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Geophysical studies of recent well-monitored mega-earthquakes are revealing with an increasing resolution the complex mechanical
heterogeneities along faults (differential locking behavior, differential rupture behavior, rheological and structural variations, among
others). Furthermore, observations of various transient events (after slips, slow slips, tectonic tremors, low frequency earthquakes)
also evidence the temporal evolutional nature of fault systems. While fault heterogeneities seem to have first order controls on the
pattern of strain accumulation/release and carry fundamental information about the mechanical setting of faults, we have limited
physical and mechanical understanding of what causes these heterogeneities, their kinematics and transient evolution between major
events, and how they ultimately influence the largest seismic events. We aim to integrate studies from various disciplines in order to
compare different observations and provide insights into the physical and transient properties of fault heterogeneities and their relation
to earthquakes. Contributions from geologists, seismologists, geodesists, experimentalists, and modelers are invited. Some suggested
topics are:

* Roughness/asperities/geometry of faults

* Geodetic records of fault slip in different periods of the earthquake cycle

* Co-seismic slip inferred from seismic records of various frequencies

* Spatiotemporal variation of seismicity and transient events, seismic vs. aseismic slip

* Seismic and electromagnetic attributes around faults from tomography

* Relation between fault heterogeneity and rock physical/rheological properties

* Numerical modeling of fault zone kinematics
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Different kernel functions due to rainfall response from borehole
strainmeter in Taiwan

Chih Yen Chen (1,2), Jyr Ching Hu (2). and Chi Ching Llu (3)

(1) Central Geological Survey, MOEA, Taiwan (zychen@moeacgs.gov.tw), (2) National Taiwan University, Geosciences,
Taiwan , (3) Institute of Earth Sciences, Academia Sinica, Taiwan

In order to realize reasons inducing earthquakes. project of monitoring of the fault activity using 3-component
Gladwin Tensor Strainmeter (GTSM) has been initiated since 2003 in Taiwan, which is one of the most active
seismic regions in the world. Observed strain contains several different effects within including barometric, tidal,
groundwater, precipitation, tectonics, seismic and other irregular noise. After removing the response of tides and
air pressure on strain, we still can find some anomalies highly related to the rainfall in short time in days. The
strain response induced by rainfall can be separated into two parts as observation in groundwater, slow response
and quick response, respectively. Quick response reflects the strain responding to the load of falling water drops
on the ground surface. A kernel function shows the continual response induced by unit precipitation water in time
domain. We split the quick response from data removing tidal and barometric response, and then calculate the
kernel function by use of deconvolution method. More, an average kernel function was calculated to reduce the
noise level. There are five of the sites installed by CGS Taiwan were selected to calculate kernel functions for
individual sites. The results show there may be different on rainfall response in different environmental settings.
In the case of stations site on gentle terrain, kernel function for each site shows the similar trend, it rises quickly
to maximum in | to 2 hrs, and then goes down near to zero gently in period of 2-3 days. But in the case of sites
settled side by the rivers, there will be 2nd peak of function when collected water in the catchment flows along by
the sites related to the hydrograph of creeks. More, landslides will occur in some sites in hazard of landslide with
more rainfall stored on, just like DARB in ChiaYi. The curve of kernel function will be controlled by landslides
and debris flows.
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We take 5 sites data which are all installed by CGS, taiwan. They are JING and SANS in Taipei, CINT and BMMT
in HsinChu, and DARB in Chiayi. To discuss what is the differences on rainfall response in different settling

Abstract Mothod

In order to realize reasons inducing earthquakes, project of monitoring of the fault activity using 3-
component Gladwin Tensor Strainmeter (GTSM) has been initiated since 2003 in Taiwan, which is one

of the most active seismic regions in the world. Observed strain contains several different effects ik s et et environment.
within including barometric, tidal, groundwater, precipitation, tectonics, seismic and other iregular tide from the measured strain data by using the
noise. After removing the response of tides and air pressure on strain, we still can find some BAYTAP-G program to obtain the residual strain data BMMT - - = : — g:::Z;ihc::?g::ediS;“;::;{Ell\{xg;:mg22?;’1\;:351?\5

anomalies highly related to the rainfall in short time in days. The strain response induced by rainfall
can be separated into two parts as observation in groundwater, slow response and quick response,
respectively. Quick response reflects the strain responding to the load of falling water drops on the Split the quick response of strain data to rains from
ground surface. We split the quick response from the original data and calculate the kernel function the residual strain data by using recursive digital filter
by use of deconvolution method. An average kernel function was calculated to reduce the noise
level. There are five of the sites installed by CGS were selected to calculate kernel functions for

gentle with no dramatic altitudes change. From the results,
kernel function for each sites show the similar trend,
quickly response to maxin 1 to 2 hrs, then goes near to zero
gently. Their max rainfall response vary from 14 to 65
nanostrain/mm

Left: Picked quick strain response induced by rainfall (with

Kemal Function

individual sites. The results show there may be different on rainfall response in different A:?ii::ig:f;::f:: ';:2:;::;:”;:;1:1:::? marks) and calculated mean kernel function of BMMT (red g
environmental settings. In general, kemel function for each site shows the similar trend, it rises quickly discrete Kernel function line). Right: comparison of observed quick response 2 55 100 750 200
to maximum in 1 o 2 hrs, then goes down near to zero gently in period of 2-3 days. But in some sites N S induced by rainfall (blue line) and convoluted results of Steps. 0.5 he
settled side by the rivers, there will be 2™ peak of function when collected water in the catchment Determine the discrete Kernel function by linear T rainfall and mean kernel function (red line).
flows by the sites depending on hydrograph. More, landslides will occur in some sites in hazard of systems analysis, based on the data of the sequence of Accumulated Rainfall for Rainfall Event, mm
landslide with more rainfall stored on, just like DARB in ChiaYi. The curve of kernel function will be rainfall amount and the corresponding sequence of
controlled by landslides and debris flows. L qukkstraindatatorains.
Another rainfall E G E s
paisads LA
\/ Foim. a

We picked 30 rainfall events in DARB during 2007 to 2010 to calculate their discrete kernel function. All are plot
on one diagram but can not conclude in on function. Therefore, we divide these functions into two group, thirteen
for flood mode, and six for rain mode Kernel function of rain mode has very similar trend as CINT has, two peaks,
abruptreach its peaksin 1 and 5.5 hrs. respectively. And its value is more or less 3.70 nanostrain/mm. in the other
hand. kernel function of flood mode reach its max value, 10 nanostrain/mm, in about 24 hrs. no matter in lag time or
value, kernel function in flood mode is much larger than in rain mode.

The reason to induce such phenomenon might be related to the local hazard landslide and collapse. Left aerial

Introduction

There have been 12 fault activity
observatories deployed in western
Taiwan since 2003. There area borehole  Tpjs js a flowchart of this study. First, remove the effect of barometric
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strainmeter and a borehole seismometer racr +th ti q A ai PPN SrR
3 S pressure and earth tide from original strain. Second, to split quick response : S
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2 = Toavoidsomenoise and hins, 2 standurd deviation argutilized to;constrain * AliShan Village. That means if accumulated rainfall in a rain event excess 250 mm, curves of kernel function will

observatories constitute an essential
network in western Taiwan where have
the most population living. These
instruments are installed ata depth of
approximately 200 meters at 12 sites of
4 clusters which provide 3 component
strain data on both crustal strain
accumulation and transient strain

be controlled i)y landslide
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to calculate mean kernel function.
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Rainfall induce different response in The effect for groundwater induced by a rainfall event could L L L n L L L L L s
# areal strain and water observation & : > 0 20 0 ) E) 70 El El 100
€ B ) ) ) be separated into relatively quick response that may last few Steps, 0.5hr £
T 685 In data processing. after removing tidal and minutes or hours, and slow response that may last few days or 8
2 S so b I s .
5 barometricresponse from original strain data, weeks [V Lyne and Hollick, 1979]. CINT is located on an elementary school which is in hill area in HsinChu. From the result of CINT, we can see the
2 We found some abnormal signal highly related bruptiising aft infallin 1 he. but therei th Lk found 44 hrslater: Thatindicates:th Time
3 e e Meresmonse i ammantoiie P abrupt rising after rainfallin 1 hr, but there is another peak found on around 4 hrs later. That indicates there are Loading of water In the
. s N some contaminations in CINT kernel function. Bed load from induced

68 N groundwater. But they goes different direction, F(r) = / h(t — 7)R(7)dz, Due to the site is near by the river, we propose the another peak should be related to the hydraulic condition after river by the sites landslide In the river

one goes up, and one goes down. The result is g SR : S t 4 5 b ’
different from the result we observed in years - raining. After raining, some water infiltrate into the soil, but some flow into and collected in the river bank. The lag Run-off loading only

4 sinlsrinl i teenid T e . 0 . . time between a rainfall begin to max flow recorded of hydrograph is about 3-6 hrs depends on the catchment area,
8 :1‘:"])]5\?:;“':1:‘;\‘, a': 1:: 'gl:\gl'ctielx“:atll:i“w.h:tl:;lgll? :* .;\fter mlle‘:i"g' We‘ﬁb:;"“ a ‘l“‘cdk 1’9%’01!“ series S“"‘- Then condition of vegetations and rock type.we correlate both and found 2nd peak which is highly coincided with max
s otivatio: nders 10: econvolution method was used. with given quick response hydrograph peak in time. We propose that 2nd peak responding to the river hydrograph change and all kernel . . . : . .
Ea between two. and rainfall records series known, we can calculate a f\{ncnilupsapcmnprehenslve rl;mll,t oftwodxffe};ent mocl])e & yarograp; & A simple diagram shows the strain response induced by rainfall. Model A (green line) shows the
34 unknown function, the unit rainfall response function ora & % response of ground surface run-off loading which goes abruptly in 1-2 hours then decreases
5 2 kernel function. exponentially by time. In some sites located by the river, the response of strain might be influenced by
hydrograph of the river and that's the response of Model B (blue line). In some extreme case such as
ydrograp P

° DARB, there might be existing some influences of running bed-loads of river by the site (Model C, red

line). Gray line shows the comprehensive result of three models along time.
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