五、附 錄

(一) IPCC-30 舉辦場地-北京國際會議中心

(二) 發表之論文投影片

Beijing International Convention Center

30th Annual International Pittsburgh Coal Conference Beijing, CHINA, September 15 – 18, 2013

Sulfide Capturing Techniques for Advanced Fuel Conversion Process by Silica-Supported Sorbents

Liang-Wei Huang, Yau-Pin Chyou Institute of Nuclear Energy Research (INER), Longtan, TAIWAN 2013/09/18

Sulfur-Capturing Techniques

Table 1: Comparison of different sulfur-capturing techniques

process		absorption		adsorption
	Amine	Rectisol	Selexol	/ Warm-hot gas desulfurization
adsorbent/absorbent	MEA, MDEA	MeOH	DEPE	Metal oxide
pressure (Mpa)	<7	5.8	1.6-7.0	2-4
temperature (°C)	25-60	-70~-30	-5~25	200-700
Sulfur concentration (ppm)	MEA<1 MDEA<0.1	<0.1	<5	<0.1
advantage	low cost, CO_2 coabsorption	CO_2 coabsorption	CO ₂ coabsorption	high thermal efficiency (2-3%)
disadvantage	corrosion, solution degradation, foaming	high cost, tonxic, thermal-loss	high sulfur concentration, thermal-loss	attrition, stability

Source: Liu k. et al., 2010, Hydrogen and Syngas Production and PurificationTechnologies, AIChE, John Wiley & Sons, Inc., Hoboken, New Jersey.

Institute of Nuclear Energy Research

THIRTIETH ANNUAL INTERNATIONAL PITTSBURGH COAL CONFERENCE 7

- Syngas composition:
- 30% CO
- 10% H₂
- 1% H₂S
- N₂ balance

Fig.9. Breakthrough curves of silica-supported sorbents (30% CO, 10% H₂, 1% H₂S, N₂ for balance, WHSV= 8000 mL/g.hr, T=700°C)

Institute of Nuclear Energy Research

THIRTIETH ANNUAL INTERNATIONAL PITTSBURGH COAL CONFERENCE 16

Institute of Nuclear Energy Research

Desulfurization Performance at different WHSV (1)

Desulfurization Performance at different WHSV (2)

- S.C. almost didn't change between 8000-12000 mL/g.hr, and continued to decrease while WHSV > 16000 mL/g.hr.
- Choosing 12000 mL/g.hr as operational parameter is beneficial to shorten reaction time and maintain desulfurization performance.

WHSV (mL/g.hr)	Breakthrough time (min)	Sulfur capacity (g-S/100g sorbent)
8000	39	6.86
12000	25	6.59
16000	17	5.98
20000	11	4.83

Table 4: The desulfurization performance of 20%-ZnSi with WHSV

Institute of Nuclear Energy Research

Desulfurization Performance of Sorbents with Cycles

- S.C. dropped rapidly from 6.59 to 4.48 g-S/100g sorbent at 2nd-3th cycle, and finally maintained at 3.96 g-S/100g sorbent until 10th cycle.
- S.C. finally became 60% of initial value after 10th cycle.

Table 5: The desulfurization performance of 20%-ZnSi with reaction cycles

Cycle	Breakthrough time (min)	Sulfur capacity (g-S/100g sorbent)
S1	25	6.59
S2	17	4.48
S3	17	4.48
S4	15	3.96
S10	15	3.96

Institute of Nuclear Energy Research

Institute of Nuclear Energy Research

THIRTIETH ANNUAL INTERNATIONAL PITTSBURGH COAL CONFERENCE 22

Structure Change with Cycles (2)

By continuous operation at high temperature (700°C), grain size grows up with reaction cycles, and this also induces pore shrunk and BET area declined.

Cycle	d (101)	BET (m²/g)		
Fresh	N.A.	153		
R1	0.07 nm	118		
R2	0.12 nm	100		
R3	0.15 nm	83		
R9	0.28 nm	77		

Table.6: The physical properties of 20%-ZnSi with reaction cycles

*Scherrer formula:

$$d = \frac{B\lambda}{\beta\cos\theta} , (B = 0.9, \lambda = 0.15406 \text{ nm})$$

Institute of Nuclear Energy Research

