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Using Alcohol Vapor as Catalyst for Synthesizing Methane Hydrate

Po-Chun Chen®, Wuu-Liang Huang?, San-Hsiung Chung® and Li-Jen Chen®
1. Central Geological Survey, MOEA.
2. Institute of Geosciences, National Taiwan University.
3. Department of Chemical Engineering, National Taiwan University.
Taipei, Taiwan

ABSTRACT

We found that the amount of methane hydrates formed during synthesis
can substantially increase, if trace alcohol vapor (methanol, ethanol or
1-propanol) is added to the Ice-Seed system during the “pressurization”
stage. Among them, ethanol has the best promoting effect when the
initial system temperature is around 270K. Nearly 91% of the ice seeds
can be converted during this stage. Furthermore, the duration of the
“heating” stage can be shortened while consuming the remaining ice.
Ethanol also has similar catalytic effect for synthesizing carbon dioxide
hydrate. This discovery may have practical value for the transportation
and storage of natural gas.

KEY WORDS: Gas hydrate; methane hydrate; alcohol; catalyst; ice
powder; synthesize; vapor.

INTRODUCTION

Natural gas hydrate (NGH) is a non-stoichiometric compound with a
structure consisting of a network of H,O molecules that are
hydrogen-bonded together in an ice-like manner within which gas
molecules are encaged. It can play an important role of transporting
natural gas because of the ability for storing significant volumes of
natural gas (Gudmundsson et al., 1994; Khokhar et al., 1998;
Gudmundsson and Graff, 2003). Although there is research
concentrating on how to promote or retard the formation of gas
hydrates in a liquid water system by adding different additives
(Makogon et al., 2000; Zhong and Rogers, 2000; Ganji et al., 2007),
published reports seldom focus on how to improve the conversion
efficiency of the “ice seed method" (to synthesize hydrate by slowly
warming granular ice in a pressurized atmosphere of the hydrate
former). “Ice seed method” can divide into pPressurization” and
“heating” stages (Chen et al., 2010). We have now found that there are
three kinds of alcohol vapors which can noticeably increase the
conversion efficiency during the pressurization stage. This means that
the heating stage for consuming remaining ice can also be shortened
and save more energy.

EXPERIMENTAL SECTION
Starting Materials

Gas hydrate was formed from ultrapure methane (99.99%), and seed ice
was prepared from a nearly gas free ice block made from ultra-pure
deionized water. The ice block was crushed and ground followed by
sieving into grain sizes ranging from 180 to 250 pm. Volatile alcohols
chosen in this study are methanol, ethanol (medical-grade with 5%
water) and 1-propanol.
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Apparatus

The apparatus (Fig. 1) used for synthesis of methane gas hydrate (MGH)
was modified from Stern et al. (1996, 2000). The system was equipped
with a freezer (~253 K) within which a trapezoidal copper vessel
(25.5%50.5 cm width x 51.5 cm length x 23 cm height) was set on a
heating plate (25.5 x 51.5 cm). The copper vessel held a fluid bath of
95% ethyl alcohol aqueous solution, in which two pressure vessels
(reservoir and reactor, both made of stainless steel with a total inner
volume of 315 cm® and maximum pressure capacity of 140 MPa) were
immersed. The sample holder was a high-density polyethylene (HDPE)
cylinder (5 cm outer diameter and 4.8 cm inner diameter, with a length
of 10 cm and wall thickness of 0.1 cm).
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Figure 1. Experimental setup for MGH synthesis. The dashed line
frame indicates the refrigerator (not to scale).

The methane pressure was increased using a gas booster (200 MPa
maximum capacity) and monitored using a pressure transducer. The
pressures reported were absolute pressure with an accuracy of 0.02%.
Four type-K thermocouples were used to independently monitor the
bath temperature, gas temperatures within both the reservoir and reactor,
and mid-specimen sample temperature. The reliability of pressure and
temperature data was verified by determining the P-T equilibrium
boundary between methane hydrate and methane + water.



Experimental Procedures

First of all, we conducted one set of experiments to test the effect of
ethanol with the same initial temperature (258.2K, Table 1). A
cylindrical holder containing the packed starting ice grain aggregate
(4.8 cm diameter) was capped with porous steel disks on each end and
loaded into the reactor with the sample thermocouple inserted into the
middle of the ice cylinder. A typical mass of 80.0 g of ice was used

(Table 1). The ice was packed carefully and loosely to ~66.0% porosity.

To avoid melting the ice grains, all sample handling was conducted at
low temperatures in a freezer (<260 K).

For experiments with ethanol additives, we admitted 2 ml (0.63% of the
reactor volume) of ethanol at the bottom of the reactor without
contacting the ice directly. There is still some space between the holder
and the bottom of the reactor chamber; therefore, the ethanol vapor
phase rather than the liquid phase may play a more important role.
Even after nearly 100% MGH samples had been made, there was still
some liquid ethanol at the bottom of the reactor. The reactor and
reservoir vessels were evacuated after immersing in the bath. The
reservoir vessel was then charged with the desired methane pressure
from a gas booster, while the reactor remained evacuated.

We started the "pressurization stage" through rapidly pressurizing the
reactor vessel to 16.60 MPa by quickly opening the valve between two
vessels once the gas temperature in both vessels was equal to the
controlled bath temperature (Ti,;). The total duration for the
“pressurization stage” was 1440 min before actively heating the system.
These samples then underwent 1-4 heating cycles (Heating Stage) for
completing the MGH formation. During each heating cycle, the bath
temperature was raised from 258.2 K (Tj,;) to 285 K over an interval of
approximately 60 min, then held at 285 K for 480 min, and followed by
resetting to its initial temperature.

For another set of experiments, we individually tested three kinds of
volatile additives (methanol, ethanol or 1-propanol) to compare the
conversion efficiency in the pressurization stage with runs without
additives at different T;;;. The basic experimental procedure and
sample preparation way of the second set was similar to the first one,
except the heating stage was skipped. After kept in the pressurization
stage for 1440 min, we initiated the dissociation procedure for the
measurement of the MGH yield.

For the dissociation step, we rapidly vented the reactor pressure to 0.1
MPa over 10 s to destabilize the MGH and start the dissociation. The
system vent was then immediately closed, while simultaneously
opening the valve connecting the sample to the flow meter (Fig. 2),
allowing for collection and measurement of all released methane. The
cumulative weight of displaced water in the flow meter and gas
collection apparatus was continuously monitored for getting the
information of dissociation rate. We can get the released methane
volume from the displaced water weight and then calculate the methane
hydrate yield and ice conversion efficiency, since we know the starting
weight of ice seed.
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Figure 2. Flow meter for measuring the MGH dissociation rate
and yield.

RESULTS

From the first set of experiments, we can clearly find that the existence
of ethanol has a positive effect on synthesis performance (Table 1, Fig.
3). The sample A (without ethanol vapor as additive) did not meet a
100% conversion until the 4™ heating cycle. In Fig. 3 (al), the pressure
value of the reactor dropped after each heating cycle, which meant the
consumption of methane and the formation of new gas hydrates. In Fig.
3 (a2), we can notice that during every cooling process, a peak
appeared in the sample temperature record. This phenomenon
suggested that there was an exothermic reaction, which should be the
crystallization of unreacted liquid water.

Table 1. Comparison of different synthesis procedures with or without
ethanol vapor.

Sample | Additive |Heating| Ice |Porosity| Tint Pinit Pend
2ml) | Cycle | ()| (%) (K) | (MPa) | (MPa)

A - Ist 80.0] 66% |258.2| 16.60 12.93
— 2nd [80.0| 66% |258.2| 12.93 12.09

- 3rd [80.0] 66% |258.2| 12.09 11.67

- 4th  [80.0] 66% |258.2| 11.67 11.51

B Ethanol Ist 80.0] 66% |258.2| 16.60 11.53
Ethanol 2nd [80.0| 66% |258.2| 11.53 11.53

On the other hand, it took only one heating cycle for converting all ice
seed to MGH with additive ethanol in sample B. In Fig. 3 (bl), there is
no pressure difference before and after the second heating cycle

which implied that there is no gas hydrate formed after the first heating
cycle. We also noticed the obvious peak in temperature of the sample,
shown in Fig. 3 (b2) when the bath temperature was maintained around
285 K. Since the formation of gas hydrates is also an exothermic
reaction, the graph clearly demonstrates the dramatic effect of ethanol
vapor on the rate of hydrate formation.
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Figure 3. Comparison between different synthesis P-T paths of
methane hydrates with and without ethanol.

From Fig. 3 we also noticed that the methane pressure kept
decreasing with a rate greater in (bl) than in (al) before the first
heating cycle. This phenomenon highlighted the fact that
ethanol could play a role even in the “Pressurization Stage”.

According to the results of previous experiments, we introduced
another two alcohols, methanol and 1-propanol into the system
for testing their catalyst effect during the “Pressurization Stage”.
We kept the system in the pressurization stage for 1440 min,
then started the dissociation procedure for the measurement of
the MGH yield. We also assumed that the initial bath
temperature would have obvious influence on MGH converting
performance, so Ty is another parameter took into
consideration. Fig. 4 and Table 2 present the settings and results
of this set of experiments.
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Figure 4. The yields of methane hydrate with different additives
and Ty,

Table 2. MGH yields of experiments with different additives
and initial temperature.

Sample | Additive | Ice |Porosity| Tinit | Pinit Peng | Yield
@ml) | @ | (%) (K) [(MPa)| (MPa) | (%)

Bl No 40 66% |261.3 [16.57| 15.29 |16.33
B2 No 40 66% |267.7116.53 | 15.35 |12.01
B3 No 40 66% |271.4(16.82| 16.02 8.45
B4 No 40 66% |272.4(16.63 | 15.78 |10.59
BS5 No 40 66% | 272.7 |16.55| 15.52 [13.93
Ml Methanol | 40 66% | 258.3 [ 15.88 | 13.76 |75.00
M2 | Methanol | 40 66% |262.3 |16.55| 14.26 |74.00
M3 Methanol | 40 66% | 2653 [16.59| 13.98 |67.05
M4 | Methanol | 40 66% |269.9 |16.60 | 14.07 |44.46
M5 Methanol | 40 66% |272.416.57| 14.50 |33.21
El Ethanol | 54.8 | 66% |258.3 [15.91| 14.71 |27.03
E2 Ethanol |54.8 | 66% |264.7 [16.53| 14.99 |51.90
E3 Ethanol |54.8 | 66% |268.5(16.60| 13.96 |77.18
E4 Ethanol |54.8 | 66% |270.2 |16.65| 13.41 [90.95
E5 Ethanol |54.8 | 66% |271.7 [16.51 | 13.93 |78.09
P1 1-propanol| 40 66% | 258.3 [16.53 | 15.26 |20.66
P2 |l-propanol| 40 66% |263.2 [16.56| 15.22 |20.54
P3 1-propanol| 40 66% |269.9 [16.64| 15.50 |23.60
P4  |l-propanol| 40 66% | 271.4|16.64| 15.34 [25.39
P5 1-propanol| 40 66% | 272.7 [16.61 | 15.23 |46.39

Compare to blank runs, all three additives showed apparent
catalytic effect on the conversion from ice seed to MGH during
the “Pressurization Stage”. When the MGH yields of
catalyst-free experiments were all less than 20%, it could be as
high as 90.95% with the existence of ethanol vapor at 270.2 K
within 1440 minutes. Furthermore, MGH yields and Tjy.
showed a positive correlation in systems with ethanol and
1-propanol while methanol vapor lead to an opposite trend. It
had a stronger catalytic effect when the system started with a
lower initial temperature. Overall, in ice seed systems with
different temperatures, suitable alcohol vapors should be chosen
to achieve the best conversion results.

Based on the previous results, we conducted the third set of
experiments (Table 3) for checking the effect of different initial
pressures for MGH yields. In this set, ethanol was the only
additive we introduced into the system and the initial system
temperature fixed at 271.9 K since this setting could get the
most optimal outcome of conversion. The result revealed that
though we changed the value of initial pressures from 16.60
MPa to 6.57 MPa (decreased by more than 60 percent), the
MGH yields, being reduced from 95.72% to 71.92% (about 25



percent), stayed preserved in a high-yield performance.

Table 3. MGH yields of experiments with different initial
pressures.

Sample | Additive | Ice |Porosity| Tinit | Pinit Pena | Yield
@mh) | @ | (%) | (K) [(MPa)| (MPa) | (%)
ELO | Ethanol | 40.0 | 66% |271.9|16.60|14.09 |95.72
EL1 | Ethanol | 40.0 | 66% |[271.2|11.72| 9.09 [94.81
EL2 | Ethanol | 40.0 | 66% |271.2|11.21| 9.09 |74.74
EL3 | Ethanol | 40.0 | 66% |271.210.49| 7.96 |88.63
EL4 | Ethanol | 40.0 | 66% |271.2| 7.86| 5.28 |68.25
EL5 | Ethanol | 40.0 | 66% |271.2| 6.57| 3.89 |71.92
DISCUSSION

To avoid formation of gas hydrates in aqueous solution, inhibitors such
as methanol, ethanol and propanol are typically used (Mohammadi et
al., 2007, 2008a and 2008b). When used in large amounts, methanol
prevents hydrate crystallization by shifting the phase boundary to the
lower temperature and higher pressure. (Abay and Svartaas, 2009).
However, in the ice seed system, a small amount of methanol, ethanol
or 1-propanol vapor could work as an efficient promoter.

By decomposing synthesized MGH, we knew that alcohol vapor didn't
shift the phase boundary. In aqueous solution, NMR and dielectric
studies also verified no sign of enclathration of methanol (Davidson et
al., 1981). There should be other reasons rather than phase boundary
shift which caused this catalytic effect. Khokhar et al. (1998) pointed
out that polyvinyl-pyrrolidone, PVP, could promote the formation of
sH hydrate. One of their hypothesis suggested that the morphology of
formed hydrate is changed from block, ice-like hydrate to a dendritic
structure in the presence of PVP. This meant that the guest molecules
could keep in touch with water molecules and continuing the formation
of hydrates. Whether this mechanism is the case in our system still
needs further investigations.

Table 4 lists the equations related with temperature for calculating
saturated vapor pressure of methanol, ethanol and 1-propanol
individually. Through them, we plotted Fig. 5 to show the relationship
between MGH yields and saturated vapor pressures (mmHg) at
different temperatures. It seems 10 mmHg is a critical point. Once the
saturated vapor pressure of alcohol was higher than 10 mmHg, the
MGH yields would start reducing.
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Figure 5. The relation between hydrate yields and saturated
vapor pressures of alcohols.

Table 4. Equations for calculating saturated vapor pressure of
methanol, ethanol and 1-propanol.

Vapor Pressure Equation

1473.1
T-43.85

7.87863 -
Pmmllg: 10

(Lange’s Handbook of Chemistry 10th ed,
pp.1522-1524)

Methanol

1554.3
T-50.5

8.04494 -
Pumug = 10
(Lange’s Handbook of Chemistry 10th ed,
pp-1522-1524)

Ethanol

logePmmug=l0g.( )-7.702226 log.(T+273.15)

101.325

8002.693 " ,
e 471.71697+3.950448x10°(T+273.15)

1-Propanol T +273.15

(Chemical Engineering Research Information
Center.http://www.cheric.org/research/kdb/hcprop/cmp
srch.php Retrieved 19 May 2007.)

CONCLUSIONS

The ice seed method” can be divided into pressurization and heating
stages. We found that the total amount of methane hydrates formed
during the pressurization stage can increase substantially as trace
alcohol vapor (methanol, ethanol or 1-propanol) is added into the ice
seed system. The one that has the best promoting effect is ethanol.
Furthermore, the duration of the heating stage can also be shortened
while converting all remaining ice into methane hydrates.

The preliminary hypothesis for this promoting effect is that the
presence of these trace gaseous alcohols is able to slow down the
formation rate of hydrates and prevent the generation of impervious
hydrate film covering the ice core in the early stage. Instead, the formed
hydrates are permeable because of a different texture so the inner ice
can keep converting into hydrates by continuously interacting with
methane molecules.

The catalytic efficiency may have a relationship with the alcohol vapor
pressure which changes with the temperature. According to our
experimental data, each alcohol vapor tends to show its best catalytic
efficiency at different temperatures when their vapor pressures are all
around 10 mm Hg.
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