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From 3-Valued Semantics, Adams’ Thesis Rises

Chi-Yen Liu! and Linton Wang?
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Abstract. The triviality results challenge Adams’ thesis from two as-
pects: (a) if interpreted as Stalnaker’s Hypothesis on the probability of
the truth of conditionals, the triviality results directly reject it, and (b) if
interpreted as the assertability, the acceptability, and the like, the trivi-
ality results make it dubious that the corresponding notion is substantive
to a theory of conditionals. Mostly, one holding truth-conditional seman-
tics of conditionals gives up Adams’ thesis because of (a), and one holding
a non-truth-conditional semantics of conditionals gives up the Adams’
thesis because of (b). In this paper, we propose a way to reconcile the
truth-conditional semantics of conditionals and Adams’ thesis, based on
a 3-valued truth-conditional semantics of conditionals and a notion of
assertability based on fair betting quotient.

Keywords: Indicative Conditional; Adams’ Thesis; Conditional Prob-
ability; Probability of Conditional; Triviality Results; Wallflower Argu-
ment

1 Introduction

Concerning the right semantics of indicative conditionals (in short, condition-
als), there are two main camps in this campaign. One camp claims that con-
ditionals have truth values, but different truth-conditions for conditionals are
proposed. The other camp claims that conditionals do not have truth values,
and it is argued that truth-conditions are unnecessary for conditionals. In this
battle, Adams’ thesis, that the “probability” of a conditional is the conditional
probability of the consequent given the antecedent [1], plays a significant role on
demarcating the boundary: triviality results in the literature make Adams’ thesis
easily disfavored by the truth-conditional approach. Our objective in this paper
is to propose an interpretation of Adam’s thesis in a 3-valued truth conditional
semantics of conditionals, and show that it bypasses triviality results.

Since Adams himself does not mean that the “probability” of a conditional
is the probability of its being true, we use P*(A — B) to represent it, where P*
is left unspecified.

Adams’ Thesis (AT) P*(A — B) = P(BJ|A), provided P(A) # 0.



2 Adams’ Thesis Rises

Many scholars believe that Adams’ thesis is intuitively correct, but they disagree
on its exact meaning and why it is correct. One popular interpretation of Adams’
thesis is Stalnaker’s Hypothesis, that the probability of a conditional’s being true
is the conditional probability of the consequent given the antecedent.

Stalnaker’s Hypothesis (SH) P(A — B) = P(B|A), provided P(A) #
0.

However, it has been argued that (SH) encounters the notorious “triviality re-
sults”, and thus should be rejected. Unless one is ready to give up (AT), some
alternative interpretation of (AT) to bypass triviality results should be given. In
section 2, we briefly explain how triviality results challenge (SH).

Because of triviality results, people who believe that conditionals have truth
values jettison (SH), and, unfortunately, many of them jettison (AT) as well.
Comparatively, people who hold on to (AT) tend to reject a truth-conditional
account of conditionals. We take the route in between. This route is inspired by
Michael McDermott’s “fair betting quotient” interpretation for Adams’ thesis
(cf. [14]), that the assertability of A — B is defined by the fair betting quotient
of A — B. In section 3, we will show that in [11] Richard Jeffrey gives us a hint
about how this can be done. Then we provide a general account of probability
and assertability for conditionals in section 4 and section 5. We conclude that,
given the generalized probability theory and assertability calculation, a certain
interpretation of Adams’ thesis is not only a hypothesis but also one that can
be properly explained by and derived from a semantics of conditionals.

2 Triviality results

Robert Stalnaker once believed that (SH) is true [16]. But David Lewis triggers
a chain of triviality results to show the opposite (e.g. [12], [13], [17], [3], [6],
[7], and [8]). As Dorothy Edgington indicates, the idea of triviality results is
that there are two different ways to calculate the probability of A — C, one
is that P(A — C) = P((A — C) AC) 4+ P((A — C) A =C), the other is that
P(A — C) = P(C|A), but they do not always have the same values (cf. [5]:
274). Consider that, for any proposition A — C and C' such that P(AAC) > 0,

PA—-C)=P(A—=C)NC)+P((A— C)A-C)
=P((A— O)|C)P(C)+ P((A— C)|-C)P(=C).

In [12], Lewis shows that if (SH) were true, P((A — C)|C) would be equal to
P(C|AC), and P((A — C)|=C) would be equal to P(C|A-C).! Then:

The First Trivial Result (TR 1) P(A — C) = P(C|AC)P(C) +
P(C|A-C)P(=C) = P(C).

L AC means A A C, and A—~C means A A —C.
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Any theory of conditionals should not tell us that (TR1) holds.

Many believe that the culprit of (TR 1) is (SH), but why (SH) is wrong
divides them. Some believe that the conditional probability plays a significant
role in conditionals is just an illusion, so they reject (AT) as well. Many others
believe that conditional probability does play a significant role in conditionals,
and it should not be interpreted as probabilities of conditionals since they do not
have truth values. Nonetheless, [10] and [14] try to reconcile the truth-conditional
theory of conditionals with (AT).

First, in [10], Jackson interprets (AT) by that the assertibility of a conditional
is the conditional probability of its consequent given its antecedent.

(JAT) Assertibility (A — B) = P(B|A), provided P(A) # 0. ([1o)

Though in [9] Héjek claims that (JAT) is the best case of (AT), it is not hard
to see that if one assumes that (JAT) is correct for conditionals in any complex
form, then it is under the attack of (TR 1), which can be derived in a reasoning
similar to deriving (TR 1).

(TR 1) Assertibility(A — C) = P(C|AC)P(C)+ P(C|A-C)P(~C) =
P(C).

A way for (JAT) to escape the threat from (TR 17) is to confine its application
on only simple conditionals, i.e. antecedents and consequents not in the form of
conditionals. By confining the application, we obtain (JAT*), a special case of
(AT*).2

(JAT*) Assertibility (A — B) = P(BJ|A), provided P(A) # 0 and
A — B is a simple conditional.

(AT*) P*(A — B) = P(B|A), provided P(A) # 0 and A — B is a
simple conditional.

However, Héjek argues that (JAT*) specifically, and (AT*) in general, would be
attacked by his wallflower argument (cf. [9]: 151), a specific trivial result.

The Wallflower Argument (WA) Any non-trivial finite-ranged prob-
ability function has more distinct conditional probability values than
distinct unconditional probability values. ([9]: 156)

In [9], Héjek doubts that any substantive (rather than stipulative) notion of
assertibility for (JAT) or (JAT*), especially, to be applied only on simple condi-
tionals, can outrun unconditional probabilities, and at the same time keep pace
of conditional probabilities.

As Hajek indicates, the wallflower argument against (JAT) or (JAT*) is not a
decisive argument. Maybe there is an interpretation of (AT) or (AT*) immune to
the wallflower argument, but Hajek would like to hear more about the rules of the
game ([9]: 158). We believe that McDermott’s proposal, if properly generalized,
is one to serve the purpose. In [14], McDermott interprets (AT) as follows:

% The constraint on simple conditionals can block the derivation of (TR, 1*). We skip
the proof here.



4 Adams’ Thesis Rises

(MAT) Assertability (A — B) = the fair betting quotient of (A — B)
=P(B|A), provided P(A) # 0. ([14])

It is fairly clear that (MAT) cannot resist the challenge from triviality results,
and constraining the application of (MAT) cannot resist the challenge from the
wallflower argument. Nonetheless, we shall defend that a version of (MAT), if
properly construed, is an interpretation of (AT) that can avoid the challenge
from triviality results, including the wallflower argument.

3 Betting on Conditionals

A dice is rolled, can we have a bet on “if it’s even, it will be 4”7 It seems fine
that we can bet on this. Actually, we can bet on many other conditionals. We
can bet on “if Hilary runs the next president election, she will lose,” or bet on
“if Yankees win the first game of 2013 World Series, they will be the 2013 World
Series champion.” How do we decide who wins or loses these conditional bets?
We can use table 1 to represent how we bet on A — B:

Table 1.

bet on A — B
win
lose
neither win nor lose
neither win nor lose

o0 AHes
=Rl

Table 1 only applies to simple conditionals, i.e. A and B are conditional-free
sentences. We will provide a more general table for betting on conditionals in
section 5.

As we know, everyone agrees with table 1 on betting conditionals (c.f. [4],
[16], [14], [15]). We can see that betting on A — B is different from betting
on bivalent propositions, in that sometimes one neither wins nor loses a bet on
A — B. In [11], Jeffrey gives us a hint about how a bet such as table 1 can
be proceeded (cf. [11]: 12-13). Let the price you can win a bet is $n, and the
“maximal” stake you “rationally” would put on it is $z. For betting on A — B,
it is worth of $n when you win, it is worthless when you lose, and it is worth of
$2 when the bet is off. Ticket 1 summarizes this.

Ticket 1
Worth $n if A A B is true,
worth $z if A is false.
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The rational maximal stake $z you would put on the ticket 1 depends how you
evaluate Ticket 1. The fair betting quotient of ticket 1 for you is z/n. So, if we
know the valuation of Ticket 1, we can know its fair betting quotient.

In [11], Jeffrey indicates that the valuation of Ticket 1 should be the sum of
Ticket 2 and Ticket 3, otherwise one will be Dutch-booked.

Ticket 2
Worth $n if A A B is true.

Ticket 3
Worth $z if A is false.

The valuation of Ticket 2 should be $n x P(AB), and the valuation of Ticket 3
should be $z x P(—A). So, provided n > 0,

(BC)z =nxP(AB)+xzx P(-A) & x =nx P(B|A) & z/n = P(B|A)

From the point of view of betting, the conditional probability in (BC) guides us
to the right evaluation of betting on conditionals. In this sense, the conditional
probability may be understood as representing one’s “confidence” of beting on
a simple conditional.

But as the triviality results show, (BC) will not take us too far. What the
conditional probability stands for is the fair betting quotient of “simple condi-
tionals.” McDermott ties fair betting quotient with the assertability, and that
gives us a good reason why we should believe (MAT) is on the right track. But
(MAT) is not general enough. In a fully general approach, two questions need
to be answered. First, can we give a general account of the assertability of con-
ditionals based on fair betting quotient, which can avoid the triviality result
(TR1)? Second, we have to face Hajek’s objection from the wallflower argument:
why do the fair betting quotients of simple conditionals, in a manner substan-
tively related to conditionals, outrun unconditional probabilities and keep pace
of conditional probabilities?

To answer the first question, we provide an appropriate probability theory
of conditionals in section 4 on top of a 3-valued semantics of conditionals. We
then define the assertability of A — B as:

(MATT) Assa(A — B) = the fair betting quotient of A — B.

Based on (MAT™) and the 3-valued semantics for conditionals given in section 4,
a general account of the assertability of sentences involving conditionals follows
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in section 5. An interpretation of (AT) naturally arises in the case of simple
conditionals. And we will illuminate why the assertability in our interpretation
of (AT) outruns the unconditional probability values in a manner substantive to
conditionals in section 5.

4 The Probabilities of 3-Valued Conditionals

For a bivalent sentence S, since S is either true or false, betting on it either wins
or loses. So, the probability of winning the bet on S is the probability of S being
true. But as we see in section 3, betting on A — B is not that simple, we also
need to consider cases in which no one wins or loses. One way to model these
situations for betting is to make use of 3-valued semantics.> Assume that (i) all
sentences which are conditionals-free sentences are bivalent, (ii) =A means ‘A
is false’ and «~~ A means ‘A is neither true nor false’, and (iii) 4,—A, and «~ A
are mutually exclusive and exhaustive sentences of the sample space. We claim
conditionals are 3-valued sentences of which the truth-table is as follows.

Table 2.

AB
TT
TF
TX
FT
FF
F X
XT
XF
XX

o5
b

e R RS N P2
w

-AV-B

=
=
Sy

Heemmmmmmi

SR R R S
MUK B K S 3| ]
S I S N R
N
o
KX KAs =L
el les lles e Bl I |

In table 2, first, De Morgan’s laws holds for ‘=’ but not for ‘~’. Second, the
laws of distribution still hold, e.g. (AA(BV()) is equivalent to (AAB)V (AAC).
Third, ‘~’ is truth-functional. This may seem odd in the first place. But consider
the predicate ‘meaningless’. For any meaningful sentence S, to say ‘S is meaning-
less’ is to say a false sentence. On the contrary, for a meaningless sentence (e.g.,
colorless green ideas sleep furiously), to say ‘colorless green ideas sleep furiously
is meaningless’ it to say a true sentence. Likewise, for a bivalent sentence S,
to say ‘S is neither-true-nor-false’ is to say a false sentence. Nonetheless, for a
sentence S that is neither true nor false, to say ‘S is neither-true-nor-false’ is to
say a true sentence.

As we mentioned in section 3, one only wins a bet on A — B when both A
and B are true, only loses it when A is true and B is false, and neither wins

3 There is psychologic evidence to show that the classification of true, false, and void
for conditionals parallels that of win, lose, and void for conditional bets [15].



Adams’ Thesis Rises 7

nor loses it in other cases. It it is natural in the 3-valued semantics that the
probability of A — B’s being true is the probability of A A B, the probability
of A — B’s being false is the probability of A A =B, and the probability of
A — B’s being neither-true-nor-false is the probability of other cases. Applying
probability theory to table 2 can reflect these ideas. We give a general probability
theory of conditionals as follows:

Definition 1. P(A — B) = P(AB)
Definition 2. P(=(A — B)) = P(A-B)
Definition 3. P(«~~ (A — B))=P(-AV «~ AV «~ B)

If A and B are conditionals-free sentences, P(A — B)+ P(—(A — B))+ P(«
(A — B)) = P(AB) + P(A-B) + P(—A) = 1. However, we have to make sure
that when it comes to more complicated sentences, it still holds. We assume the
following laws of probability:

(1) For any sentence A,0 < P(A) < 1.

(2) If A and B are equivalent, then P(A) = P(B), P(~A) =P(—B), and
P(~A) = P(~ B).

(3) If A and B are incompatible, then P(AV B) = P(A) + P(B).

(4) P(S) =1, where S is the sample space.

Then we can obtain the following theorems, whose proofs, as well as the proofs
of other theorems in this paper, can be found in appendix.

Theorem 1. P(A) = P(AB) + P(A-B) + P(A - B).

If A, B are both conditional-free sentences, P(4) = P(AB) + P(A-B), which
matches the standard law of probability.

Theorem 2. P(A— B)+ P(-(A— B))+ P(-~ (A — B)) =1.

Theorem 2 shows that we can have a consistent probability distribution for
P(A— B),P(-(A — B)), and P(«~ (A — B)).

These results show that we can assign probabilities to 3-valued conditionals
without violating the laws of probability. That is because we can reduce the
probabilities of conditionals to probabilities of conditional-free sentences, that
is, bivalent sentences. When we want to calculate the probability of A — B
being neither-true-nor-false, all we need to do is to calculate the probability of
the conditions that makes A — B neither-true-nor-false.
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5 The Assertability of Conditionals
To give a general account for the assertability of conditionals, we need to extend

table 1 to table 1*.
Table 1*:

bet on A — B
win
lose
neither win nor lose
neither win nor lose
neither win nor lose
neither win nor lose
neither win nor lose
neither win nor lose
neither win nor lose

R R R R R e I
XX T X W

Combining our probability theory of conditionals in 3-valued semantics and the
fair-betting-quotient interpretation of assertability, we have a general result on
the assertability of conditionals.

Theorem 3. Assa(A — B) = P(AB)/[P(AB) + P(A-B)], provided P(AB) +
P(A-B) > 0.

Theorem 3 is our general account of the assertability of conditionals. One can see
that Adams’ thesis is just a special case of theorem 3 when A — B is a simple
indicative conditional, i.e. when A and B do not embed conditionals, because
P(AB) 4+ P(A-B) = P(A) then.

(MAT*) Assa(A — B) = P(AB)/P(A), provided P(A) >0 and A —
B is a simple conditional.

While Adams’ thesis fits into our assertability when conditionals are simple,
it does not in general fit our assertability in theorem 3. In this manner, (TR
17) does not threat (MATT). It is clear that Assa is neither a unconditional
probability function nor a conditional probability function, though, in cases of
simple conditionals, it outruns unconditional probability values and keeps pace
with conditional probability values.

Furthermore, we can extend the fair-betting-quotient idea of assertability to
more complicated sentences. Then we have theorem 4-6:

Theorem 4. Assa(A — (B — C)) = P(ABC)/[P(ABC) + P(AB-C)], pro-
vided P(ABC) + P(AB—-C) > 0.

Theorem 5. Assa((A — B)AC) = P(ABC)/[P(ABC)+ P((AAN-B)V-C)],
provided P(ABC') + P((AA-B)V-=C) > 0.
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Theorem 6. Assa((A — B)V C) = P(AANB)V C)/[P(AANB)VC)+
P(A-B-C)], provided P((AN B) Vv C)+ P(A-B-C) > 0.

Theorems 4-6 tell us how to calculate the assertabilities of nested indicative
conditionals and compound sentences involving conditionals.
Finally, we can extend it to a general account of assertability of all sentences.

Theorem 7. For any sentence A, Assa(A) = P(A)/[P(A) + P(—A)], provided
P(A) + P(=A) > 0.

Since P(A) is equal to the probability that the bet on A will be won, P(—A)
is equal to the probability that the bet on A will be lost, theorem 7 reflects
McDermott’s claim about the fair betting quotient:

The fair betting quotient for a bet on a proposition ¢ is the probability
that the bet will be won, given that it will be won or lost (= not called
off). ([14]: 4)

Let W4 mean winning the bet on A, L4 mean losing the bet on A. The fair
betting quotient of betting on A = P(Wa|(Wa V La)) = P(Wa A (W4 V
LA))/P(WaV La)=P(Wa)/P(WaV La)=P(A)/[P(A) + P(=4)].

Moreover generally, theorem 7 can be read as follows:

(Assertability Thesis) For any sentence A, the assertability of A is
ratio (degree) of the probability of A’s being true divided by the proba-
bility of that A is either true or false.

(Assertability Thesis) is a claim general enough to play a significant role in a
theory of conditional: that assertability reflect our confidence on the truth of a
conditional, given the situation that the conditional is either true or false.

In our proposal of the assertability, Adams’ thesis cannot hold across the
board, which in turn respects the triviality results. However, as Adams insists,
in the form of (AT*), it still holds for simple conditionals. When Héjek doubts
that, he says: “I would find it surprising if assertibilities of simple indicative
conditionals could keep up!” ([9]: 159) H4jek’s question, in terms of our formu-
lation of the assertability, is that if the function of assertability is to guide us
how to bet on conditionals, why are they not a kind of unconditional probabil-
ity functions? Our reply is that conditionals are 3-valued sentences. For bivalent
sentences, the assertability goes with unconditional probability function, because
you either won or lost the bets on them. In these cases, we only get any money
back when we win. But for conditionals, we also need to concern the cases in
which you neither win nor lose the bets on them. Besides winning the bet, we
also get money back when it is called off. When this happens, we do not “win”
the bet, we just get our stakes back. In that sense, we should not count this as
part of the probability of winning a conditional bet, and thus should not count
it as part of the probability of a conditional being true.
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6 Conclusion

We show the assertability driven from (MAT™) and the 3-valued semantics rep-
resent an interpretation of Adams’ thesis that does not hold across the board, for
it only holds in simple conditionals but falls in compounds sentences involving
conditionals. As Adams suggests in [2], this can escape Lewis’ triviality results.
As for the other triviality results, our strategy is to distinguish the assertability
of conditionals from unconditional probability of conditionals. [5] shows us that
triviality results arise from admitting two different ways to calculate the proba-
bilities of conditionals, and they are not always in tune with each other. In our
proposal, there is only one way to calculate the probability values of condition-
als based on the 3-valued semantics which we show is consistent. And we also
have another way to calculate the assertability of conditionals, which is the fair
betting quotient of betting on conditionals.

We propose that conditionals are 3-valued sentences, so they are not always
either true or false. As Hajek says, many people believe Adams’ thesis is a touch-
stone for conditionals (cf. [9]). But why? We show that because the conditional
probability does play a significant part in simple conditionals. But it is not the
probability of a conditional but the assertability of a simple conditional. So, we
argue that Adams’ thesis is not only a hypothesis, but a certain interpretation
of it is also one that can be properly explained and derived by an appropriate
semantics of conditionals. So we conclude that from the point of view of betting,
Adams’ thesis rises in simple conditionals.

Appendix

Theorem 1. P(A) = P(AB) + P(A-B) + P(A -~ B)

Proof.

P(A)=P(ANnS)=P(AN(BU-B U+ B))
=P(AAN(BV-BV«~B))=P(AANB)V(AA-B)V (A A« B))
= P(AB)+ P(A-B) + P(A -~ B)

Theorem 2. P(A — B)+ P(~(A — B))+ P(«~ (A— B))=1.

Proof.

P(A— B)+ P(=(A— B))+ P(~(A— B))

= P(AB)+ P(A-B)+ P(—AV «~ AV« B)

=P(A)— P(A~B)+ P(—A)+ P(~A)+ P(~ B) — P(-A «~ A)
—-P(~nA~B)-P-A-B)+P(-A~A-B)

=1-P(A-~B)+P(~B)—P(~A-B)—P(-A- B)

=1+P(«-B)—P(+-B)=1

Theorem 3. Assa(A — B) = P(AB)/[P(AB) + P(A-B)].

Proof.
z=PABn+P(-AV AV (AN B))z
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& x=P(AB)n+ [P(—A) + P(w A)+ P(Av B)lz
<z =PAB)n+[1—P(A)+ P(A - B)]a:

& o = P(AB)n+ {1 - [P(4) — P(A - B)|}a

& x=P(AB)n+ {1 - [P(AB) + P(A—|B)}}x

< ¢ =P(AB)n+z — [P(AB) + P(A-B)|z

< x[P(AB) + P(A-B)| = P(AB)n

& x/n = P(AB)/[P(AB) + P(A-B)]

Theorem 4. Assa(A — (B — C)) = P(ABC)/[P(ABC) + P(AB-C)].

Proof.
Because P(A — (B — C)) = P(ABC),P(—~(A — (B — (C))) = P(AB-C),
P« (A= (B—=C()))=1-[P(ABC)+ P(AB-C)],
= P(ABC)n+ P(«~ (A— (B—=0)))x
< 1 =P(ABC)n+ {1 — [P(ABC) + P(AB-C)|}z
< z[l-1+4+ P(ABC)+ P(AB-C)]| = P(ABC)n
& z/n= P(ABC)/|[P(ABC) + P(AB-C)].

Theorem 5. Assa((A — B) ANC) = P(ABC)/[P(ABC) + P((AAN-B)V-(C)].

Proof.
Because P((A — B)AC) = P(ABC), P(~((A — B)AC)) = P((AAN-B) Vv -C),
( (A= B)AC))=1—[P(ABC)+ P((AAN-B) Vv -C)],
P(ABC)n+ P(«~ (A— B)ANQC))z
& = P(ABC)n+ {1 —[P(ABC)+ P((AAN—-B) VvV =C)|}z
< z[P(ABC)+ P((AN-B) VvV —=C)| = P(ABC)n
& 2/n = P(ABC)/[P(ABC) + P((A A =B) v —~C)]

Theorem 6. Assa((A — B)V C) = P((AAB)VC)/[P((AAB)VC)+
P(A-B-C)].

Proof.
Because P((A — B)vC) = P((AANB)VC),P(—((A — B)v(C)) = P(A-B-C),
( (A= B)v(C))=1—[P((AANB)VC)+ P(A-B-C)].

)=1—[P(
P(AANB)VC)n+P(~ ((A— B)Vv(O))x
s r=P(AANB)VC)n+{1—[P((AAB)VC)+ P(A-B-C)|}x
< z[P(ANB)V C)+ P(A-B-C)] = P(AANB) Vv C)n
< ax/n=P(AANB)VC)/[P(ANB)VC)+ P(A-B-C)]

Theorem 7. Assa(A) = P(A)/[P(A) + P(—A)].

Proof.

x=P(A)n+ P(w~ Az

< z[l — P(w~ A)] = P(A)n
& x/n=P(A)/] 1)3 A)l

)/[L = P(
& a/n=P(A)/[P(A) + P(=4)]
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