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Abstract

Histogram equalization (HEQ) of acoustic features has received
considerable attention in the area of robust speech recognition
because of its relative simplicity and good empirical
performance. This paper presents a novel HEQ-based feature
extraction approach that performs equalization in both acoustic
frequency and modulation frequency domains for obtaining
better noise-robust features. In particular, the real and imaginary
acoustic spectra are first individually transformed to the
modulation domain via discrete Fourier transform (DFT). The
HEQ process is then carried on the corresponding magnitude
modulation spectra so as to compensate for the noise distortions.
Finally, the equalized modulation spectra are converted back to
form the real and imaginary acoustic spectra, respectively. By
doing so, we can enhance not only the magnitude but also the
phase components of the acoustic spectra, and thereby create
more noise-robust cepstral features. The experiments conducted
on the Aurora-2 clean-condition database and task reveal that the
presented approach delivers superior recognition accuracy in
comparison with some other HEQ-related methods and the
well-known advanced front-end (AFE) extraction scheme, which
supports the potential utility of this novel approach.

Index Terms: noise robustness, feature extraction, modulation
spectrum, histogram equalization, automatic speech recognition

1. Introduction

Varying environmental effects, such as ambient noise and
interferences caused by the recording devices and transmission
channels, often lead to severe mismatch between the acoustic
environments for the training and testing speech data in
automatic speech recognition (ASR), and this environmental
mismatch inevitably degrades the performance of ASR
dramatically [1]. Substantial efforts have been made and also a
number of techniques have been developed to address this issue
for improving the ASR performance in the past decades. Broadly
speaking, these noise/interference processing techniques fall into
three main categories: enhancement, normalization and
adaptation [2], while these techniques can be conducted either in
the speech feature domain or in the acoustic model domain.

Regarding the popular speech feature representation,
Mel-frequency cepstral coefficient (MFCC), which reflects the
spectral characteristics within a short period of time, has
exhibited high discriminating capability for acoustic units and
thus gives excellent recognition accuracy in nearly noise-free
laboratory environments. However, MFCC is vulnerable to
noise/interference and often requires compensation prior to being

used in real-world scenarios. The compensation can be carried
out in the various intermediate states during the extraction of the
MFCC feature stream for a speech signal. Roughly speaking,
according to the MFCC extraction procedure, a time-signal is
segmented to a series of overlapping frames, and then each frame
signal is transformed into the acoustic spectrum, next into the
(linear) critical-band spectrum and the logarithmic critical-band
spectrum, and eventually into the cepstrum. First of all, spectral
subtraction [3,4], Wiener filtering [5] and MMSE-based
log-spectral amplitude estimation (MMSE log-STSA) [6] are
exemplary methods that process the frame-based acoustic spectra.
Second, a suite of feature moment normalization methods are
developed to regulate the statistical moments of the cepstra, such
as cepstral mean normalization (CMN) [7], cepstral mean and
variance normalization (CMVN) [8] and cepstral histogram
normalization (CHN) [2, 9, 10], to name but a few. Since the
statistical moments are directly evaluated by the temporal series
of cepstra, these moment normalization methods implicitly
enhance the cepstra in temporal characteristics. On the other
hand, the approaches that employ filtering on the temporal
sequence of logarithmic critical-band spectrum or cepstrum
include, but are not limited to, RASTA [11], temporal structure
normalization (TSN) [12] and CMVN plus ARMA filtering
(MVA) [13]. These temporal-filtering approaches in general
emphasize the relatively low varying components (except the DC
part) of the feature temporal sequence, which encapsulate rich
linguistic information cues that are conducive for speech
recognition. Additionally, the methods of spectral histogram
equalization (SHE) [14] and modulation  spectrum
replacement/filtering (MSR/MSF) [15] directly modify the
modulation spectrum, which is specifically referred to as the
Fourier transform of the temporal sequence of cepstra.

Our work in this paper presents a novel application of
histogram equalization (HEQ) [9,10] to reduce the distortion of
acoustic spectral features in modulation domain for speech
recognition. Unlike the conventional HEQ approaches that often
operate on the temporal stream of the cepstra (which is denoted
by CHN earlier) or the Mel-filter smoothed logarithmic spectra
[9, 10], the presented method performs HEQ on the DFT for the
temporal series of acoustic spectra (i.e., the modulation spectra
of the acoustic spectra) with respect to each acoustic frequency
bin. Furthermore, the real and imaginary parts of the acoustic
spectra are treated individually in the presented framework, and
it is different from most well-known acoustic spectral-domain
robustness techniques, such as spectral subtraction and Wiener
filtering, that process the magnitude acoustic spectra directly. By
and large, our presented approach has the following three
advantages. First, via the HEQ operation the long-term



correlation among the acoustic spectra (at the same frequency)
can be captured for the compensation of spectral distortion.
Second, at a higher cost of computation, the noise effect can be
dealt with in a finer (acoustic) frequency resolution. Third, the
distortion dwelt in the acoustic spectra can be more extensively
mitigated due to the independent process for the real and
imaginary parts. All of the aforementioned advantages will be
confirmed via empirical evaluation.

The rest of this paper is organized as follows. Section 2
provides the essential fundamentals for HEQ and briefly
describes how it can be crystallized for robust ASR. Section 3
elucidates our proposed normalization framework. Then, the
experimental settings and a series of ASR experiments
conducted are presented in Sections 4 and 5, respectively. Finally,
Section 6 concludes this paper and suggests avenues for future
work.

2. Brief Introduction of HEQ

Histogram equalization (HEQ) that can effectively reduce the
statistical mismatch between the training and testing data has
been well studied and practiced in the field of pattern recognition.
In the HEQ algorithm, an arbitrary data series, denoted by
{z,,z,,--,z,}, is viewed as the sample set of a random variable
X with a cumulative distribution function (CDF) F,(z). Then,
via the mapping procedure:

v =F(F(z)), 1<i<N @)
the CDF of another random variable Y with the obtained new
data series {y,y,-,y,} as samples can approximate a
predefined target CDF F,(y) as long as the number of data, N,
is sufficiently large. The target CDF F (y) is usually set to be
simply a standard Gaussian distribution with zero mean and
unity variance, or approximated by the histogram of the training
data.

More recently, HEQ has been adopted to compensate for
speech features for noise-robust ASR. The CHN [2, 9, 10] and
SHE [14] methods mentioned in the previous section are two
good instantiations developed along this line of thought, which
operate HEQ on the temporal domain and modulation domain of
MFCC features, respectively.

3. Proposed Approach

This section describes a novel HEQ-based feature extraction
framework in an attempt to improve the noise robustness of
speech features. First, in the preprocessed stage, any utterance
2[¢] in the training and testing sets is shaped by a high-pass
pre-emphasis filter, and framing as well as windowing operations
are performed in turn. Then, each windowed frame signal is
transformed to the acoustic frequency domain via short-time
Fourier transform (STFT), and the resulting complex-valued
acoustic spectrum is denoted by
X[n, k] = X [n,k] + jX [n, k], @

0<n<N-1,0<k<K-1
where X [n,k] and X |[n,k] denote the acoustic real and
imaginary spectra, respectively, n and k respectively refer to the
indices of frame and discrete frequency, and N and K are
respectively the numbers of frames and acoustic frequency bins.
By the way, {X[nk]} in Eqg. (2) is sometimes called the
spectrogram of the utterance. Next, the acoustic real and

imaginary spectra, X [n,k] and X [n,k] in Eq. (2), with respect
to a fixed frequency bin k are updated via the subsequent steps.
Step |: Compute the modulation spectrum separately for
X [n,k] and X [n,k] along the n -axis by discrete Fourier
transform (DFT) as follows

N-1 77‘27!&
X [k,m] = Z X [nkle ™ ™
n=0
and 0<m<N-1L,0<k<K-1. (3)
N-1 2k
X[kom)=> X[nkle .
n=0
where m refers to the index of the discrete modulation
frequency. The resulting spectra can be expressed in polar form
as
X [k,m] = Ak,mle™"™™ and X [k,m] = Ak mle"" ", (@]
where A [k,m] and Alk,m] are, respectively, the magnitude
component of X [k,m] and X[km], and 6 [k,m] and 6[k,m]
are, respectively, the phase component of X[k m] and
X [k,m].

Step 11: Update the magnitude components of the modulation
spectra via HEQ, while keeping the phase components
unchanged. The resulting new magnitude modulation spectra are
expressed by

Alkm] = F'(F, (Alkm])] and ﬁuk,mkagFA(A[k,mD .(5)
where the cumulative distribution functions (CDFs) F," and
F, are estimated from those A[k,m] and A[km] of the
utterance being processed, and the inverse CDFs ' and £
are from those A[k,m] and Alkm] of the utterances in the
clean training set. As such, combining the updated magnitude
components with the original phase components results in the
new modulation spectra

X [k,m] = A[k,mle™"™™ and X [k,m] = Alk,mle" ", (6)
Step I11: Construct the new acoustic real and imaginary spectra,
denoted by X [n,k] and X [nk], respectively, by taking the
inverse DFT of X [k,m] and X[km], in Eq. (6). Accordingly,
we obtain the modified complex-valued acoustic spectrum as
Xn,k] = X [n,k]+ jX [n, k]. )

At the final stage, the processing is the same as in the case of
MFCC extraction: the magnitude of the modified acoustic
spectrum {X[n,k]} in Eq. (7) associated with each frame is
weighted by a Mel-frequency filter bank, and the nonlinear
compression is achieved by using the logarithmic operation.
Lastly, the less correlated MFCC features are derived after the
application of the discrete cosine transform (DCT).

Because the main idea of the aforementioned framework is to
perform HEQ on the modulation domain of the acoustic
spectrum, we will use the short-hand notation “MAS-HEQ” to
denote it hereafter.

The MAS-HEQ
characteristics:

1. In MAS-HEQ, the real and imaginary acoustic spectra are
processed individually, which helps to enhance the magnitude
and phase parts simultaneously. Note that the
modulation-domain HEQ process cannot operate on the
magnitude acoustic spectra directly (that is, to perform HEQ
on the magnitude modulation spectrum of | X[n,k] in Eq. (2))

framework has two remarkable



because the resulting new magnitude acoustic spectra are
real-valued, but not necessarily nonnegative.

2. As for the comparison between MAS-HEQ and the
well-practiced CHN (HEQ performing on the cepstral time
series), MAS-HEQ focuses on equalizing the distribution of
the data at different modulation frequencies, while CHN
equalizes the distribution of the data at different time indices.
Furthermore, MAS-HEQ bears some resemblance to the SHE
technique [14] since both of them are operated on the
modulation domain. However, the modulation spectrum
processed by SHE is the DFT of the cepstra rather than the
DFT of the acoustic spectra.

In this paper, we also leverage a polynomial-fitting scheme
(denoted by PHEQ) [10] to efficiently approximate the inverse
CDFs, F.' and F.' inEq. (5), to work in concert with the
presented MAS-HEQ. PHEQ provides the advantages of lower
storage and time consumption when compared with the existing
HEQ methods. It makes effective use of data fitting (or so-called
least squares error regression) to estimate the inverse CDFs of
the training data.

The notion of processing real and imaginary components of
acoustic spectra in the modulation domain for speech
enhancement has been investigated recently [16]. However, to
our knowledge, there is still a dearth of work investigating the
effectiveness of normalizing the real and imaginary components
of acoustic spectra in the modulation domain for speech
recognition. As will be shown in Section 5, such a joint
normalization paradigm shows promise and performs quite well.

4. Experimental Setup

The speech recognition experiments were conducted under
various noise conditions using the Aurora-2 database and task
[17]. The Aurora-2 database is a subset of the TI-DIGITS, which
contains a set of connected digit utterances spoken in English;
while the task consists of the recognition of the connected digit
utterances interfered with various noise sources at different
signal-to-noise ratios (SNRs), in which the Test Sets A and B are
artificially contaminated with eight different types of real world
noises (e.g., the subway noise, street noise, etc.) in a wide range
of SNRs (-5dB, 0 dB, 5 dB, 10 dB, 15 dB, 20 dB and Clean) and
the Test Set C additionally includes the channel distortion.

As for the baseline experiment, each utterance of the training
and testing sets were converted to a series of 39-dim MFCC
feature vectors (c0O, c1-c12 plus their delta and delta-delta). The
frame length and shift were set to 25 ms and 10 ms, respectively.
In particular, each of the robustness algorithms to be evaluated is
to produce the 13 static cepstra (c0, c1-c12) only, and then the 26
dynamic cepstra are computed accordingly.

More specifically, the acoustic model for each digit was a
left-to-right continuous density HMM with 16 states, and each
state has a 20-mixture diagonal GMM. The training and
recognition tests used the HTK recognition toolkit [18], which
followed the setup originally defined for the ETSI evaluations.
All the experimental results reported below are based on
clean-condition training, i.e., the acoustic models were trained
only with the clean (uncontaminated) training utterances.

5. Experimental Results

At the outset, we evaluate the utility of MAS-HEQ in terms
of recognition accuracy. For the purpose of comparison, the
results of some well-known feature robustness methods are also
reported here. These methods are roughly divided into two
categories depending on the feature type to be adjusted directly:
1. Acoustic spectrum processing methods: ETSI advanced

front-end (AFE) [19], MMSE-based log-spectral amplitude
estimation (MMSE log-STSA) [6], Wiener filtering (WF)
based on a priori signal-to-noise-ratio estimation [5] and two
versions of spectral subtraction (SS) [3,4], denoted by SSgol
and SSgerouti for short, respectively, in which the author names
are represented by the subscripts.

2. Cepstrum processing methods: cepstral mean normalization
(CMN) [7], cepstral mean and variance normalization
(CMVN) [8], cepstral histogram normalization (CHN) [2],
cepstral gain normalization (CGN) [20], CMVN plus ARMA
filtering (MVA) [13], spectral histogram equalization (SHE)
[14] and temporal structure normalization (TSN) [12].

In particular, we additionally perform CMN on the cepstral
features produced by any of the acoustic spectrum processing
methods, including the presented MAS-HEQ. Note that the
CMN procedure has been inherently embedded in all of the
cepstrum processing methods.

Table 1 shows the recognition accuracy rates for the various
methods, from which we notice several particularities:

1. It comes as no surprise that every method can give rise to
significant improvement in recognition rates for all the three
test sets as compared to the MFCC baseline. The simple CMN
process can achieve a relative error rate reduction of 32.12%,
and all the other methods that integrate the CMN process
produce even better results relative to CMN alone.

2. As for the cepstrum processing methods, SHE behaves the
best, followed by TSN, MVA, CHN, CGN and then CMVN.
There are several noteworthy points. First, CHN outperforms
CMVN due to its further normalization on the statistical
moments higher than the second order. Second, the constraint
of unity dynamic range for CGN eliminates the outliers in the
resulting data and makes it behaves as well as CHN. Next,
MVA explicitly enhances the low time-varying components of
CMVN features with a fixed ARMA filter and performs very
well, while TSN, which employs a data-driven temporal filter,
produces better results than MVA. Finally, the better outcome
of SHE compared with CHN implies histogram equalization
(HEQ) conducted in the modulation domain of cepstra
provides superior robustness than in the temporal domain.

3. Regarding the acoustic spectrum processing methods, WF and
two variants of SS behave less effective than the other
spectral-domain methods possibly because they are initially
designed for speech enhancement. MMSE log-STSA performs
specifically well for Set C and the corresponding overall
results are close to the best possible ones achieved by
cepstrum processing methods. The cepstra derived from the
well-known AFE without further CMN processing achieves
an accuracy rate of 87.17%, higher than those obtained by any
other methods discussed before. Nevertheless, CMN is not
well additive to AFE probably due to the effect of
over-normalization on the AFE-derived features. Finally, the
presented MAS-HEQ turns out to be the best-performing one



among all of the tested methods in terms of the overall
averaged recognition accuracy. Compared with AFE,
MAS-HEQ is better for Test Set B and worse for Test Sets A
and C. In brief, MAS-HEQ shows excellent performance in
creating noise-robust speech features.

4. MAS-HEQ outperforms SHE consistently over different Test
Sets, and on average, the respective accuracy improvement is
around 3%. These results indicate that when considering the
effectiveness of processing speech features in modulation
domain via HEQ, the acoustic spectra seem to be a better
choice than the cepstra. However, MAS-HEQ is less efficient
than SHE in implementation since the number of the (discrete)
acoustic spectra in MAS-HEQ is larger than that of the cepstra
in SHE.

Apart from recognition performance, we also examine the
presented MAS-HEQ with regard to its capability of reducing the
mismatch in the power spectral density (PSD) of the cepstral
sequence caused by noise. Figs. 1(a) to 1(d) depict the averaged
PSD curves of the first MFCC feature c1 for the 1001 utterances
in the Test Set B of the Aurora-2 database for three SNR levels,
clean, 10 dB and 0 dB (with airport noise) before and after
various processes (CMN, AFE and MAS-HEQ), respectively.
First, for the unprocessed case as in Fig. 1(a), it shows that the
noise causes a significant PSD mismatch over the entire
modulation frequency band [0, 50 Hz]. Second, by comparing
Fig. 1(b) with Fig. 1(a) we find that CMN just eliminates the
distortion at the DC component and provides nearly no benefit
for the PSD mismatch at any other frequency (even so, CMN can
bring about significant accuracy improvement, as evident in
Table 1). Finally, Figs. 1(c) and 1(d) show that both AFE and the
presented MAS-HEQ can considerably reduce the PSD distortion,
while MAS-HEQ appears more effective than AFE to mitigate
the PSD mismatch at higher frequencies. These results may
partly explain why MAS-HEQ outperforms AFE for processing
Test Set B, as shown in Table 1, and they also reveal that
MAS-HEQ can provide a more noise-robust feature
representation.

6. Conclusions

In this study, we have proposed a novel noise-robustness
framework, termed MAS-HEQ, for equalization of the acoustic
spectra in modulation domain. Applying histogram equalization
on the magnitude parts of the DFTs for the real and imaginary
acoustic spectra separately enables MAS-HEQ to reduce the
noise effect effectively and refine the resulting features
elaborately. The experimental results conducted on Aurora-2
demonstrate that MAS-HEQ can provide superior performance
over many state-of-the-art robustness methods, including the
ETSI advanced front-end (AFE). As to future work, we envisage
several directions, including extending the idea of our work to
process the Mel-filter smoothed (complex-valued) spectra,
analyzing the possible addition of our work with more other
robustness methods and further confirming our observations on
larger-scale ASR experiments.

Table 1. Recognition accuracy rates (%) averaged over different
noise types and different SNRs for the baseline MFCC and
various robustness methods. RR (%) is the relative error rate
reduction over the MFCC baseline.

Set A SetB SetC Avg RR
N 5487 | 4887 | 6395 | 5429 | -
aseline
Cepstrum processing methods
CMN 66.81 | 71.79 | 67.64 | 68.97 | 32.12
CMVN 7593 | 76.76 | 76.82 | 76.44 | 48.46
CHN 80.03 | 82.05 | 80.10 | 80.85 | 58.11
CGN 80.08 | 81.48 | 80.20 | 80.66 | 57.69
MVA 80.89 | 82.00 | 8149 | 8145 | 59.42
TSN 83.26 | 84.50 | 82.83 | 83.67 | 64.27
SHE 83.37 | 85.08 | 8347 | 84.08 | 65.17
Acoustic spectrum processing methods
SSkgoll 73.03 | 76.84 | 73.00 | 7455 | 44.32
SSgerouti 78.70 | 8281 | 79.69 | 80.54 | 57.43
WEF 79.64 | 81.39 | 80.29 | 8047 | 57.27
MMSE
log-STSA 82.96 | 83.95 | 84.60 | 83.68 | 64.30
TAFEq 87.68 | 87.10 | 86.27 | 87.17 | 71.93
TAFE) 85.53 | 86.59 | 8547 | 85.94 | 69.24
MAS-HEQ 86.89 | 88.66 | 85.33 | 87.29 | 72.19

tAFE() denotes the original AFE, and AFE2) denotes the pairing
of AFE and CMN. Note: The CMN process is integrated with all
of the methods except for AFE(q).
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Figure 1. The MFCC c1 PSD curves processed by various
compensation methods: (a) the MFCC baseline (no
compensation), (b) CMN, (c) AFE and (d) MAS-HEQ
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