行政院所屬各機關出國報告

(出國類別:實習)

研習潛盾洞道因應工作井無法開設而採地中接合之設計及施工技術

服務機關:台電輸變電工程處北區施工處

姓名職稱:王俊槐第一分隊課長

派赴國家:日本

出國期間:103.4.20~103.4.25

報告日期:103.6.17

行政院及所屬各機關出國報告提要

出國報告名稱:研習潛盾洞道因應工作井無法開設而採地中接合之設計 及施工技術

頁數	含附件	:	□是■否
只 攻	白川川	•	

出國計畫主辦機關/聯絡人/電話

出國人員姓名/服務機關/單位/職稱/電話

王俊槐/台灣電力公司/北區施工處/第一分隊課長/02-33436612

出國類別:□1考察□2進修□3研究■4實習□5其他

出國期間:103.4.20~103.4.25 出國地區:日本

報告日期:103.6.12

分類號/目

關鍵詞:特殊潛盾工法、地中接合

內容摘要:(二百至三百字)

潛盾施工路徑之規劃通常沿著既成道路佈設潛盾線型,在大都市人口稠密集中的今日,都市內土地利用已趨於飽和,都市道路下方早已存在各種維生管線,要在道路上尋覓發進井、中間井及到達井等施工用地實屬不易。隨著技術的進步,長距離潛盾施工應用於各種管線或道路工程也越來越頻繁,如何增進潛盾施工的效率以縮短施工期程,也成了當前重要的課題。

地中接合工法就是在這種氛圍下應蘊而生。近年來,日本發展出多

種特殊潛盾施工技術,地中接合為其中一項,其主要施工方式係依工程 特性訂製2部潛盾機,分別由兩端發進至預定接合點,在輔助工法的配 合下進行潛盾機銜接及拆解。

此一工法的優勢不僅免於接合點設置到達井及造成交通衝擊困擾,並且可運用於急需縮短施工期程之工程,目前日本已有數個成功案例。台電公司現階段亦有工程計畫採用該工法施工,相信不久的將來,國內在特殊潛盾施工技術的水準也能跨出一大步。

本文電子檔已傳至出國報告資訊網

(http://report.nat.gov.tw/reportwork)

目 錄

壹	、 石	开翟	目目	勺・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 1	
貢	、 街	开翟	行和	呈管	介		•	•	•	•	•	•	•	•		•						•	•		. 2)
		`	行和	呈規	劃	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•			2	ı J
	<u> </u>	`	行和	呈表	•	•	•	•	•		•	•	•	•					•		•				3	ı
參	、 街	开翟	習過和	呈・	•	•	•	•	•		•	•	•	•		•		•	•	•	•	•		•	• 4	Ļ
		`	茨城	戊~	櫪	木	幹	線	潛	盾	洞	道	•	•	•	•	•	•	•		•	•			4	:
		`	東ナ	息力	幹	線	潛	盾	洞	道	工	程	•						•		•			•	1	3
	三	`	大利		線	潛	盾	工	程		•	•	•						•	•	•			•	1	8
	四	`	日式	工造	船	株	式	會	社	溉	盾	機	製	造	完	成	檢	查	•		•				2	2
肆	、 5.	享	三與原	ᇗ 謝	·	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		. 2	2 6
		`	心律	፟.	•	•	•	•	•	•	•	•	•		•	•	•	•		•			•	•	. 2	2 6
	<u> </u>	`	建設	義 ·	•	•	•	•	•	•	•	•	•		•	•	•	•		•			•	•	. 3	
	三	`	誌詢	射・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. 3	3 1
							3	表			E			争	淥											
表	1 `	行	程表		•	•	•	•	•	•	•	•	•		•	•	•		•	•					3	
表	2 •	茨	城~	極	木草	幹約	泉_	匚利	呈札	既	要	•	•	•		•	•		•		•				4	
表	3、	東	大島	;幹	線_	工和	呈村	既引	更	•	•	•	•	•	•	•	•	•	•	•					1	3
表	4、	大	和川	[線]	工和	呈札	既马	更		•		•				•						•	•		1	8

圖 目 錄

啚	1:	11	芡城~	爏木	幹線	平	面	啚	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4	
圖	2 `	1	吏用之	2部	潛盾	機	•	•		•	•					•		•	•	•	•		5	
圖	3、	T11	茨城~	爏木	幹線	平	縱	斷	圖							•			•	•			5	
圖	4、	Ž	暂盾機	一次	解體	<u>.</u>	•									•			•	•			6	
圖	5、	j	前方探	查步	驟.	•	•									•			•	•			7	
圖	6、	?	暂盾機	一次	解體	圖	示		•		•			•	•	•	•	•	•	•		•	8	
圖	7、	Ž	暂盾機.	二次	解體	置	示				•		•			•			•	•			9	
圖	8.	ŧ	妾合鋼	板焊	接組	立	及	親	砌		•		•			•			•	•			1	0
圖	9、	車		設及	台車	<u>.</u>	•				•		•			•			•	•			1	0
昌	10	`	全線銀	環片	施_	工	•	•		•	•		•							•	•	•	1	1
圖	11	`	有害氣	〔體 個	貞測	及刻	重言	凡彭	3.	育	•									•	•		1	1
圖	12	`	現場該	祀明报	安合》	 危和	呈	•	•	•	•				•	•		•	•	•	•		1	2
圖	13	`	東大島	詩幹級	泉平に	面圖	副	•		•	•					•		•	•	•	•		1	3
圖	14	`	套環式	 (親子	~潛/	香树	幾	•	•	•	•				•	•		•	•	•	•		1	4
圖	15	`	東大島	詩幹級	泉縱圖	新聞	副	•	•	•	•	•				•	•	•	•	•	•		1	5
圖	16	`	DO-Jet	:施二	二改[良及	支も	刀害	1月	嗊	翧	画	I置		Ī		•				•		1	6
圖	17	`	中川大	で橋及	大人	島草	全 級	泉坎	也盤	这	ζĖ	刁	意	計		•		•	•	•	•		1	6
圖	18	`	障礙物	刃切害	割排	余え	六 意	圖意	ij	•	•	•				•	•	•	•	•	•		1	6
圖	19	`	鋼環片	¦與F	RC 辑	5月	間	使	用	可	撓	性	環	片		•	•	•	•	•	•		1 ′	7
圖	20	`	變斷面	ī(親 -	子分	離)銜	接	處		•				•	•		•	•	•	•		1	7
圖	21	,	大和川	[線斗	区縱層	新圖	副																1	8

圖	22	`	大斷面潛盾	施工及	刃菌	复良	三拶	त्ं •	•	•	•	•	•	•	•	•	•	•	1 9	
昌	23	`	環片採用插	銷組裝	•		•	•	•		•	•		•	•	•			20	
昌	24	`	殘土處理回]填至仰	拱		•		•	•	•							•	20	
昌	25	`	潛盾作業區	域管制	•		•		•	•	•							•	2 1	
昌	26	`	大斷面洞道	完成情	形		•		•	•	•			•	•		•	•	2 1	
昌	27	`	千斤頂動作	確認・	•		•		•	•	•			•	•		•	•	22	
昌	28	`	出土裝置動	力作確認	•		•		•	•	•			•	•		•	•	22	
昌	29	`	切削刃輪輻	手伸縮動 作	作品	隺記	刀 ·		•	•	•			•	•		•	•	2 3	
昌	30	`	本體主要部	7尺寸確	認		•		•	•		•			•		•	•	2 3	
昌	31	`	切削盤及超	挖刀動作	作品	隺記	刀 ·		•	•	•			•	•		•	•	2 4	
昌	32	`	形狀保持裝	置動作	確記	忍•	•	•	•	•	•	•		•		•	•	•	2 4	
昌	33	`	環片組立裝	置動作	確記	忍•	•	•	•	•	•	•		•		•	•	•	2 4	
昌	34	`	中折裝置動	作確認	•		•	•	•	•	•	•	•	•	•	•	•	•	2 5	
昌	35	,	檢查結果確	認會議															2.5	

壹、研習目的

因應社會環境變遷及土木施工技術提升,目前在人口稠密的都市中佈設輸電線路,往往需運用到潛盾施工法來降低交通衝擊。然而潛盾工法的規畫設計及施工仍然有許多技術困難點待克服,其中發進、到達井的施工用地取得就是一大課題。

日本潛盾工法的發展及運用已累積相當經驗,近年來更努力突破傳統潛盾工法的桎梏,因應不同施工條件發展出各式特殊潛盾工法,其中之一即為「無須設置到達井的道洞地中接合技術」,本次赴日實地見習以汲取相關知識及經驗,俾便對爾後公司相關輸電線路工程施作能有所裨益。

貳、 研習行程簡介

一、行程規劃

主要研習行程分為四個部分,包含3個工地參訪研習行程及一個潛盾機製造工廠見習行程,其中工地參訪安排之工地,均具有採特殊潛盾方式施工之工程特性,另於日立造船潛盾機製造工廠目前完成一部地中接合潛盾機製造,將進行後續潛盾機製造完成檢查。行程簡介如下:

- (一) 茨城~櫪木幹線潛盾洞道工程
 - 1. 用途:供瓦斯管線幹管佈設
 - 2. 工程特性:地中接合施工
- (二) 東大島幹線潛盾洞道工程
 - 1. 用途:下水道幹管
 - 2. 工程特性:套環式子母潛盾機變斷面施工
- (三) 大和川線潛盾洞道工程
 - 1. 用途:高速公路
 - 2. 工程特性:大斷面潛盾施工
- (四) 日立造船株式會社潛盾機完成檢查
 - 1. 各部位尺寸檢查
 - 2. 設備功能運轉操作測試

二、行程表

行程 表

項次	起始日	迄止日	前往機構	國家城市名稱	工作內容
1	1030420	100420			往程(台北 → 東京)
2	1030421	1030421	KAJIMA	日本東京	茨城~櫪木幹線潛盾洞道施工及規劃 實務技術研習(含工地觀摩)
3	1030422	1030422	KAJIMA	日本京都	東大島幹線及大和川潛盾洞道施工及規劃實務技術研習(含工地觀摩)
4	1030423	1030424	KAJIMA	日本大阪	日立造船公司潛盾機完成檢查及試運轉操作現場研習(含工地觀摩)
5	1030425	1030425			返程(大阪→台北)

表 1、行程表

參、 研習過程

一、 茨城~櫪木幹線潛盾洞道

(一) 平面圖

圖 1、茨城~櫪木幹線平面圖

(二) 工程概要

潛盾機	瓦斯管徑	Ÿ	替	
	(mm)	有效內徑	平面延長	施工法
		(mm)	(m)	
日立	Ø600	Ø2050	5024	泥水式
基地	Ø600	Ø2050	3851	

表 2、茨城~櫪木幹線工程概要

本工程原配置 1 台潛盾機,施工中因配合業主縮短施工時程需要,另增購 1 台潛盾機,將施工方式變更為兩端發進至預定地點後以地中接合方式銜接。因屬施工中之設計變更,故其地中接合方式非屬機械式地中接合(潛盾機製造未設計接合用滑動罩),而係配合地質條件及後續地改後,以人工焊接鋼板及襯砌接合施工。

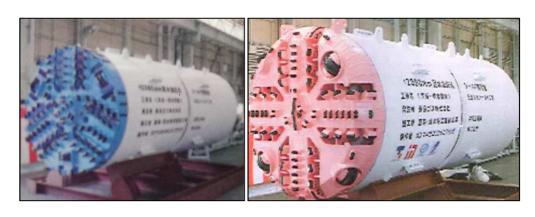


圖 2、使用之 2 部潛盾機

(三) 地質條件: 地中接合位置位於 GL-50m 處, 經增加鑽探調查詳細地 質後,考量土水壓力之克服,接合地點選擇在泥岩層中。

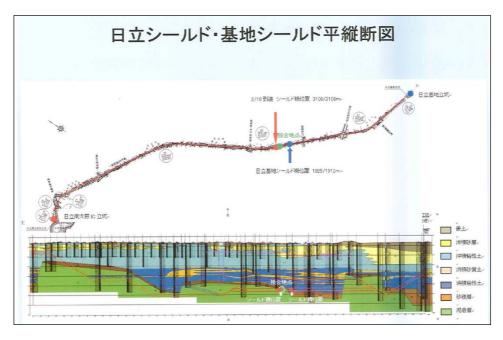
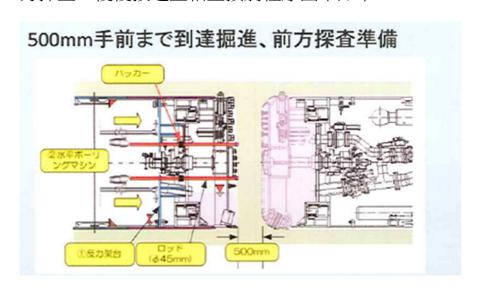


圖 3、茨城~櫪木幹線平縱斷圖


(四) 接合過程說明

1. 第一部潛盾機一次解體並設置前方探查設備。

圖 4、潛盾機一次解體

- 2. 撤除第一部潛盾機之後續及地上設備。
- 3. 第二部潛盾機約距離預定接合點位置前50公尺處,施作精密測量修正掘進,慢慢接近接合點。
- 4. 第二部潛盾機約距離預定接合點位置前 50 公分處起,開始施作前 方探查,慢慢接近至相互接觸程序圖示如下:

前方探査~100mm手前まで到達掘進、前方探査 SOUTH SOUTH フッター回転 7ロット長から観れ計画 7ロット長から観れ計画 7ロット長から観れ計画 100mm まがまで展現 100mm まがまで展現

50mm手前まで到達掘進、前方探査、押当掘進

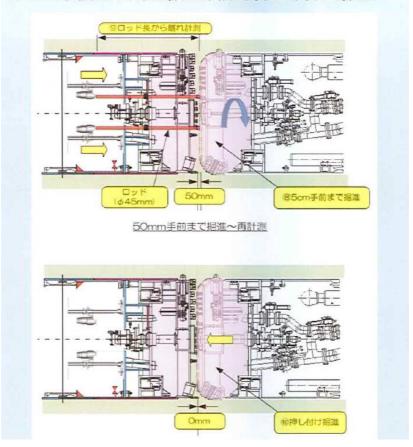


圖 5、前方探查步驟

5. 第二部潛盾機開始進行一次解體

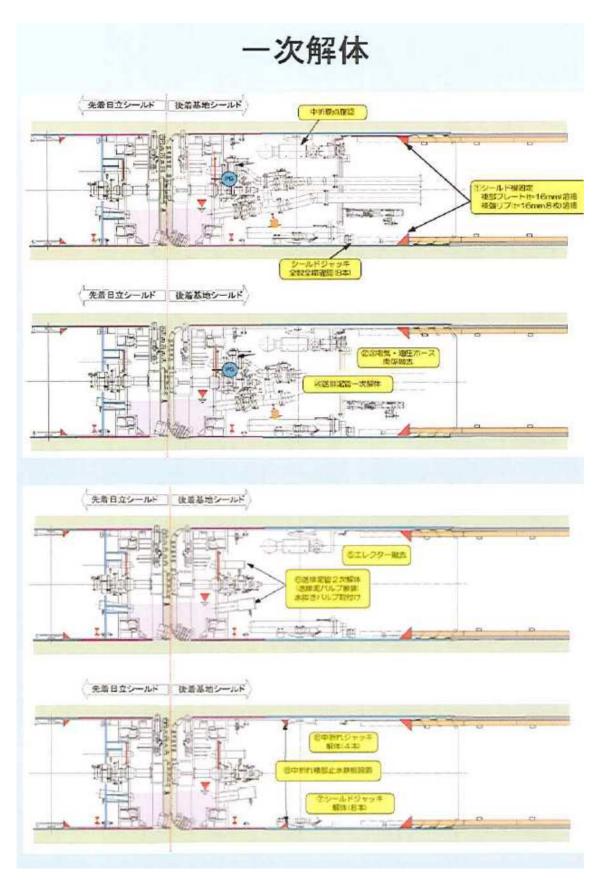


圖 6、潛盾機一次解體圖示

6. 兩部潛盾機進行二次解體

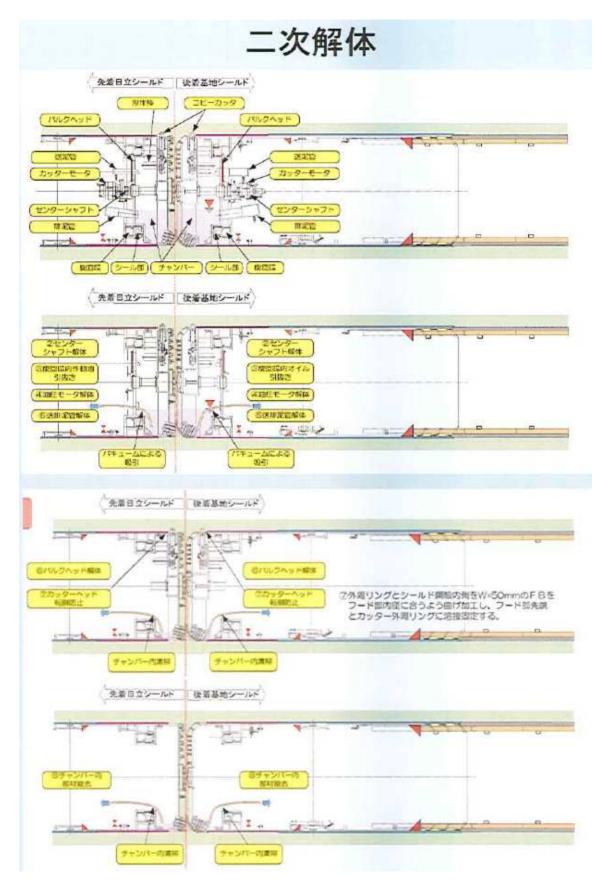


圖 7、潛盾機二次解體圖示

7. 進行接合鋼板焊接組立,完成地中接合

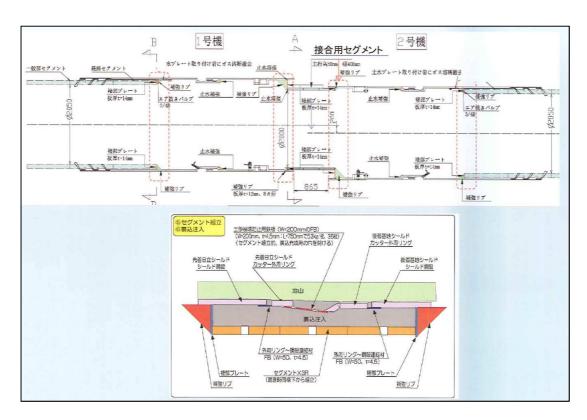


圖 8、接合鋼板焊接組立及襯砌

(五) 現場見習寫真

1. 軌道佈設及台車

圖 9、軌道佈設及台車

2. 全線以鋼環片施工,內徑 ϕ 2000mm,空間狹窄,後續台車相關設備需考慮空間配置,以利施工。

圖 10、全線鋼環片施工

3. 侷限空間內施工,及掘進中遭遇地層中瓦斯氣體時,避免施工人 員遭受危害,每隔適當距離設置氣體偵測及洞道內通訊(PHS)設 備。

圖 11、有害氣體偵測及通訊設備

4. 現場解說地中接合程序,接合前兩部潛盾機之精密測量、操作模式、前方探查、解體情形....等

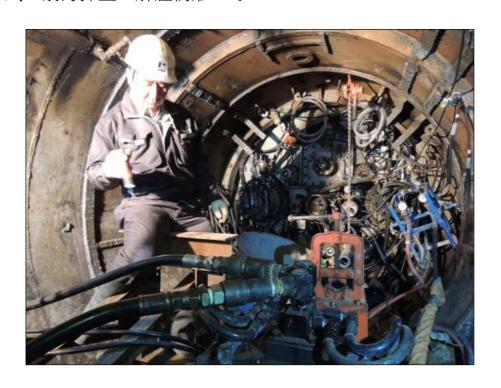


圖 12、現場說明接合流程

二、 東大島幹線潛盾洞道工程

(一) 平面圖

圖 13、東大島幹線平面圖

(二) 工程概要

套環式子	內徑	急曲線施工	平面延長	施工法
母機	(mm)	(m)	(m)	
親機	Ø6000	R40 · R35	705	土壓式
子機	Ø4500	R40 · R25	831	

表 3、東大島幹線工程概要

(三) 工程特色

1. 套環式親子潛盾機施工

本工程需完成之管線屬下水道工程建設,故設計上除考量重力排水外,尚需評估各區段匯流流量設計所需斷面,以達到較佳經濟效益,因此,本工程規劃採用套環式子母機潛盾施工,由下游往上游變斷面掘進施工。

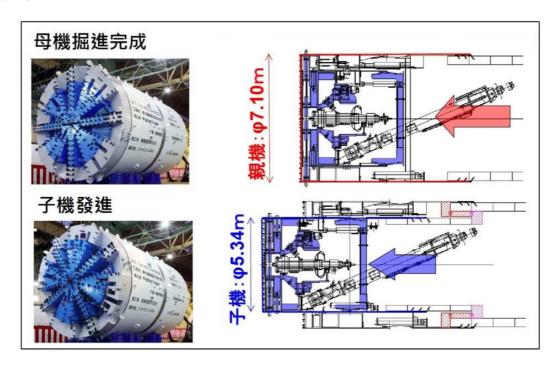


圖 14、套環式親子潛盾機

2. 大深度

下水道管線設計上需考量避開相關地下障礙物並以重力流方式 洩水,因本工程範圍屬該重力排水之下游區段,潛盾施工之高程範圍 約為海平面下 30m ~38m,較一般潛盾工程為深。

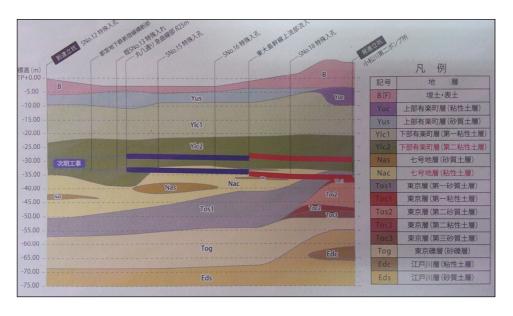


圖 15、東大島幹線縱斷圖

3. 急曲線

本工程平面線形係沿既有道路佈設,配合道路範圍,曲線段最小轉彎半徑為子機發進後之 R25m 右曲轉彎段,因此,潛盾機設計製造時,子機中折最大角度為左 6.5°,右 11.0°,以符合施工需求。

4. DO-Jet 工法運用(double object-jet method)

DO-Jet 工法原理係在潛盾機面盤裝設數個固定或可移動之噴頭,利用高壓噴射攪拌方式於潛盾機外周施作地盤改良,或以高壓噴射水刀切割障礙物,進而加以排除。本工程於通過中川大橋及急曲線 R=25處時緊鄰既設大島幹線施工,基於對中川大橋基椿、大島幹線等既有設施物保護,以及急曲線施工防護,需施作地盤改良;另於通過地鐵新宿線時,預估潛盾路徑將遭遇 H 型鋼樁障礙物,必須將該障礙物切割排除,因此,潛盾機配置有 DO-Jet 施工設備。

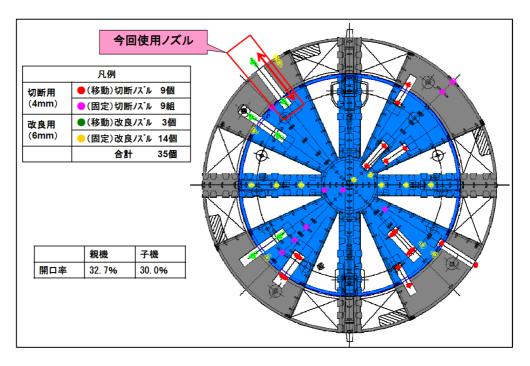


圖 16、DO-Jet 施工改良及切割用噴頭配置圖

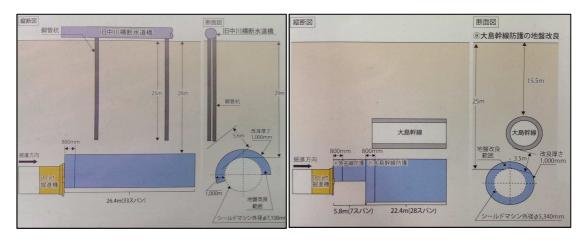


圖 17、中川大橋及大島幹線地盤改良示意圖

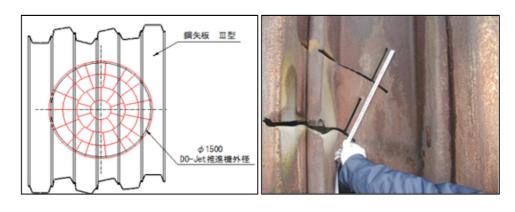


圖 18、障礙物切割排除示意圖

(四) 現場見習寫真

1. 急曲線段採用鋼環片施工,鋼環片與RC環片間使用可撓性環片 銜接,以吸收並降低差異變形量之影響。

圖 19、鋼環片與 RC 環片間使用可撓性環片

2. 潛盾機親子分離變斷面處以二次施工襯砌銜接。

圖 20、變斷面(親子分離)銜接處

三、 大和川線潛盾工程

(一)平面圖

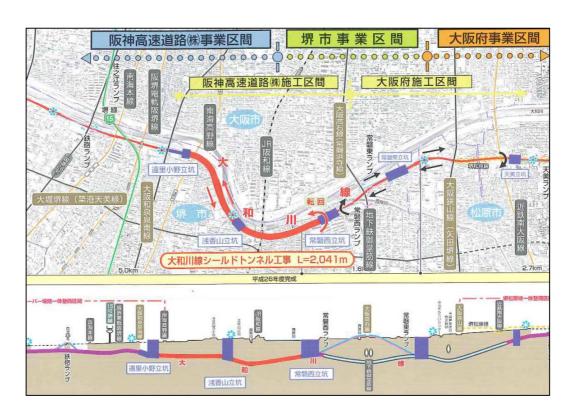


圖 21、大和川線平縱斷圖

(二)工程概要

平面延長	掘進延長	潛盾機外徑	曲線施工	洞道間最小	施工法
(m)	(m)	(mm)	(m)	隔離(mm)	
2041	4082 (東行及西 行2車道)	Ø12470	R400	986	泥土壓 式

表 4、大和川線工程概要

(三)工程特色

1. 完成之洞道係供作為高速公路使用,洞道尺寸屬大斷面潛盾施工,使用之潛盾機外徑達 Ø12470mm。大斷面之潛盾機型因內部空間大,面盤刃齒更換可由機內更換新品,並可縮短停機更換時間,增加人員安全,對於長距離施工刃齒磨耗之更換問題可獲得解決。

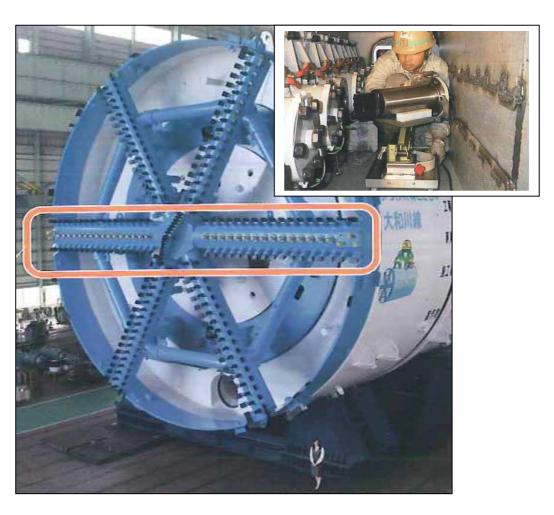


圖 22、大斷面潛盾施工及刃齒更換

2. 環片間組裝採用插銷型增進施工效率。

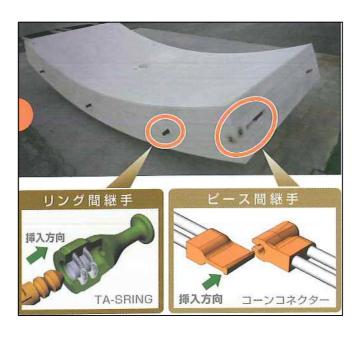


圖 23、環片採用插銷組裝

3. 殘土處理回填,大斷面施工產生大量殘餘土石方,藉由將潛盾施工後 部份土方固化處理後,回填至仰拱,以達到殘土減量及環境保護效果, 土方回填後亦可增加隧道穩定性。

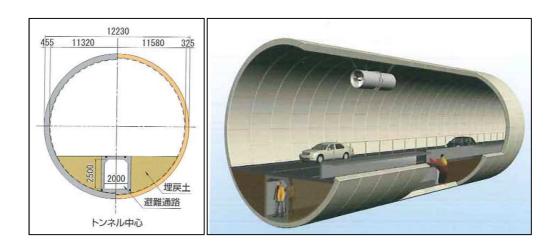


圖 24、殘土處理回填至仰拱

(四)現場見習寫真

1. 潛盾機後方施工作業區域入口管制,避免施工人員有被軌道車撞擊之 虜。

圖 25、潛盾作業區域管制

2. 潛盾洞道施工完成之情形

圖 26、大斷面洞道完成情形

四、 日立造船株式會社潛盾機製造完成檢查

(一)起始會議

由日立公司先行說明主要設備之機械概要,並就自主檢查結果擇 要報告,後續再由潛盾機訂製業主及日立公司針對當日檢查流程及重 點事項進行確認。

(二)工廠試驗檢查

1. 潛盾機千斤頂動作確認(全數動作、單體動作)

圖 27、千斤頂動作確認

2. 排土裝置動作確認(旋轉、閘門千斤頂動作)

圖 28、出土裝置動作確認

3. 切削刃輪輻伸縮動作確認

圖 29、切削刃輪輻伸縮動作確認

4. 本體主要部尺寸確認(軸向彎曲、本體長、外周長)

圖 30、本體主要部尺寸確認

5. 切削盤裝置動作確認(旋轉、超挖刀千斤頂動作)

圖 31、切削盤及超挖刀動作確認

6. 形狀保持裝置動作確認(支撐千斤頂、移動千斤頂動作)

圖 32、形狀保持裝置動作確認

7. 環片組立裝置動作確認(旋轉、各千斤頂動作)

圖 33、環片組立裝置動作確認

8. 中折裝置動作確認

圖 34、中折裝置動作確認

(三)檢查結果確認會議

最後於結果確認會議中,將各項檢查結果,應補正缺失,相關建議事項…等彙整作成紀錄,並由所有與會檢查人員共同簽認。

圖 35、檢查結果確認會議

肆、 分享與感謝

一、 心得

適逢日本地區目前有多處特殊潛盾工事進行中,惟因本次見習時間有限,因此挑選了較具有特殊潛盾施工特性的三件工事,另結合本處「松湖~大安、深美~大安 345kV 電纜線路暨附屬機電統包工程」#3 潛盾機製造完成的時點,赴日立造船株式會社堺工廠進行潛盾機完成檢查作業。雖然僅短短六天的時間,然透過這四個行程見習到日本人對於工事管理的一絲不苟,以及面對問題解決問題的智慧與手段。茲就針對各行程心得,概述如下:

(一) 茨城~櫪木幹線潛盾洞道工程

初來乍到日本的第一個行程,滿懷憧憬與興奮之情,聽完工程簡報後,瞭解到該工程的「地中接合」形式是採人工接合方式,與本公司採用的「機械式地中接合」有些差異。原本該工程施工並無地中接合之規劃,乃工事進行到一半,因應業主縮短施工期程的要求而變更設計,另行添購2號潛盾機並增開潛盾工作面,由原本的到達井投入朝1號潛盾機掘進,最終2台潛盾機接合貫通。

也許是累積土木工作十多載的經驗使然,聽完簡報後,腦中即浮現滿滿的問號,事實上,以「人工方式」進行地中接合要比「機械式」接合困難許多,更依賴土木的專業與技術始能克服種

種非預期中的困難問題,因此,聽取簡報後即提出一連串的問題 就教,包含:地中接合的深度約50公尺,如何克服水土壓力進行 人工接合、輔助工法形式、如何進行測量以修正掘進方向、接合 過程之管控重點等,透過一連串的請益交流,了解施工團隊為因 應地中接合施工,增加補充地質調查,最終選擇滲透性小自立性 較佳的泥岩地層作為接合地點,另鎮密規劃接合步驟,重複測量 確認掘進方向的正確性,確保2部機接合誤差控制在容許範圍內。

經與施工團隊請益交流過程,了解施工團隊為因應地中接合施工之變更,確實下了一番功夫,尤其接合的步驟是不允許重來,因此,一而再,再而三地重覆確認掘進方向、高程之正確性,並選擇適當接合地層以降低工事成本,確保人工接合過程的安全,展現施工很細微的部分以及土木人遇到問題、面對問題、解決問題的智慧,雖然這裡沒有「機械式接合」所展現的先進技術及人定勝天的成就感,但施工團隊能隨機應變,靈活運用土木專業知識,克服種種困難,內心著實深受感動與敬佩。

(二)東大島幹線潛盾洞道工程

本工程變斷面施工及 DO-Jet 工法運用令人印象深刻,台灣類似的工程案例並不常見,然變斷面施工一般較適用於下水道管線,對電力管道而言,似乎較無變斷面需求。 DO-Jet 工法屬較新式的

施工方式,鑒於以往潛盾施工時,潛盾路徑上如有未拔除的臨時 擋土設施(H型鋼、鋼軌、鋼板)等障礙物,經常造成潛盾工事停滯, 甚至失敗;而道路上密集的既設管線,常導致潛盾施工所需的地 質改良作業無法由地面上施作,這些種種原因皆令工程師頭痛不 已。

DO-Jet 工法的發展似乎讓這些問題可迎刃而解,然而必須注意的是: DO-Jet 工法運用須於訂製潛盾機時將相關高壓噴射設備納入製造,因此,規劃階段於潛盾經過路徑之地質調查及各項資料蒐集顯得非常重要,如經研判有障礙物排除或需施作地改防護之需求時,則需考量潛盾機製造應具備 DO-Jet 高壓噴射之相關設備。

(三) 大和川線潛盾洞道工程

本次出國對於日本交通建設的發達與便利感受非常深刻,尤 其在參觀過大和川線潛盾工事後,更是佩服日本在交通建設方面 的前瞻及投資。

大和川線潛盾工事業主為阪神高速道路株式會社,工程內容 須完成阪神高速6號大和川線高速道路,西側連接阪神高速4號 灣岸線,東側連接阪神高速14號松原線,完成之潛盾洞道約12 公尺,覆土深度約15~30公尺,長度約9.7公里,其造價高達2700 億日圓。

日本公路網主要由平面與高架系統構成,時至今日,藉由採用大斷面潛盾施工方式構築地下高速道路,使公路網脈絡拓展至高架、平面、地下三個層次,真正做到善用空間,地盡其利的境界。不過地下高速道路屬較新穎的做法及嘗試,所衍生包含造價高昂導致通行費訂定及回收時間的問題,而長隧道行車及通過斷層帶的風險等,尚需時間加以驗證其效益。

(四)日立造船株式會社潛盾機完成檢查

潛盾機投入掘進後,都是在地底下運轉,頂多只能在潛盾機 內部看到部分運轉的情形,難得有機會可藉由本次潛盾機製造完 成檢查的機會,一窺潛盾機各種設備操作的全貌。

透過千斤頂、排土裝置、切削盤及超挖刃、環片組立裝置、中折裝置等各項設備逐項檢查之過程中,更清楚瞭解潛盾機各部位構造及運轉時各種設備相互配合之細節,是十分難得的體驗。而本次參與潛盾機完成檢查的人員有:潛盾機訂製業主指派的機電部門人員,潛盾工事部門人員,以及日立工廠潛盾機製造團隊等約莫30多人等,都是長期從事潛盾領域的專業人員,整個檢查流程約花費6個小時,期間從各項問題討論、意見交流及檢查執行等,獲得很多寶貴的經驗,一有問題和疑惑也可現場就教於專

家們,正所謂百聞不如一見,以往在期刊、論文、課程中得到片 片段段自行拼湊的資訊意象,藉由本次完成檢查過程,有系統的 整合連貫在一起,真是不虛此行。

二、建議

(一) 在台灣地區的潛盾或推進工程,外界經常看到承包商標到工程後, 買來二手潛盾機,再依工程內容需要加以改裝,幾乎各部位設備 都可以改,最常見的是改裝切削盤面及加裝刃齒。這種情形在日 本是看不到的,而且在法規上就很明確不得使用舊品(除非業主提 供機具),日本的潛盾工事使用之潛盾機都是依該工程的地質條件、 工程特性、掘進長度、施工條件等量身訂做,施工完成後,除面 盤、機殼等磨損不堪外,驅動部及油壓系統可靠度都已大幅降低, 因此,以日本人的眼光看台灣這種改機的作法,是一種投機行為, 需承擔很大的風險。潛盾施工法在台灣發展至今,雖然已經視為 一項純熟的技術,然工程履約過程仍經常發生承包商為節省成本 使用舊品改機,或減省滑材、背填材料使用,導致工程災害或掘 進失敗情形,因此,引入日本的潛盾技術的同時,也應師法日本 的相關法規制度,在法規而上作明確規範,營造一個適切公平的 競標環境,才能整體提升國內潛盾工程技術水準;此外,亦須從 教育著手,培養土木人秉持專業務實施工的執業道德,賺取合理 利潤,杜絕以投機心態鑽研漏洞,獲取不正利益。

(二)本次參訪日本三處特殊潛盾工事,對日本的研發能力著實令人咋苦,不僅在施工大方向發揮創意,在各工程細節也能處處見到巧思,能夠如此,人力資源扮演著重要的角色,也印證了人才確實是企業最重要的資產。追本溯源,職場人力培養是企業重要的一環,本公司目前有完善的訓練單位,然而這些訓練偏重於基礎專業智能及法規面培訓,如能多鼓勵同仁參與公司內外研討會、專業領域課程,以及赴國外實習尖端技術研究等,協助並簡化相關報核手續,應可提高同仁進修意願,並將所學回饋予公司,提升企業競爭力。

三、誌謝

感謝公司給予此次出國研習的機會,難得能奉派赴科技先進純 熟的日本學習潛盾技術,因此,十分珍惜這次的見習機會,在見習 行程安排上,事先蒐集日本目前較具有特色及先進技術的潛盾工事 資訊,並接洽聯絡安排相關行程,俾便能達到良好的研習效果。

本次研習行程安排感謝鹿島建設株式會社給予的協助,所參訪 鹿島建設三處工程,三處工事所:柴田所長、賴月內所長、岩住所 長,以及所屬相關施工團隊人員給予詳盡簡報及現場指導交流,讓 本次研習載著滿滿收穫回來,特致上誠摯的謝忱。