transfer by Prof. Yuying Yan; Beiiing Hall

Chair: pending

11:30-13:00 | Lunch Coffee House
Session 15 Pipeline and heat pump Beijing Hall A
Session 16 Supercritical fluids Beijing Hall B

13:00-15:20 : : ,
Session 17 Chemical reactions Beijing Hall C
Session 18 Bioengineering Kunming Hall




Session 19 Molten salt and phase change material Nanjing Hall
Session 20 Numerical technique Chongqing Hall
Session 21 Nuclear energy | Hangzhou Hall
15:20-15:40 | Coffee break Outside Beijing Hall
Session 22 Porous media and thermal radiation Beijing Hall A
Session 23 Thermal conduction Beijing Hall B
Session 24 Heat pipe Beijing Hall C
15:40-17:40 | Session 25 Aerodynamics and astronautics Kunming Hall
Session 26 Thermal radiation Nanjing Hall
Session 27 Jet flow Chongging Hall
Session 28 Nuclear energy I Hangzhou Hall
18:00-20:00 | Dinner Coffee House
May 9 8:30-17:30 | Lab tour and farewell

(Friday)




Session 1: Electronic cooling I, Beijing Hall A, Chairs: Prof. Qiuwang Wang and Prof. Maogiong Gong

Wednesday, May 7, 2014

Time Paper No. Authors Title of the presentation
13:00-13:20 | Keynote 1 D. A. McNeill The effect of substrate on boiling data on mini-pin-fin heat sinks
U. Pasquier, Q. W. Wang, T. Ma, et . . ) o . o
13:20-13:32 | IHTS140042 | CFD simulation of fluid flow distribution inside Printed Circuit Heat Exchanger headers
al.
13:32-13:44 | IHTS140064 | Y.B.Li,S.C. Yao Porous Media Modeling of Micro-channel Cooled Electronic Chips with Non-uniform Heating
13:44-13:56 | IHTS140099 | P. Zhang, M. Cai, X. P. Chen, et al. Enhanced thermal performance of 100 Watt high-power LEDs array using vapor chamber-based plate
T. Hirokawa, M. Murozono, e . . N
13:56-14:08 | IHTS140163 ) Heat Transfer Characteristics Due to Evaporation of Shear-driven Liquid Film Flow
Y. Shinmoto, et al.
14:08-14:20 | IHTS140175 | H.K.Ma,Y.S. Li Investigation of a D-MPMF on LED lighting Thermal Management
14:20-14:32 | IHTS140206 | Z. Xu, B. X. Li, Y. N. Zhang, et al. Study of heat dissipation performance for different structural novel heat sinks
Z.S.Deng, S. F. Mei, Y. X. Zhou, . . . -
14:32-14:44 | IHTS140218 tal Capability study on hybrid mini/micro-channel heat sink based on liquid metal and water
etal.
14:44-14:56 | IHTS140221 | H.B. Xu, C. C. Qian, S.Q. Shao, et al. | Experimental investigation on heat transfer of spray cooling with R134a
14:56-15:08 | IHTS140285 | Y.Tang, X.R.Ding, Y.J. Li, etal. The application of heat pipe heat sink for high power LED lamps
15:08-15:20 | IHTS140331 | M. Rajagopal, K. G Simulation of fluid flow and heat transfer characteristics in a micro-channel heat sink

Session 2: Heat exchanger |, Beijing Hall B, Chairs: Prof. Chichuan Wang and Prof. Guihua Tang

Wednesday, May 7, 2014

Time Paper No. Authors Title of the presentation
13:00-13:20 | Keynote 2 B. Sunden On computational opportunities in processes of relevance in energy systems
C. C. Wang, K.Y. Chen, J.S. Liaw, . . . .
13:20-13:32 | IHTS140052 etal Investigation of the semi-dimple vortex generator applicable to fin-and-tube heat exchangers
Numerical study of the acid condensation and heat transfer characteristics on H-type fin surface with dimples
13:32-13:44 IHTS140068 G. H. Tang, Y.C. Wang

and longitudinal vortex generators




13:44-13:56 | IHTS140071 | M. C. Guo, Y. Ma, A.S. Li, etal. Numerical simulation of steam condensation heat transfer in a direct air-cooled tube
13:56-14:08 | IHTS140092 | Y. T. Wu, C. Wang, B.Liu, et al. Numerical simulation on Hitec salt mixed convection with heat wall conduction in horizontal square tube
14:08-14:20 | IHTS140130 | H.LI, S. Bian, T. Wu, et al. Heat transfer characteristics of R113 refrigerant flowing through outward convex corrugated tubes
14:20-14:32 | IHTS140141 | B. X. Li, H. Z. Han, W. Shao. Experimental research of heat transfer performance in a corrugated tube heat exchanger
) . An experimental observation of the effect of flow direction for the evaporation heat transfer in plate heat
14:32-14:44 | IHTS140156 | C.Y.Yang, Y. H. Lin, G. C. Li
exchanger

14:44-14:56 | IHTS140166 | Y.F. Gao,J.J. Liu,J. W. Wu Simulation analysis of soil’ influence on heat transfer performance of direct exchange ground heat exchanger

Y. Q. Feng, Y. N. Zhang, B. X. Li, o ) L
14:56-15:08 | IHTS140167 etal Heat transfer characteristics and parametric optimization of outward convex corrugated tubes

J. H. Zhang, L. Y. Zhang, T. Zhang i L . . .
15:08-15:20 | IHTS140199 Fouling detection in heat exchanger using a bilinear model-based parameter estimation method

etal.

Session 3: Renewable energy |; Beijing Hall C, Chairs: Prof. Jinjia Wei and Prof. Mengchang Tsai

Wednesday, May 7, 2014

Time Paper No. Authors Title of the presentation

13:00-13:20 | Keynote 3 B. Yu Fast thermal simulation of a heated crude oil pipeline with a BFC-based POD reduced-order model
13:20-13:32 | IHTS140024 | J.J. Wei, L. Zhang Thermal performance of a molten salt cavity receiver

13:32-13:44 | IHTS140025 | H.P.Chen,R .Ma, X.L. Li, et al. Research on thermoelectric properties of concentrating PV / T cogeneration system

13:44-13:56 | IHTS140066 | Y.Lu, Y. Tian, H. W. Lu, et al. Study of solar heating biogas fermentation system with a phase change thermal storage device
13:56-14:08 | IHTS140117 | J.F. Lu, T Yu,J. Ding Nonuniform heat transfer performances of molten salt thermocline storage system

14:08-14:20 | IHTS140118 | J.F. Lu,J.Ding,J.P. Yang Enhanced heat transfer performances of molten salt receiver with spirally grooved pipe
14:20-14:32 | IHTS140171 | Z.Z.Zhao,Y.F Gao Introduction to solar energy application in building

14:32-14:44 | IHTS140286 | L. Xiang, Y. Lin, P. Hao, et al. Thermal analysis of a flat heat pipe receiver in solar power tower plant

14:44-14:56 | IHTS140287 | M. C. Tsai, S. W. Kang, H. Y. Li, et al. | Experimental study of constant pressure two phase thermosyphon with a thermoelectric generator
14:56-15:08 | IHTS140288 | M. C. Tsai, S. W. Kang, H. Y. Li, et al. | Experimental study of cyclical two-phase reverse loop thermosyphon

15:08-15:20 | IHTS140402 | S.F. Wang, Q. B. He, S. F. Wang Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids




Session 4: Microfluidics I, Kunming Hall, Chairs: Prof. Chen Li and Prof. Xuehu Ma

Wednesday, May 7, 2014

Time Paper No. Authors Title of the presentation

13:00-13:20 | Keynote 4 C. L Toward sophisticated controls of flow boiling in microchannels at micro/nanoscale
13:20-13:32 | IHTS140039 | P.Zhang, X. Xiao, M. Li Numerical and experimental investigation on melting characteristics of eutectic salts with free surface
13:32-13:44 | IHTS140081 | Y.Liu,J. Wang Heat transfer simulation of a fresh-fuel transport cask

13:44-13:56 | IHTS140110 | H. Wang, X. W. Wang Nucleate boiling on a micro wire coated with superhydrophobic micropatterns
13:56-14:08 | IHTS140125 | D.Zhang, L. W. Yu, B. C. Zhao, et al. | A model for bubble growth in flash boiling

14:08-14:20 | IHTS140252 | Y.D.Yu, Z. Yang, Y. Y. Duan Flow resistance of fouling layer components on micro-filtration membranes
14:20-14:32 | IHTS140292 | Z.J.Yu, S.P. Song, Z.Liu Convective heat transfer of water in micro-tubes with super-hydrophobic inner surface
14:32-14:44 | IHTS140345 | T.T. Zhang, L. Jia, Y. Jaluria Prediction of inverted velocity profile for gas flow in nanochannel

14:44-14:56 | IHTS140363 | B.C. Zhang, Qi. L.LI, Y. Wang, et al. | Investigation on single phase friction factor in mini-channel

14:56-15:08 | IHTS140370 | Q.F. Xia, S. H. Lei, X. C. Yang Numerical study of mixing in microchannels enhanced by vibrating stirs

15:08-15:20 | IHTS140371 | C.Li,F. H.Yang Enhanced flow boiling of HFE-7000 in nano-engineered microchannels

Session 5: Droplet Dynamics, Nanjing Hall, Chairs: Prof. Fei Duan and Dr. A. S. Moita

Wednesday, May 7, 2014

Time Paper No. Authors Title of the presentation
13:00-13:20 | Keynote 5 A.S. Moita Heat and mass transfer at interfaces between solid surfaces and Non-Newtonian Fluids

Three dimensional numerical simulation of droplet passive breakup in T-shaped micro-fluidic chip using VOF
13:20-13:32 | IHTS140021 | B. Chen, W. M. Wang, P. Wang

method
13:32-13:44 | IHTS140086 | D.S.Li, Xi. Q. Qiu, Z. W. Zheng, etal. | Modelling of spray droplet evaporation within a confined space
13:44-13:56 | IHTS140098 | L.Liu, M. L. Mi, Y. F. Liu Theoretical investigation of evaporation process of a bicomponent droplet during depressurization
13:56-14:08 | IHTS140115 | F. Duan, S. Q. Chao, B. He Evaporation of droplet with and without laser excitation
14:08-14:20 | IHTS140126 | G.D. Xia, Y. F. Li,J. Wang, et al. Droplet formation mechanism in the microchannel with different confluence angles
14:20-14:32 | IHTS140181 | L.J. Wei, Y. Feng, D. Z. Yuan, et al. Experimental visualization of bubble growth and flow in thermosyphon loop with charge ratios of 90% and 95%
14:32-14:44 | IHTS140183 | T.T.Fu,Y.G. Ma, H. Z. Li Breakup dynamics for droplet formation in non-Newtonian fluids in microfluidic cross-junctions




14:44-14:56 | IHTS140202 | X.H. Ma, R.F. Wen, Z. Lan, et al. Droplet departure retention for dropwise condensation heat transfer at ultra-lower pressure steam
14:56-15:08 | IHTS140248 | Y.R. He, H. Wu, H. J. Liu, et al. Numerical investigation on hydrodynamics in coaxial air-blast atomizers
15:08-15:20 | IHTS140378 | W.Z.Li, Z. Q. Yu, B. Dong, et al. An experimental study on the spray characteristics of the air-blast atomizer

Session 6: Nanofluids I, Chongging Hall, Chairs: Prof. A. S. Lobasov and Prof. Dongsheng Wen

Wednesday, May 7, 2014

Time Paper No. Authors Title of the presentation
13:00-13:20 | Keynote 6 D.S. Wen Nanomaterial transport for hydrocarbon exploration and production
The experimental study on the heat transfer and flow characteristics of nano-refrigerants inside a corrugated
13:20-13:32 | IHTS140049 | B. Sun, D. Yang
tube
13:32-13:44 | IHTS140072 | B. M. Sun, C. J. Sun, J. Z. Jiang Numerical simulation of enhanced heat transfer characteristics of CuO-water nanofluid
13:44-13:56 | IHTS140091 | S.Y.Wu, X. Tong, D. Q. Peng, etal. | Simulation of unconstrained melting and freezing of nanoparticle-enhanced phase change material
13:56-14:08 | IHTS140111 | M. Wang, Y.F. Liu A study on the preparation of Al203/Cu0O- water nanofluids
S. S. Lu, X. M. Wang, K.X. Chen, ) ) ) )
14:08-14:20 | IHTS140113 al Transport in carbon chains: the electron-phonon interaction effect
etal.
14:20-14:32 | IHTS140134 | W.N. Zhou, Y. Y. Yan, J. Zhu, et al. LBM modelling of the effects of a magnetic field on nanofluid
14:32-14:44 | IHTS140269 | S.L.Dong, B.Y. Cao, Z. Y. Guo Improved models for thermal conductivity of nanofluids
14:44-14:56 | IHTS140302 | L.P. Shen, H. Wang, M. Dong, et al. | Investigation on the thermal conductivity of transformer oil based alumina/aluminum nitride nanofluids
A.S. Lobasov, AV. Minakov, o )
14:56-15:08 IHTS140304 ) Investigation of heat transfer of CuO-based nanofluids
D.V. Guzei, et al.
Y. R. He, Z. G. Yuan, X. Z. Wang, . . . .
15:08-15:20 | IHTS140351 Rheological behavior of graphene-waternanofluid by a aew synthesis method

etal.




Session 7: Bubble Dynamics, Hangzhou Hall, Chairs: Prof. Yoshio Utaka and Prof. Jianfu Zhao

Wednesday, May 7, 2014

Time Paper No. Authors Title of the presentation
13:00- . . N . o
1320 Keynote 7 V. V. Wadekar Industrial vaporizers — some examples of fascinating research and demanding applications
13:20-13:32 | IHTS140417 Y. Utaka, T. Morokuma Rupture of liquid film formed between approaching twin bubbles in coalescence process
13:32-13:44 | IHTS140023 J. F. Zhao, L. Zhang, Z. D. Li, et al. Influence of heater thermal capability on bubble dynamics and heat transfer in nucleate pool boiling
13:44-13:56 | IHTS140028 J. Cai, B. Liu, X. L. Huai Experimental study on heat transfer with cavitating flow in copper-based microchannels
13:56-14:08 | IHTS140038 P. Zhang, H. W. Jia, X. Fu, et al. Numerical investigation of nucleate boiling of water at a constant surface temperature
. . . Experimental and numerical analysis of the two-phase pressure drop and liquid distribution in single screw
14:08-14:20 | IHTS140040 G.D. Xia, X. f. Liu, Y. L. Zhai, et al.
expander prototype

B. Shen, B. J. Suroto, S. Hirabayashi, | Observation of periodic bubble nucleation on a hydrophobic spot at negative surface superheats under
14:20-14:32 | IHTS140070 "

etal. subcooled conditions
14:32-14:44 | IHTS140170 B. Liu, P. Li, T. Wang, et al. Performance characteristics of micro-channel evaporator usingR404A as refrigerant
14:44-14:56 | IHTS140271 J.G. Tang, L.C. Sun, C. Q. Yan, et al. A Visualized study on the collapse of vapour bubbles in the field of ultrasonic

Z. H. Wang, X. Meng, S. D. Wang, . ) L. L . . -
14:56-15:08 | IHTS140276 tal Experiment study of single bubble motion in a liquid metal with a strong horizontal magnetic field

etal.
15:08-15:20 | IHTS140382 Y. Wang, Z. G. Wang Heat transfer analysis of single bubble growth confined in a flat microchannel

Session 8: Electronic cooling Il, Beijing Hall A, Chairs: Prof. Xiaodong Wang

Wednesday, May 7, 2014

Time Paper No. Authors Title of the presentation
15:40-15:52 | IHTS140136 | Q. Wang, B. Jiang, B. Li, et al. Experimental investigation on EV battery internal cooling and heating by heat pipes
Characterization of flow boiling performance of reentrant porous microchannels incorporating the
15:52-16:04 | IHTS140315 | D. X. Deng, H. He, H. R. Shao, et al. _ ,
microchannel size effects
16:04-16:16 | IHTS140347 | X.L.Wei, W. H. Li, X.R. Meng, et al. | Numerical simulations on heat dissipation of heat sink with different installation angles




16:16-16.28 | IHTS140348 | X.R.Meng, Y. Q. Li, X. L. Ma, etal. | Experimental research on the effect of the installation angle of the high-power LED heat sink
16:28-16:40 | IHTS140361 | L.Gong,J.Zhao, S. B. Huang, etal. | Numerical study on the effects of micro-channel heat sink layout for electronics cooling
16:40-16:52 | IHTS140367 | J.J. Zhou, X. L. Li Numerical simulation for Laptop's cooling based on Icepak
16:52-17:04 | IHTS140368 | J.J. Zhou, M.X. Wang Digital design and performance optimization of radiator
B. J. Zhang, JW. Zhang, J. Zhang, Numerical simulation of heat-transfer characteristics of heat pipe heat sink used for cooling electronic devices
17:04-17:16 | IHTS140375 )
etal. with the non-planar array structure
17:16-17:28 | IHTS140416 | S.L.Xu, Q. Y. Cai Analysis and optimization of the thermal performance of multilayer microchannel heat sinks
17:28-17:40 | IHTS140046 | L.Yang,Y.S.Peng,Y.C.Du, et al. Mathematical modelling of heat and mass transfer in laminar falling water film with evaporation
17:40-17:52 | IHTS140168 | H.J.Ban, G. H. Son Numerical simulation of liquid film evaporation between two circular plates

Session 9: Heat exchanger Il, Beijing Hall B, Chairs: Prof. Liangbi Wang

Wednesday, May 7, 2014

Time Paper No. Authors Title of the presentation
15:40-15:52 | IHTS140228 | D.Li, H.B. Qi,G.Z. Wu Influence of inner metal blinds on heat transfer characteristics of enclosed glass channel
15:52-16:04 | IHTS140242 | J. X. Wu, Y. F. Li, L. Wang, et al. Research development of stationary twisted tapes inserts in heat exchangers tubes
16:04-16:16 | IHTS140243 | J.X. Wu, Y.F. Li, L. Wang et al. Study on numerical simulation of twisted tape with trapezoidal notch in boiler tube
16:16-16.28 | IHTS140250 | J. X. Wu, X. Peng, J. F. Li Analyses on evaluation methods of enhanced heat transfer of heat exchanger
Numerical simulation on heat transfer characteristic of louver - curved winglet vortex generator fins for parallel
16:28-16:40 | IHTS140257 | G.B. Zhou, Y. K. Zhang
flow evaporators
Q. W.Wu, J. J. Zou, J. Q. Zhang, ) )
16:40-16:52 | IHTS140272 al Performance calculation of a tube bundle air-precooled heat exchanger
etal.
. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-
16:52-17:04 | IHTS140317 | W.S.Wang, C. Q. Su, X. Liu, et al. _
based thermoelectric generators
17:04-17:16 | IHTS140366 | J.J. Zhou, B. Q. Sun Numerical simulation on heat transfer characteristics of finned tube heat exchanger
) ) Numerical study of flow and heat transfer enhancement of circular tube bank fin heat exchanger with curved
17:16-17:28 | IHTS140385 | L.B.Wang, Z. M. Lin, C. P. Liu _
delta-winglet vortex generators
17:28-17:40 | IHTS140396 | X.P.Lu,D.D. Guo Field synergy and thermodynamic coupling mechanism for convective heat transfer enhancement

10




Session 10: Renewable energy 11, Beijing Hall C, Prof. Qibin Liu,

Wednesday, May 7, 2014

Time Paper No. Authors Title of the presentation

15:40-15:52 | IHTS140034 | C.S.Cao Modeling and solving on the solar photovoltaic cells paving optimization on buildings

15:52-16:04 | IHTS140131 Z/It.aBlottarelll, Y-H. Su, €. Yousit Numerical analysis of a novel ground-source heat exchanger coupled with phase change materials
16:04-16:16 | IHTS140178 | H.G.Zhang, S.S. Song,G. Y. Zhao, etal. | The simulation study for natural gas engine using miller cycle

16:16-16.28 | IHTS140194 | T.S. Zhang, G. Qing, G. H. Wang, et al. | Thermal integration and hydronic heat transfer from BTM to HVAC in electric vehicle

16:28-16:40 | IHTS140277 | C.W.Wu, Y. C. Yuan Thermal analysis on film photovoltaic cell subjected to dual laser beam irradiation

16:40-16:52 | IHTS140279 | W. M. Yan, L.H. Yang, C. Y. Chang Design of a cooling system for a switched reluctance motor

16:52-17:04 | IHTS140280 | W. M. Yan, Y. H. Siao, C. M. Lai Transient characteristics of thermal energy storage in an enclosure packed with MEPCM particles
17:04-17:16 | IHTS140289 | J. X. Wu, J. F. Li, P. Xu, et al. Advances in The Tube-buddle Support of The Shell and Tube Heat Exchanger Research
17:16-17:28 | IHTS140299 | X.Y.Han, J. Qu CFD to predict temperature profile for scale up of a new linear concentrating photovoltaic receiver
17:28-17:40 | IHTS140303 | Z.G.Guo, G.Y.Deng, Y.C. Fan, et al. Optimizing of compressed air energy storage system with ejector pressure regulating method

Session 11:Microfluidics I, Kunming Hall, Chairs: Prof. Huasheng Wang,

Wednesday, May 7, 2014

Time Paper No. Authors Title of the presentation
15:40-15:52 | IHTS140009 Y. H. Gan, J.L. Xu,YY. Yan Two-phase pressure drop of acetone due to friction in triangular silicon micro-channels at high vapor quality
15:52-16:04 | IHTS140016 L. P. Zhou, Z. C. Zheng, X. Z. Du, et al. | Numerical study on marangoni convection of non-isothermal binary fluids in a closed microcavity
16:04-16:16 | IHTS140074 J.J. Yan, J. S. Wang, Y. Li, et al. Condensation heat transfer of steam on vertical micro-tubes
16:16-16.28 | IHTS140077 X.M.Ye, C. X. Li Spreading of soluble surfactant solutions with evaporation on heated interface
M. C. Zhang, H. X. Liang, B. W. Chen, o ) L .
16:28-16:40 | IHTS140102 et al. Numerical simulation of flow pattern and pressure pulses in direct contact condensation
16:40-16:52 | IHTS140135 J.J. Hong, Y. H. Gan, P. Glover, et al. Experimental measurement on dynamic concentrations of ferrofluid flow with NMR
16:52-17:04 | IHTS140222 H. B. Xu, C. C. Qian,S. Q .Shao, et al. Flow boiling heat transfer of R134a in a single microchannel with cavitation entrance
17:04-17:16 | IHTS140403 V. Serdyukov, A. Surtaev, A. Pavlenko | Investigation of the boiling features and crisis phenomena development in subcooled falling liquid films
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17:16-17:28 | IHTS140420 J. Shen, D. D. Wang, Z. C. Liu, et al. Numerical simulation on PEMFC performance—the enhancing mass transport theory
) The study of natural convection heat transfer of molten salt under the effect of micro-convection from tank
17:28-17:40 | IHTS140415 | Y. W.Lu, W.B. Du, X. L. Li, et al. I
wa
17:40-17:52 | IHTS140421 H.S. Wang, M. S. Kamran, Y. Li, etal. | Numerical study of a magnetic refrigerator with multi-material microchannel regenerators

Session 12: Waste Heat Utilization, Nanjing Hall, Chairs: Prof. Liang Gong

Wednesday, May 7, 2014

Time Paper No. Authors Title of the presentation
15:40-15:52 | IHTS140079 | J. Q. Dong, B. Wang Research of diesel engine waste heat ORC system
15:52-16:04 | IHTS140096 | Y.T. Shi, X. Y. Zhang Engineering acid dew temperature: the limitation for flue gas heat recovery
16:04-16:16 | IHTS140103 | P.Liu, F. M. Jiang, J. W. Cen Techno-economic feasibility of TFE/NMP Chemical Heat Pump for upgrading industrial waste heat
16:16-16.28 | IHTS140127 | T. Wu, S. Bian, H. Li, et al. Performance optimization of heat exchanger used in Organic Rankine Cycle by genetic algorithm
. Simulation and analysis of a new desalination system driven by the waste heat of charge air of
16:28-16:40 | IHTS140185 | X. Wang, G. Q. Shu, H. Tian _ _ ) _
internal combustion engines for ships
) Research on the characteristics of expander output power used for offsetting pumping work in Organic
16:40-16:52 | IHTS140203 | Y.T. Wu, B. Lei, Y. W. Lu, et al. _
Rankine Cycles
16:52-17:04 | IHTS140216 | J. H.Zhang, M. M. Lin, F. Shi, et al. Set point optimization of controlled Organic Rankine Cycle(ORC) Systems
17:04-17:16 | IHTS140217 | J. H.Zbhang, M. F. Ren, M. Jiang, etal. | Anapproach to control temperature of Organic Rankine Cycle processes
17:16-17:28 | IHTS140254 | G. Xu, C. X. Zhang, F. F. Liang, et al. A novel low-temperature flue gas waste heat utilization system for power plants
17:28-17:40 | IHTS140335 | B. Xue, X. R. Meng, X. L. Wei, et al. Dynamic study of steam generation from low-grade waste heating a zeolite-water adsorption heat pump
17:40-17:52 | IHTS140381 | Y. Q. Liu, B. Zheng, R. X. Liu, et al. Experimental investigation of heat transfer characteristics of calcined petroleum coke waste heat exchanger

Session 13: Air-conditioning, Chongging Hall, Chairs: Prof. Wenzhong Gao

Wednesday, May 7, 2014

Time Paper No. Authors Title of the presentation
15:40-15:52 | IHTS140001 | L.Z.Zhang, H. X. Fu, Q. R. Yang Research of diesel engine waste heat ORC system
15:52-16:04 | IHTS140088 | C.Zhang, Y. Duan, X. H. Liu Engineering acid dew temperature: the limitation for flue gas heat recovery
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16:04-16:16 | IHTS140162 | Z.T.Yu, F Y.Tian, G.F. Ye, etal. Numerical analysis of heat transfer in a vertically-arranged sinter cooler
. . Simulation and analysis of a new desalination system driven by the waste heat of charge air of
16:16-16.28 | IHTS140180 | W.Z.Gao, C.S. i, T. Liu, et al. ) ) ) i
internal combustion engines for ships
Research on the characteristics of expander output power used for offsetting pumping work in Organic
16:28-16:40 IHTS140188 Y. B. Zhao, Q. J. Long, F. Z. Sun, et al. .
Rankine Cycles
16:40-16:52 | IHTS140249 | A.M. Omer Compressors, condensing units, evaporators, heat exchangers, fans and testing equipment
16:52-17:04 | IHTS140253 | G. Xu, C. Xu, Y.Han, etal. An approach to control temperature of Organic Rankine Cycle processes
17:04-17:16 | IHTS140267 | Y.L.Hu, L.J. Fang, R. X. Xue, et al. A novel low-temperature flue gas waste heat utilization system for power plants
17:16-17:28 | IHTS140344 | W.K. Zhu, K. Duan, L. Wang, et al. Dynamics simulation of heat and mass transfer for cut tobacco during multi-stage convective drying
17:28-17:40 | IHTS140406 | Y.L.Cui,J. Zhu, S. Riffat. Heat transfer analysis of energy piles
. . Numerical study on energy consumption characteristics for different wall structures based on the
17:40-17:52 IHTS140423 | B. Zhou, X. Q. Qian, W. Li, et al.

intermittent energy use characteristics

Session 14: Power plant, Hangzhou Hall, Chairs: Prof. Xiaoze Du,

Wednesday, May 7, 2014

Time Paper No. Authors Title of the presentation
15:40-15:52 | IHTS140075 | W. Liu, J.B. Wang, Z.C. Liu The application of exergy destruction minimization in convective heat transfer optimization
Exergy-topological analysis and optimization of a binary power plant utilizing medium-grade geothermal
15:52-16:04 | IHTS140177 | M. Deodat, F. Z. Zhang, R. N. Xu, et al.
energy
16:04-16:16 | IHTS140220 | Y.Q.Zhang, G.D. Xia, Y. T. Wu, et al. Experimental study on influence of vapor dryness on the performance of single-screw expander
16:16-16.28 | IHTS140291 | W.H.Wang, W. G. Pan, X. P. Wen, etal. | Exergy theory on energy consumption of pulverized power plant boiler heat exchangers
Configuration optimization of helical blade rotors in a circular tube to enhance turbulent heat transfer using
16:28-16:40 IHTS140326 Z. Zhang, H. Yan, C. F. Guan, et al. .
CFD modeling
16:40-16:52 | IHTS140352 | P.Fu, N.L. Wang, D. F. Wu, et al. The performance study of energy-consumption benchmark state in coal-fired units with varying boundary
Method for determining energy-consumption benchmark in the thermal system of coal-fired units based on
16:52-17:04 IHTS140353 L.F. Zhu, N. L. Wang, P. Fu, et al. .
mixed model
17:04-17:16 | IHTS140354 | D.F. Wu, N. L. Wang, P. Fu, et al. Exergetic evaluation of coal-fired power units with two different cooling technologies
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17:16-17:28

IHTS140391

P. Gao, Y. P. Yang, K. Zhang, et al.

A rapid and efficient method for determination of pyrolysis temperature of mercury adsorbent

17:28-17:40

IHTS140397

F. M. Chu, N. L. Wang, F. M. Chu, et al.

Multi-factor analysis of condenser vacuum under overall working conditions

Session 15: Pipeline and heat pump, Beijing Hall A, Chairs: Prof. John Chai and Prof. Bo Yu

Thursday, May 8, 2014

Time Paper No. | Authors Title of the presentation
. Oil and gas Industry research: some challenges, selected current research activities and sample

13:00-13:20 Keynote 8 John Chai . . o

opportunities for inter-disciplinary research
13:20-13:32 | IHTS140027 | Y.Q. Dai, Y. H. Cheng, S. W. Guo, et al. | Numerical analysis of a novel coil wound LNG vaporizer
13:32-13:44 | IHTS140031 | Z.L.Liu, H. F. Wang, Y. X. Li. Environment heating effects on the leakage rate of the long-distance gas pipelines
13:44-13:56 | IHTS140050 | B.Yu,J. Zhang, Y. Wang, et al. Study on thermal characteristics of fluids in preheating commissioning for waxy crude oil pipelines

. Numerical analysis on the coupled mechanism of water, temperature and stress fields of frozen soil around

13:56-14:08 | IHTS140051 | B.Yu, Y. Zhao, J. F. Li. T _

a buried oil pipeline in cold regions
14:08-14:20 | IHTS140192 | JW. Wu, Y. F. Gao, J. J. Liu. Experimental study of direct expansion GSHP system
14:20-14:32 | IHTS140195 | Q. Gao, X. Z. Zhou, Y. Jiang, et al. Status from GWHP to ATES in China and its facing heat transfer problems
14:32-14:44 | IHTS140230 | Y.K.Lv, T. Wang. Experiment and numerical simulation of the local loss in axial guide device
14:44-14:56 | IHTS140265 | J.Li, G. M. He, Y. M. Liu, et al. Numerical study on performance of a liquid natural gas (LNG) vaporizer tube with internal spiral
14:56-15:08 | IHTS140329 | L. Gabrielli, M. Bottarelli. Payoff for geothermal heat pumps using shallow ground heat exchangers
15:08-15:20 | IHTS140338 | J.D.Ji,P. Q. Ge, D.R. Duan, et al. Numerical simulation on the heat transfer characteristic in the horizontal spirally coiled tubes

Session 16:Supercritical fluids, Beijing Hall B, Chairs: Prof. Kun Luo and Prof. Youjun Lu

Thursday, May 8, 2014

Time Paper No. | Authors Title of the presentation
13:00-13:20 | Keynote 9 Y. J. Lu Two-phase flow and heat transfer in supercritical water fluidized bed
Simulation of subcooled boiling heat transfer for internal combustion engines based on eulerianmulti-fluid
13:20-13:32 | IHTS140017 | F. Dong, G. L. Hu, C. H. Guo.

approach
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Hydrodynamic analysis and calculation of metal temperature distribution in spiral water wall of subcritical

13:32-13:44 | IHTS140036 | Y.S.Bi,S. F. Wang, Y. R. Shen, et al. _
tower boiler
Numerical studies of heat transfer enhancement of cryogenic methane flowing in ribbed cooling tubes at
13:44-13:56 | IHTS140037 | H. Meng, L. J. Tang, K. K. Xu. N
supercritical pressure
. Numerical simulation and development of the new enhanced heat transfer smoke pipe of the vertical gas-
13:56-14:08 | IHTS140140 | J. X. Wu, Y. F. Li, L. Wang, et al. ) ,
fired boiler
14:08-14:20 | IHTS140161 M. Q. Song, T. Zhou, J. J. Li, et al. Study on supercritical water natural circulation flow instability based on CFD
14:20-14:32 | IHTS140224 | X. L. Fang, T. Zhou, D. P. Lin. Numerical simulation of the flow and deposition of fine particles in the supercritical water
14:32-14:44 | IHTS140259 | W.Li, X. Y. Wu, G. Q. Xu, et al. Experimental investigation of convection heat transfer of Fe304-kerosene at supercritical pressures
14:44-14:56 | IHTS140275 | T.Zhou, D.P. Lin, J. J. Li, et al. Research of fine particle thermophoretic deposition in SCWR
14:56-15:08 | IHTS140319 | Y.Y.Shen, M. Yang, K. Huang, et al. Numerical simulation of combustion and flow, heat transfer in the ultra-supercritical tower boiler furnace
) Experimental investigation and mechanism analysis on the heat transfer of supercritical pressure water in a
15:08-15:20 | IHTS140355 | H. X.Li, Q. Zhang, W. Q. Zhang, et al. . ) )
vertically-upward internally-ribbed tube
15:20-15:32 | IHTS140419 | J.Chen, T. Zhou, Y. Li, et al. Study on multi-channel transient and security features of Supercritical Water-cooled Reactor

Session 17:Chemical reactions, Beijing Hall C, Chairs: Prof. Hsiaokang Ma

Thursday, May 8, 2014

Time Paper No. | Authors Title of the presentation
13:00-13:20 | Keynote 11 K. Luo Direct numerical simulation of turbulent multiphase reacting flows and combustion
. Acetone hydrogenation in exothermic reactor of an isopropanol-acetone-hydrogen chemical heat pump:
13:20-13:32 IHTS140032 M. Xu, X. L. Huai, Y. J. Duan, et al. i i
effect of intraparticle mass and heat transfer
) CFD study on gas-solid heat transfer in exothermic fixed-bed reactor of an isopropanol-acetone-hydrogen
13:32-13:44 IHTS140033 M. Xu, X. L. Huai, Y. J. Duan, et al. .
chemical heat pump
G. W. Zhou, W. Q. Zhong, H. C. Zhao, . L L
13:44-13:56 | IHTS140078 etal Heat transfer effects of spent ion exchange resin in iron ore sintering process
13:56-14:08 | IHTS140164 | Z.Z.Qiu,J. W. Li, R. Yao, et al. Experiment study on combustion characteristic of liquid fuels in a capillary tube
14:08-14:20 | IHTS140174 | H.K. Ma, C.P.Lin, H. P. Wu, et al. Waste heat recovery using a thermoelectric power generation system in a biomass gasifier
14:20-14:32 | IHTS140189 . Javed, S. W. Baek, H. Waheed Auto ignition and combustion characteristics of kerosene droplets containing dilute concentrations of
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aluminum nanoparticles at elevated temperatures

14:32-14:44 | IHTS140232 | Y.R. He, H.J. Liu, H. Wu, et al. Numerical simulation on denitration reaction of uranyl nitrate in a fluidized bed
. Calcined hydrotalcites-like compounds for the removal of HCI in simulated gases of typical compositions at
14:44-14:56 IHTS140305 J. Cao, W. Q. Zhong, B. S. Jin, et al. .
high temperature
. Coupled Multi-stage Oxidation and Thermodynamic Process in Coal-bearing Strata under Spontaneous
14:56-15:08 | IHTS140392 | Y. M. Wang, W. Z. Wang, G. Q. Shi. i o
Combustion Condition
. . Effects of furnace pressure on oxygen and carbon coupled transport in an industrial directional solidification
15:08-15:20 | IHTS140414 | LJ.Liu, X. F. Qi, G. X. Zhong, et al.

furnace

Session 18: Bioengineering, Kunming Hall, Chairs: Prof. Bin Chen

Thursday, May 8, 2014

Time Paper No. | Authors Title of the presentation
13:00-13:20 | Keynote 10 B. Chen Heat transfer model and animal experiment in cutaneous laser surgery
. Mathematical prediction of cryogen spray cooling in cutaneous laser surgery using realistic boundary
13:20-13:32 | IHTS140004 | B. Chen, D. Li, G. X. Wang. .
conditions
13:32-13:44 | IHTS140015 | B.Chen,Y. Zhang, G. X. Wang. A three-dimensional geometric Monte-Carlo method for the simulations of light propagation in bio-tissue
13:44-13:56 | IHTS140065 | H.Qi, L. M. Ruan, Z. Z. He. Inverse estimation of the particle size distribution using the Fruit Fly Optimization Algorithm
. . 3D modeling of the magnetic nanoparticles enhanced radiofrequency ablation of human liver tumors based
13:56-14:08 | IHTS140089 | J.Liu, S.Y. Xu, C. Jin, et al. _
on real anatomical structures
14:08-14:20 | IHTS140296 | F. Xu, M. Shi, X. H. Zhang, et al. Non-Contact Vitrification of Cell-Laden Droplet
14:20-14:32 | IHTS140333 | J.S.Sun, Z. G. Liu, X. F. Liu, et al. Reference crop evapotranspiration simulated in sunlight greenhouse based on heat balance
14:32-14:44 | IHTS140411 | J.F Lu, Z.S. Deng, H. Zhang, et al. Design of a mini-fan array using thermal infrared imaging to regulate temperature inside shoes
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Session 19:Molten salt and phase change material, Nanjing Hall, Chairs:

Prof. Zuankai Wang and Xun Zhu

Thursday, May 8, 2014

Time Paper No. | Authors Title of the presentation
13:00-13:20 | Keynote 12 Z.K. Wang Biomimetic surfaces for enhanced phase change phenomena
13:20-13:32 | IHTS140018 | A. Ghosh. Applications of weld pool dynamics and gaussian distribution in submerged arc welding
13:32-13:44 | IHTS140083 | L.J. Guo, P. Xiao, X. M. Zhang. Investigations on heat transfer characteristic of molten salt flow in helical annular duct
13:44-13:56 | IHTS140084 | X. Zhu, F. F. Zhang, Y. D. Ding, et al. Marangoni flow in falling film of ionic liquid-MEA solution on vertically free and confined plates
. The application of transformation method to dynamic measurement of thermal conductivity for Phase

13:56-14:08 | IHTS140097 | J. M. Zhou, Y. Li, W. Peng. _

Change Materials

Analogue experiment on centrifugal granulation in the waste heat recovery system for molten slag
14:08-14:20 IHTS140101 X. Zhu, H. Zhang, Y. Tan, et al. o ) ) o

combining centrifugal granulation and fluidized bed
14:20-14:32 | IHTS140137 M. Alsaady, R. Fu, B. Li, et al. Thermo-physical properties and thermo-magnetic convection of ferrofluid
14:32-14:44 | IHTS140143 | W.Li, H. X. Li, G. Q. Li, et al. Numerical-theoretical analysis of cooling tower fouling in internal helically ribbed tubes
14:44-14:56 | IHTS140211 H.N. Zhang, S. Q. Shao, H. B. Xu, et al. | Optimization of three-fluid heat exchangers with phase change based on entransy theory
14:56-15:08 | IHTS140237 | Z.Q.Sun, S. W. Li, Y. Chen. The melting of phase change material in a cylinder shell with hierarchical heat sink array
15:08-15:20 | IHTS140321 | G.G.Lin,C.D.Ho, Y. H. Liao. Heat Transfer in a double-pass parallel-plate device with hybrid boundary condition for the power-law fluid

Session 20: Numerical technique, Chongging Hall, Chairs: Prof. Yuting Wu

Thursday, May 8, 2014

Time Paper No. | Authors Title of the presentation
. Lattice Boltzmann simulation of liquid-gas two-phase flow with large density difference in complex
13:00-13:20 | Keynote 13 T. Yamaguchi
boundary
13:20-13:32 | IHTS140169 | Y. T. Wu, R. P. Zhi, W. Wang, et al. Influences of the meshing depth coefficient on a main rotor in single screw compressors
13:32-13:44 | IHTS140056 | H. M. Cui, F. Xu. 3D transient natural convection flows in a triangular cavity
13:44-13:56 | IHTS140080 | Y. Shi, Y. W. Yap, J. E. Sader. A linearized Lattice Boltzmann model for micro- and nanoscale thermal flows
13:56-14:08 | IHTS140214 | D.M. Mo, Y.R.Li, Y. P. Hu. Application of the implicitly restarted Arnoldi iteration method in flow stability of two-layer system
14:08-14:20 | IHTS140261 | J.Z.Zhang, L. Tan, X. M. Tan. Numerical investigation of heat transfer characteristics on a vertical surface with resonating cantilever beam
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14:20-14:32 | IHTS140300 | M. H. Xu, Y. L. Liu, D. X. Liu. A modification of simple algorithm for incompressible fluid flow
14:32-14:44 | IHTS140313 | H. Wang, Z. Qian, F. J. Chen. The development of a 3D/1D transient heat transfer model
14:44-14:56 | IHTS140323 | G.L.Zhang, M. Yang, F. Karimi. The numerical simulation of fluid cross from one-cylinder and contrastive analysis of the experimental data
14:56-15:08 | IHTS140359 | J. Zhang, F.J. Gao, G. D. Jin, et al. A double-Gaussian FDF model for scalar mixing at sub-grid scales

A study of particle swarm algorithm based on Multiple Particle Swarm Coevolutionary for multi-objective
15:08-15:20 | IHTS140364 | H. W. Zhao, Y. C. Shao.

optimization problem

Session 21:Nuclear energy | ,Hangzhou Hall, Chairs: Prof. Daogang Lu and Zhiguo Qu

Thursday, May 8, 2014

Time Paper No. | Authors Title of the presentation
13:00-13:20 | IHTS140069 | W.Bai, W. F. Ni, Y. H. Yang. Heat transfer research of corium by finite element method
13:20-13:32 | IHTS140121 | W. Q. Zhou, F. L. Niu, J. C. Cai, et al. The study of mixing and thermal stratification in passive containment
13:32-13:44 | IHTS140124 | X. Huang, X. F. Lv, L. Chen. Study on hydrogen risk under severe accident in AP1000 nuclear power plant
) . The feasibility analysis of underground nuclear power plant based on multiple criteria decision analysis
13:44-13:56 | IHTS140142 | H.B.Qi, F. L. Niu, Y. Yu, et al.
technology
. Numerical investigation on coolant temperature fluctuating in the upper plenum of PWR under different
13:56-14:08 | IHTS140148 | X.B.Li, M. C. Zhang, W. T. Wu, et al. .
outlet conditions
14:08-14:20 | IHTS140149 | X.B.Li, M. C. Zhang, W. T. Wu, et al. Scaling analysis on heat transfer characteristics of residual heat removal exchanger
Numerical simulation and experimental investigation on two
14:20-14:32 | IHTS140200 | Y.H. Zhang, D. G. Lu, Z. Du, et al. o
phase natural convection in IRWST of the AP1000 reactor
14:32-14:44 | IHTS140204 | Y. G. Zhao, F. L. Niu, D. X. Zhang. Natural convection and oxygen transfer of liquid lead-bismuth eutectic in cylindrical container
Preliminary development on thermal-hydraulic analysis code for the spent fuel rod under the condition
14:44-14:56 | IHTS140205 | C.Guo, D. G. Lu, Q. Cao, et al. _
of spray cooling
14:56-15:08 | IHTS140215 | Y.Liu,D.G.Lu,Y.Yu. Thermal — hydraulic performance analysis for AP1000 passive residual heat removal system
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Session 22: Porous media, Beijing Hall A, Chairs: Prof. Changying Zhao and Prof. Leping Zhou

Thursday, May 8, 2014

Time Paper No. | Authors Title of the presentation
. Numerical study of film condensation on a metallic foams sintered plate with considering convection and
15:40-15:52 | IHTS140043 | Z.G. Qu, A. Li. )
super-cooling effects
15:52-16:04 | IHTS140095 | C.Y.Zhao, Z. G. Xu. Nanoparticle deposition effect on pool boiling heat transfer of metal foams
16:04-16:16 | IHTS140157 | Z.Q. Chen, J. Shi, Q. Ma. Study on freezing behavior of phase change materials in ice ball with metal foam
16:16-16.28 | IHTS140212 | Y.P.Chen, C. Q. Chen. Natural convection of air in fractal porous medium
The experimental investigation on thermal characteristics of high porosity metal foams in convective heat
16:28-16:40 IHTS140247 C.F. Ma, X. Z. Meng, W. B. Kang, et al.
transfer
Numerical study on mixed convective heat transfer inside vertical anisotropic porous annuli locally heated
16:40-16:52 | IHTS140262 | J.Z. Zhang, B. B. Wu. )
from Inner cylinder
B. Bourdon. R. Rioboo, P. Di Marco., o . . .
16:52-17:04 | IHTS140263 tal Wettability influence on the solid superheat at the onset of pool boiling on nanometrically smooth surfaces
etal.
17:04-17:16 | IHTS140295 | S.S. Feng, M. Shi, D. M. Liu, et al. Unidirectional Freezing of Phase Change Materials Saturated in Open-Celled Metal Foams
17:16-17:28 | IHTS140325 | L. Zhang, H. Xu, Y. Sun, et al. Visualization research on flow boiling from microporous surface in mini-/microchannels
17:28-17:40 | IHTS140407 | L.Zhang, H. Xu, Y. L. Dai, et al. Influence of surface orientation on the onset of nucleate boiling heat transfer from microporous surface

Session 23: Thermal conduction, Beijing Hall B, chairs: pending

Thursday, May 8, 2014

Time Paper No. | Authors Title of the presentation
15:40-15:52 | IHTS140002 | K. Long, J. Jia. Hierarchical topology optimization for heat conduction
15:52-16:04 | IHTS140010 | H. Q. Xie, Z. H. Wu, Y. B. Zhai. Enhanced thermoelectric figure of merit in Zn0.9C00.10 alloy with conducting polymer nanoinclusions
16:04-16:16 | IHTS140060 | S.C.Yu, D. Nanto, J. S. Hwang, et al. Critical exponents of small doped Germanium in La0.7Ca0.3Mn1-xGex03 (x = 0.05 and x = 0.07)
16:16-16.28 | IHTS140133 | H. Q. Xie, J. F. Wang. Simulation of thermal transfer across carbon nanotube/Cu interfaces
Temperature span of magnetocaloric effect in tiny Nb-doped La0.7Ca0.3Mn1-xNbxO3 (x = 0, 0.002 and
16:28-16:40 IHTS140184 | S.C. Yu, D. Nanto, J. S. Hwang, et al.

0.01)
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Topology Optimization of Conduction Path in Laminated Metals Composite Materials by Volume-of-Solid

16:40-16:52 | IHTS140241 | Y.F.Chen, C. H. Cheng

Method
16:52-17:04 | IHTS140244 | L. Wang, Y.R. He, H.R. Li, et al. Investigation of thermal conductivity and viscosity of water based ZnO nanofluid
17:04-17:16 | IHTS140251 | L.T. Wang, Z. Yang, Y. Y. Duan. A Multiscale Thermal Network Analysis of CNT Arrays for Lithium-ion Battery Electrode Application
17:16-17:28 | IHTS140258 | L. Gui, B. Niu. Study of liquid metal based membrane with anisotropic thermal conductivity
17:28-17:40 | IHTS140342 | B.Liu, Z.Y. Wei, J. K. Yang, et al. Thermal conductivity of Molybdenum Disulphide (M0S2) Sheets: a molecular dynamics study

) . . Investigation of the thermal conductivity of boron-nitride nanostructures using molecular dynamics

17:40-17:52 | IHTS140346 | S. M. Lin, K. D. Bi, B. Liu, et al. _ _

simulations
17:52-18:04 | IHTS140410 | M.R.Wang, X. D. Shan. Non-Fourier heat conduction in nanomaterials based on thermon gas model

Session 24:Heat Pipe, Beijing Hall C, chairs: pending

Thursday, May 8, 2014

Time Paper No. | Authors Title of the presentation
15:40-15:52 | IHTS140012 | J.Li, L.C. Lv. Influence of parallel condensers on performance of a compact loop heat pipe
15:52-16:04 | IHTS140044 | Z.G. Qu, F. Xu, Z. Liu, et al. Experimental study of liquid wicking into filter papers for lateral flow assays
16:04-16:16 | IHTS140067 | Y. Tang, H. Li, B. Zhou, et al. Effect of working fluid on heat transfer performance of the anti-gravity loop-shaped heat pipe
16:16-16.28 | IHTS140085 | H.Z. Xian, W. J. Xu, W. Q. Shi, et al. Visualization experiment of oscillating heat pipe under pulse heating
16:28-16:40 | IHTS140152 M. Liu, S. L. Wang, S. S. Wang. Flow characteristics of heated liquid film along an uneven wall
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Abstract

With the goal of maintaining secondary electricity generation by a Peltier generator for a long
period of time, our research team built a thermoelectric generator with a static vapor temperature
control unit, called a thermoelectric generator unit (TGU). We used a two-phase thermosyphon and
a wastegate valve to create constant pressure and a constant saturated temperature. The Peltier
generator converts any temperature differences into electric voltage on the TGU. Experimental tests
were conducted in active and passive modes. We also calculated the maximum heat transfer rate
and the boiling heat transfer coefficient of the TGU charging with 20 % liquid water, and conducted
preliminary passive mode tests on a 3.7 m? solar energy stove on a cloudy day. In the active mode,
we used concentrating solar power (CSP) technologies to directly heat the TGU. The active modes
used thermal energy storage combined with the CSP system to sustain electricity generation for a
long period of time. Experimental results show that the TGU can support a highly uniform
temperature on its upper plate and generate electricity over a long period of time using unstable
thermal energy. A molten salt pool bath can store a huge amount of thermal power and is a very
good buffer of unstable solar power. A fibreglass insulation cover significantly decreases the loss of
heat from the surface of the pool bath. Therefore, the TGU equipment shows very good capability
for maintaining a constant temperature, stable electronic generation over a long period of time, and
low energy loss; thus offers a low-cost portable equipment option in the green energy field.

1 Introduction

Today, the primary energy sources for the world’s daily needs are fossil fuels such as coal,
petroleum, and natural gas. Not only are these finite resources but they also release gaseous or
liquid pollutants during processing. Because solar energy is an inexhaustible, clean, and safe source
of energy, it has received much attention as one of the most promising candidates for replacing
conventional fuels for electricity generation. Recently, there has been rapid development worldwide
in basic technologies and market strategies for concentrating solar power (CSP) technologies,
including the parabolic trough, the power tower, and the dish/engine. But renewable sources have
the disadvantage that their supply is not consistent and are largely dependent on the weather
conditions.

Thermal energy storage (TES) involves the temporary storage of high- or low- temperature
thermal energy for later use. It is an excellent candidate for offsetting the mismatch between
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thermal energy availability and demand. For example, storage of solar energy may be used for
overnight heating. TES systems have the following advantages: they increase generation capacity,
enable better operation of cogeneration plants, shift energy purchases to low cost periods, increase
system reliability, and may be integrated with other functions [1]. TES options for CSP plants are
classified into three types: sensible, latent, and thermochemical storage. The only TES type that
currently operates with multiple hours of storage is the sensible, two-tank, molten salt system,
which has demonstrated reliable operation at a commercial scale [2]. Li et al. presented energy and
exergy analyses of a new small CSP plant at the Asia-Pacific Power and Energy Engineering
Conference [3]. Laubscher and Dobson presented a sodium-charged heat pipe heat exchanger
design for processing primary and secondary reactor coolant streams in a high-temperature nuclear
reactor [4-5].

Following these design ideas, our research team built a thermoelectric generator (TEG) with a
static vapor temperature control unit, called a thermoelectric generator unit (TGU), to sustain
secondary electricity generation by a Peltier generator over a long period of time. A TEG can
convert temperature differences into electric voltage using CSP technologies directly (active mode)
or with a TES combined with a CSP system (passive mode) for long-term electricity generation, as
shown in Figure 1. A detailed schematic of the TGU is shown in Figure 2. The TGU consists of an
enclosure containing a working fluid, the lower half of which is charged with liquid and the upper
half with vapor. With this enclosure design, latent heat is transferred with essentially no resistance
to flow or pressure loss, similar to a closed two-phase thermosyphon-type (natural circulation) heat
pipe. In the TGU, the vapor condenses on the top wall inside the chamber, and the heat is removed
by natural convection outside the chamber by gravity, flowing back into the liquid pool.

With this design, the vapor uniformity inside the pressure container and the wastegate’s valve
pressure release, making it possible for the cover plate to maintain approximately the same
temperature. The hot and cold temperatures of the thermoelectric generator (TEG) are controlled by
the static vapor pressure and the heat sink. There is a special trap hole at the bottom of the TGU to
trap the CSP high-power energy during the active mode, and also to increase the connecting surface
in the passive mode.

Active mode Passive mode

Thermoelectric
Generator (TEG)

p
= /

Molten salt TES

\

Thermal Energy Input CSp

\

EEEER
e.rma. ne@y n‘)u
Heat Source from CSP -~

Waste Heat Recovery -~ Fuels ~
Reactors etc.

Figure 1: Active and Passive Modes of the TGU
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Figure 2: Sectional View of the TGU

2 Background Theory

2.1 Liquid and Vapor Weight

During vaporization, a substance exists as part liquid and part vapor. To analyze this substance,
we must determine its proportions of liquid and vapor. The key property of the mixtures is steam
quality (x) analysis of thermodynamics, we can determine the ratio of a vapor mass to the total mass
of a mixture as in equation (1) [6]. Consider a tank that contains a saturated liquid—vapor mixture.
The volume occupied by saturated liquid is Vs, and the volume occupied by saturated vapor is V.

_ Myapor Vavg — Ve

x = = ,
Mygtal Vfg

where Myota) = Miiquid + Mvapor» Vavg = Vr +xVeg ,Veg =V =V (1)

Assuming the liquid is fixed at 700 ml, at approximately 20% filling ratio in the TGU, the
mass ratio can be calculated from the specific volume of the saturated pressure table [6]. We can
determine the vapor weight, liquid weight, and the maximum available heat transfer rate as shown
in Figure 3. The maximum available heat transfer rate is calculated by the Zuber equation for the
peak flux in a saturated pool boiling. Equations are described in more detail in section 2.2. From
Figure 3, we selected an effective saturated pressure of the wastegate valve (3.71 kg/m?) for the
saturated temperature (140 °C) in the TGU and 3.7 m? in the CSP (assuming 1000 W/m? of solar
power ) for long term use.
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Figure 3: Vapor and Liquid Mass Ratios [Primary Axis] and the Maximum Heat Transfer Rate of the
TGU [Secondary Axis] Variations Over Temperature

2.2 Boiling Heat Transfer Coefficient

Zuber et al. (1962) [7] defined the Zuber equation for the peak flux (in W/m?) in saturated pool
boiling as

T 12

9" maxz = 24 Py hfg[cg(pl - pv)gc]1/4

(2)

An experimental equation for different fluids by Vachon et al. (1968) [8] is

0.33
AT q" gcO
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Where the number n of water is 1.0. Cy is the empirical constant that depends on the nature of
the heating surface fluid combination and whose numerical value varies from system to system. The
Cs for water on mechanical polished stainless steel is 0.0132. This equation can be used to predict
the average temperature on the TGU container surface. Stephan and Abdelsalam (1980) [9]
formulated a correlation containing four groups of variables using regression technology for water,
refrigerants, organics, and cryogens as

0.5 0.67 2.48 —4.33
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Where dpyp, IS the bubble departure diameter, given by
2
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Where (3 is the contact angle that may be assigned a fixed value of 35 ©, irrespective of the
fluid. Gorenflo (1993) [10] proposed a fluid-specific correlation that included the effect of surface
roughness and reduced pressure and that contains a working fluid specific and a reference heat
transfer coefficient a.o (water is 5600 W/m?K), given by

. nf 0.133
q Rp
() (2 :
b = Ool'pF 0 (rpo> (6)
Where the pressure correction factor for water FPF is given by
Fpp = 1.73 Pr®%7 + (6.1 +1 : 5 ) and nf = 0.9 — 0.3Pr%15 7)
~ Pr

The surface roughness (Ry) is set at 0.4 um when unknown. q, is at a fixed reference value of
20,000 W/m?. This correlation is applicable for reduced pressure ranges from 0.0005 to 0.95.

The Kutateladze et al. (1961, 1966) [11,12] correlation is applicable to a wide range of
conditions (fluid-type, heater geometry, and surface roughness) and is given by

_ bl <1 x107*qP  p,

Nu = 0.44
K ghfgpvlvll (Pl — Py

)> PI‘O'35 (8)

3 Experiment Setup

A schematic of the tested apparatus is shown in Figure 4. The prototype was made of a
stainless-304 container and cover cap. The total height of the TGU was 209 mm with a thickness of
17 mm. A pressure gauge, a 3 kg/cm?® wastegate valve, and the TEG module were installed on the
top of the tested TGU. A K-type thermocouple was inserted in the chamber and was used to
measure the vapor temperature. We used a first-class gas stove as a heater to simulate high-power
CSP energy. A hole through the firebrick center creates focused thermal energy at the bottom of the
TGU. The experimental test apparatus can separate the active mode, which simulates CSP focused
thermal energy directly. The passive mode, which put use a TES molten salts pool bath to be an
outer pot under the TGU.

Active mode Passive mode

Temperature
Sensor and Monitor
Thermoelectric Generator (TEG)
With a Heat Sink

Wastegate valve (3 kg/cm?)
Pressure Container

Molten salts pool bath

Firebrick

First Class Gas Stove
(Simulate a high Concentrated Solar Power)

Figure 4: Specific TEG Units Testing for Active and Passive Modes
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4 Experiment Results and Discussion

In this experiment, we first filled the TGU with 700 mL of liquid water, and then heated it with
the gas stove. We observed that when the vapor temperature reached 138 °C, the wastegate valve
started to release noncondensable gases. After 30 min, the static pressure remained at 3 kg/cm?, and
the vapor temperature was 140 + 1 °C. From the pressure gradient, we calculated the wastegate
valve release to be 0.3 g of liquid water each time. This means that the maximum work time was
35 h with a 20 % charging rate for a continuum of thermal energy input. The active and passive
modes experimental results and calculation of the boiling heat transfer coefficient as follow.

4.1 Experimental Results of the Active Mode

Figure 5 compares the saturated pressure with the vapor temperature in the active mode of the
experiment. From this figure, we can see a pressure rising trend matches the ideal curve exactly. A
spring tube pressure gauge has a more simple structure and a lower price, but its sensitivity is not
good enough, yielding approximately a 10 °C gradient from the ideal curve line. The vapor
temperature and gauge pressure variations with respect to time are shown in Figure 6. From this
figure, we can see that after 27 min both the pressure and vapor temperature approach a steady state.
The reaction time of the vapor temperature was more sensitive than that of the pressure.

——Ideal Curve ® Expermental Data

Gage Pressure (kg/cm?)

0 20 40 60 80 100 120 140 160
Temperature (C)

Figure 5: Static Pressure Variations with Vapor Temperature at a 700 ml Filling Rate
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Figure 6: Vapor Temperature and Gauge Pressure Variations with Respect to Time
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4.2 Experimental Results of the Passive Mode

We used 4000 g of a molten eutectic mixture of salt with 60 % NaNO3 and 40 % KNOj3. Once
the gas heater had fully melted the salt, we then put the TGU onto it. Results show that the TGU can
support 3.5 V for more than half an hour. Figure 7 shows the preliminary test results observed on
July 24, 2013, a cloudy day. A 3.7 m? solar energy stove was used as the heater. The TGU started
heating at 10:00, with a power input between 1314 and 1359 W/m?. After 16 min, the pressure
started to rise. From 18 to 24 min, a cloud covered the sun, and the power decreased to 416.8 W/m?,
but the pressure kept rising from 1.3 to 1.75 kg/m% The molten salt pool bath was a very good
buffer for absorbing the unstable solar power, and the fiberglass insulation cover decreased the
amount of heat loss from the surface of the pool bath. After 24 min, the sun light returned at
1416 W/m? of power. After 47 min, the TGU began to release vapor pressure and transferred
thermal energy into steady electricity.

Figure 7: Passive Mode TGU Heated by a 3.7 m? Solar Energy Stove

4.3 Boiling Heat Transfer Rate and Coefficient

In the experimental results, when the stable vapor temperature was 140 °C, we determined that
the average temperature of the TGU container surface, which was immersed in the molten salt
liquid, should be lower than 150.38 °C. The heat flux was calculated from Zuber equation as the
equation (2). The properties reference the Appendix 2 of a heat transfer textbook [13]. Then the heat
transfer coefficient inside the TGU can be predicted to 224,706 W/m?K by Fourier’s law. Figure 8
shows the relationship of the prediction of the Zuber heat flux, and the boiling heat transfer
coefficient as by Stephan and Abdelsalam, Gorenflo, and Kutateladze et al. The prediction results
show that the TGU can support a very high heat flux with a high boiling heat transfer coefficient
inside. This means that the TGU can support a highly uniform temperature on the upper plate,
generating long term electricity using the thermal energy.
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Figure 8: Relationship of the Boiling Heat Transfer Coefficient and Heat Flux Prediction

5 Conclusion

In this research, we studied a constant pressure two-phase thermosyphon using a TGU in
active and passive modes. Experimental results indicate that temperature can be accurately
maintained at 140 + 1 °C using a 3 kg/cm? wastegate valve. The TGU can store thermal energy in a
4000 g molten salt pool bath and support 3.5 V for more than half an hour in the passive mode.
Preliminary passive mode tests on a 3.7 m? solar energy stove on a cloudy day were successful. The
molten salts pool bath can absorb the unstable thermal energy and transfer it into stable electric
power for a long period of time. The maximum heat transfer rate and boiling heat transfer
coefficient of the TGU equipment, charging with 20 % liquid water, were calculated and predicted
according to Zuber, Stephan and Abdelsalam, Gorenflo, and Kutateladze et al. We conclude that the
experimental TGU can support a highly uniform temperature on its upper plate and generate long-
term electric power using unstable thermal energy. The molten salt pool bath serves as a very good
buffer for absorbing the unstable solar power, and the fiber glass insulation cover decreases heat
loss from the surface of the pool bath. The TGU passive mode may be used as a long-term small
electronic generator for any kind of thermal energy, and especially for TES of solar energy
combined with CSP system technologies.



Nomenclature

X Ratio of the mass of vapor to the total mass Py Prandtl number of the saturated liquid, cpy / k
Miiguia | Mass of liquid, kg i Viscosity of the liquid, kg/s-m
Myapor | Mass of vapor, kg Cq Empirical (Rohsenow) constant
Migtal Total mass of vapor and liquid,, kg hy Boiling heat transfer coefficient, W/m?k
Vg Volume occupied by saturated vapor, m*/kg dow | Bubble departure diameter, m
Vs Volume occupied by saturated liquid, m*/kg K Thermal conductivity of the liquid, W/mk
Vi aDnigfi;?Sf;uig xg:)lér:jen%(;ﬁ;pied by saturated liquid Tsar | Saturated temperature, K
Vg C::ernz:g}ak;olume occupied by saturated vapor and o Liquid diffusivity, m%s, ki /p ¢
C Specific heat of a saturated liquid, J/kg yis Contact angle
q” Heat flux, W/m? A Reference heat transfer coefficient
q"maxz | Peak heat flux by the Zuber equation q Heat flux, W/m?
hig Latent heat of vaporization, J/kg g, Outside Heat flux, W/m?
g Gravitational acceleration, m/s Rp Surface roughness, um
O Density of the saturated liquid, kg/m® Moo Radius
oy Density of the saturated vapor, kg/m3 Fer | Correction factor
c Surface tension of the liquid-to-vapor interface, N/m N Gorenflo coefficient
) ) Dimensionless factor for pool boiling, 1*=
Nu Nusselt number, dimensionless heat transfer %

coefficient, hL/k

i
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Abstract

In this study, we created a two-phase reverse-loop thermosyphon (RLT) for effectively moving
the thermal energy downward to a thermal storage tank. This downward heat transfer some papers
call it a top-heat-type heat transport loop. The two-phase RLT is a passive device, much like a non-
wick heat pipe, driven by thermal energy and having extremely high thermal conductivity. The
experimental cyclical two-phase RLT consists of a working liquid circulation loop with heat
transfer in the downward direction, opposite from the direction of natural convection. The process
transfer thermal energy by the pressure differences in the saturated vapor, which then transfer the
heated liquid or vapor downwards. The heated portion is 1.5 m higher than the cooled portion, and
we use a 95% concentration of methanol liquid with different fill ratios as the working fluid inside
the heat exchanger loop. Experimental results show the effects of different filled ratios on the heat
transfer speed and temperature description.

1 Introduction

Heat transfer is a challenge ideally achieved with high intensity across long distances with
small temperature differences. In many terrestrial applications, heat transfer requirements are best
satisfied by flow loops in which a fluid’s heat is transferred by a circulation exchanger between the
heating zone (heat source) and cooling zone (condenser). The heat transfer circulation exchanger
may be spontaneous or driven by electronic pumps.

However, system reliability is greater when circulation is spontaneous. After the natural
earthquake disaster on March 11, 2011, a tsunami then caused a serious nuclear reactor meltdown in
Fukushima, Japan. The problem was due to the loss of electrical power to the nuclear reactor’s
active cooling system. At 10th International heat pipe symposium, Mochizuki et al. presented
several designs for spontaneous heat pipe heat exchangers, which could replace the traditional
cooling system used by nuclear power plants [1].

The conventional thermosyphon in a closed system, also referred to as a “bottom-heat-type”
thermosyphon, depends on the natural upward movement of hot liquids and the downward
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movement of cold liquids. According to Faghri, the abovementioned thermosyphon has been widely
applied because of its high efficiency, reliability, simplicity and cost effectiveness, where it is
necessary to transport heat from lower to higher positions [2]. Kang et al. demonstrated a very high
thermal performance of a loop thermosyphon by using methanol and water as the working fluid [3].
A boiling-enhanced structure and different charging rates were analyzed in that study. The two
types of traditional thermalsyphons two-phase single and loop are shown in Figure 1. However, the
weakest point in the two-phase single and loop thermalsyphons is that these devices usually work
only when the heat source is situated below the heat sink. Ensuring spontaneous downward heat
transfer is difficult, but the devices have the potential to be very useful for solar heating system,
thermal storage, waste recovery, geothermal energy exploitation, warm water storage, and solar
refrigeration fields.
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Figure 1: Traditional Two-Phase Single and Loop Thermalsyphons

There are far fewer publications on spontaneous downward heat transfer than on the topic of
heat pipes, loop heat pipes, and thermosyphons. Roberts has reviewed 10 different technical
solutions, but only one of which is widely in use [4]. Dobriansky and Yohanis described a reverse
thermosyphon action consisting of a self-acting and self-controlled liquid circulation loop with heat
transfer in a downward direction [5]. Dobriansky took the next step forward by reviewing self-
acting circulation loop concepts for downward heat transfer in the field of energy conversion and
management [6]. Dobriansky regarding many possible methods for designing effective devices to
transfer heat download, yet achievable. The purpose of this paper is to establish and build a cyclical
two-phase reverse loop thermosyphon device for long distance downward heat transfer application.

Figure 2 shows a simple reverse flow method design in a cyclical two-phase loop
thermosyphon. A bubble lifts evaporator on the top of the heating section transfer latent heat to the
loop condenser through the recuperator (preheater). Figure 3 shows the pretest of a simple two-
phase reverse-loop thermalsyphon. This experiment used a pencil torch to burn a bended-loop
thermalsyphon charged with 60% methanol liquid at 95% concentration. The device worked
successfully and the flow reversal results are shown as the infrared image. The next step forward by
the designing, testing, and the performance calculation for long distance cyclical two-phase reverse-
loop thermosyphon was presented in this paper.
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Figure 2: Reverse flow design in two-phase loop thermalsyphon
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Figure 3: Pre-Test of a Simple Two-Phase Reverse Loop Thermalsyphon

2 Experimental Apparatus and Procedure

2.1 Fabrication of A Cyclical Two-Phase Reverse-Loop Thermosyphon

Ippohshi et al. conducted considerable research on top-heated two-phase reverse-loop
thermosyphon (RLT) apparatus [7-8]. Reference to their experimental apparatus, we fabricated the
cyclical two-phase RLT apparatus shown in Figure 4. This RLT apparatus consisted of an
evaporator, a condenser, a reservoir (preheater), and pipes connecting each of the components. The
heat transport height was 1500 mm from the evaporator to the bottom of the cooling coil. The total
height of apparatus was 1650 mm. The evaporator was prepared from a copper slug (72 mm
diameter), in which 10 holes (13 mm diameter) were drilled for the placement of 10 electronic iron
heater coils totaling electronic resistance are 70 ohm. Straight through the center, the slug was
connected with 4" copper tubing with a wall thickness of 1 mm. The reservoir (0.08 L) consisted of
a 34" stainless steel tube with a height of 200 mm and 2 caps (50 mm in height). A single stainless
steel tube goes through the reservoir to exchange thermal energy from vapor and preheat the
working fluid. The condenser is a heat exchanger prepared by coiling a 4" copper 620 mm long and
with wall thickness of 1 mm. The working fluid was 95% concentration methanol liquid inside the
RLT loop. A water pool and a thermostatic bath were used for storage and condensation of the RLT
loop in the condenser, respectively.
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Figure 4: Schematic and Equipment of Two-Phase Reverse Loop Thermosyphon

2.2 Experimental Setup and Methods

A photograph and the temperature measurement points of the two-phase RLT apparatus are
shown in Figure 5. Type-T thermocouples (Omega® - TT-T-040) were installed as shown in the
figure, and all temperatures outputs were connected to a data logger and continuously logged. The
temperature measurement uncertainty was * 0.1 °C. To guarantee thermal insulation, insulated
fiberglass foam ( k<0.04 W/ mk ) was used to cover the evaporator, reservoir, and the entire
liquid-descending pipe line.

In our tests, we investigated 16 different working fluid filling ratios in the two-phase RLT.
One-third of the condensing coil immerses in a pool bath fill with 2 L liquid water. The experiment
use AC Power and a digital power regulator to supply to supply the evaporator with a steady 660 W
of heating power. The water absorbs and stores thermal energy as latent heat in pool bath.
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Figure 5: Measurement Points and Photograph of The Two-Phase RLT
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3 Results and Discussion

In our tests, we determined the optimal filling ratios for 16 different working fluid charging
rates. We also measured the temperature during the heating and cooling process of the two-phase
RLT apparatus, and observed the liquid flow direction during the heating “on” and turn “off” modes.

3.1 Temperature variation with time

Figure 6 shows the temperature variations over time with 660 W of heat input and a 60%
filling rate (900 mL). The heating region can be separated into two steps of 2350 each. The first step
is liquid flow region, when the heat transfers in a reverse flow down to the condenser. During this
step, the temperature increase is fast and steady. The second step is the bubble flow, when the heat
transfers in a bubble flow down to the condenser. During this step, the temperature amplitude
oscillates in the evaporator (ChO & Ch1l) and condenser (Ch6 & Ch7). The oscillation amplitude of
Ch6 is approximately 1.5 °C, and that of ChO is approximately 1 °C, whereas the others are lower
than 1 °C. The rising ramp slope of the average vapor temperature (Ch0) and condenser inlet
temperature (Ch6) in the bubble flow region are approximately same. The parallel trend line
distance between temperatures Ch0 and Ch6 in the bubble flow region is approximately 9 °C. The
temperature trend of the condenser outlet (Ch7) is linear, i.e., the thermal energy store in the water
pool bath is stable. After the power shut-down, the reservoir becomes the heater of two-phase RLT
apparatus. Figure 6 shows that the apparatus reverts to natural convection, where the bubble flows
through Ch5 and Ch4, the temperature increase quickly. In contrast, the Ch6 temperature declines
rapidly because of the sudden loss of reverse drive pressure. Temperature Ch5 has the “shaking
appearance” in the thermodynamic equilibration process between the evaporator and the reservoir.
The flow direction during the heating “on” and “shut-off” modes are shown in Figure 7.
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Figure 6: Temperature Variations Over Time with 660 W of Heat Input and A 900 ml Filling Rate
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3.2 Effect of different charging rates

The evaporator vapor temperature (ChO) and condenser inlet wall temperature (Ch6) at all
charging amounts of the working fluid with time step are illustrated in Fig. 8 and 9 respectively. Fig.
8 shows the temporal temperature distribution of the vapor temperature (ChQ) for evaporator at 6
different working fluid charges was 700 to 950 ml, which corresponded to 47 % to 63 % the
original RLT inlet volume. From the figure, we can obtain that larger amounts of the working fluid
require lower vapor temperature. The lowest vapor temperature was obtained at fill charge of 950
ml (the filling ratio is 63%). The temperature was uncertainties and oscillations on 1700 to 2000
second period when the RLT filled with 700, 750, 800, and 850 ml charge amounts. The
temperature was oscillations later after 2400 second when the RLT fill charge of 900 and 950 ml.
The uncertainties amplitude of 950 ml fill charge was much smaller than the other filling rate. Fig. 9
shows the temporal temperature distribution of condenser inlet wall temperature (Ch6) at 6 different
working fluid charges. From figures, we can obtain the time which taken to start to raises up is
substantially longer when the RLT filled with 700 and 750 ml charge amounts.
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Figure 8: The Vapor Temperature of Evaporator Variations Over Time with Different Filling Rate
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Figure 9: The Condenser Inlet Temperature Variations Over Time with Different Filling Rate

Figure 10 shows the temporal temperature distribution of the temperature difference between
evaporator and condenser inlet temperature (ChO — Ch6). The RLT fill charges of 800 to 950 ml
were much stable than fill charge of 700 and 750 ml. From the figure, we can obtain that the fill
charge of 900 ml (the filling ratio is 60%) exhibits the lowest temperature difference.

Table 1 shows the characteristics of the two-phase RLT with different charging volumes. The
reverse start time was the time region for reverse flow overcomes the earth gravity, and down to the
condenser. This time delay since the heating started to the condenser inlet temperature began to rise
named the reverse start time. The thermal resistance of the two-phase RLT in this study was
calculated by equation (1), considering that the temperature difference between the vapor and the
condenser inlet temperature from 660W heat input energy.

Tvapor - Tci
Reur = —coow

_ ChO0 — Ché6 (K) )
660 (W) M

The thermal storage in the 1 h heating process of the water pool was calculated by equation (2),
with the specific volume of water at 373.13 K being 4.22 (kJ/kgK). We took 4 measurements at 4
points that were immersed in the water. Ch2 was the average temperature of the water. The
experimental results show approximately a 20 K temperature increase from room temperature in the
1 h heating process.

0 _ mC, (AT)
storage 3600

15(L) X 4.22 (klg—]K) x 20(K)

- 3600 2




The heat loss from the storage tank was calculated by equation (3), with the heat convection
coefficient assumed to be 15 ( W/mK ). The surface area was 0.25 m2 and average temperature
difference was 14 °C. There were 4 measured points set up on the glass surface of the water pool.

h x A X (AT)
Qcondloss = W
15 (%) 0.25 (m?) x 14(K)
= —mK 3)
3600

The calculations shows that the 55% thermal energy storage in the water and 45% thermal

energy storage loss in the environment.
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Figure 10: The Temperature Difference Between Evaporator Vapor and Condenser Inlet
Temperatures Variation Over Time with Different Filling Rate

Table 1 The Characteristic of Two-Phase RLT in Different Charging Volume

Charging Vapor Condenser Reverse Thermal
volume  Temperature Inlet Temp. Start Time Resistance
(ml) (%) (Ch0) (°C) (Che6) (°C) (Second) (°CIW)
700 (47) 148 106 562 0.064
750 (50) 151 108 574 0.065
800 (53) 132 105 138 0.041
850 (57) 110 99 80 0.017
900 (60) 106 97 30 0.014

3.3 Sine Wave Heating Test

Sine wave heat was inputted to the two-phase RLT, at a heating frequency of 10 min “on” and
10 min “shut-off”. The resulting vapor temperature (Ch0), reservoir outlet surface temperature
(Ch3), and condenser inlet surface temperature (Ch6), in Figure 11 showed that heat was conducted
from the top with the sine wave to the condenser of the two-phase RLT. After a period of time, the
temperature oscillation amplitude on the condenser inlet was larger than that of the evaporator and



the reservoir. When the power shut-off, the condenser wave crest responded immediately, but the
evaporator and reservoir had a time delay and kept accumulating thermal energy.

Fiqure 12 shows that after the power was “on” and “shut-off”, the fluid flows were alternating
and fast. This phenomenon can be observed by the curve of Ch4 and Ch5. Temperature Ch5 shows
characteristic shaking appearance during the thermodynamic equilibration process after thermal
exchange inside the reservoir.

Tables and figures should be placed close after their first reference in the text. All figures and
tables should be numbered with Arabic numerals. Table headings should be centred above the
tables. Figure captions should be centred below the figures.
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Figure 12: Alternately Reverse and Regular Flow by Ch4 And Ch5



4 Conclusion

In the experimental studies, we built a two-phase RLT (1500 mm) to successfully transfer
thermal energy. Investigations were conducted regarding the operational characteristics of the two-
phase RLT. Results suggest that the optimal fill ratio is 60% methanol. Given an actual heating
power of 660W, the vapor temperature of the heat source was 106 °C, and the thermal resistance
was 0.014 °C/W. There was 55% thermal energy storage in the water.

The two-phase RLT achieved high reliability, and anti-gravity capability, and showed the
potential for good performance in high-power energy storage applications.
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