

Life-Cycle Analysis of Vehicle/Fuel Systems with the GREET Model

Michael Wang (王全录) Systems Assessment Group Energy Systems Division Argonne National Laboratory

Presentation to Taiwan EPA

July 22, 2013

U.S. Energy Production and Consumption Trends

- U.S. domestic oil and natural gas production continues to grow
 - Shale gas production accounts for ¼ of total natural gas production
 - Shale oil production in North Dakota makes the state No. 2 oil producing state
- U.S. continues the uptrend in exporting natural gas and coal
- Production of ethanol reached 13.5 billion gallons in 2012; its use faces the E10 blending wall

U.S. Production of Natural Gas, Renewables, and Liquids Will Continue to Grow

Source: EIA, Annual Energy Outlook 2013 Early Release

U.S. Liquid Fuel Supply

U.S. liquid fuels supply million barrels per day

Source: EIA, Annual Energy Outlook 2013 Early Release

The GREET (<u>Greenhouse gases, Regulated E</u>missions, and <u>Energy use in Transportation</u>) Model at Argonne National Lab

The Suite of GREET Models in MS Excel

GREE Let beta TAKING LIFE CYCLE ANALYSIS TO THE NEXT LEVEL

Ar٤

Build complex pathways within <u>minutes</u>

Drag and drop predefined processes to assemble a pathway

Add your own data

Create new resources, processes, technologies using simple graphical editors

 Navigate through the model
 Use the well to pump explorer to reveal the details of each pathway

Analyze results

Examine detailled results at different levels within the pathway

 Share your project
 Save all your data into an easy to share data file

Adaptable unit system

Enables users to change the representation of any result or data using their prefered units

Free and maintained

Tools and data are provided at no charge and can be updated automatically

GREET and Its Documents Are Available at Argonne's GREET Website (http://greet.es.anl.gov/)

DOE EERE has been sponsoring GREET development and applications since 1995

□ The current GREET version (GREET1_2011) was released in Oct. 2011

A new release (GREET1_2012 and GREET2_2012) is under final preparation

There Are More Than 18,000 Registered GREET Users Worldwide

GREET Includes More Than 100 Fuel Production Pathways from Various Energy Feedstocks

GREET Includes Many Biofuel Production Pathways

- Ethanol via fermentation from
 - Corn
 - Sugarcane
 - Cellulosic biomass
 - Crop residues
 - Switchgrass, miscanthus, sorghum
 - Forest residues
 - Willow and poplar

Cellulosic biomass via gasification to

- Fischer-Tropsch diesel
- Fischer-Tropsch jet fuel
- Cellulosic biomass via pyrolysis to
 - Renewable gasoline
 - Renewable diesel
 - Renewable jet fuel

- Renewable natural gas from
 - Landfill gas
 - Anaerobic digestion of animal wastes and other feedstocks

Corn to butanol

- Soybeans and other oil seeds to
 - Biodiesel

- Renewable diesel
- Renewable gasoline
- Renewable jet fuel
- Algae to
 - Biodiesel
 - Renewable diesel
 - Renewable gasoline
 - Renewable jet fuel

Electricity Generation Systems in GREET

Coal: Steam Boiler and IGCC

- Coal mining and cleaning
- Coal transportation
- Power generation

Nuclear: Light Water Reactor

- Uranium mining
- Yellowcake conversion
- Enrichment
- Fuel rod fabrication
- Power generation

Residual Oil: Steam Boiler

- Oil recovery and transportation
- Oil refining
- Residual oil transportation
- Power generation

Natural Gas: Steam Boiler, Gas Turbine, and NGCC

- NG recovery and processing
- NG transmission
- Power generation

Biomass: Steam Boiler

- Biomass farming and harvesting
- Biomass transportation
- Power generation

Hydro Power

Wind Power

Solar Power via Photovoltaics

Geothermal Power

GREET Examines More Than 80 Vehicle/Fuel Systems

Conventional Spark-Ignition Engine Vehicles

- Gasoline
- Compressed natural gas, liquefied natural gas, and liquefied petroleum gas
- Gaseous and liquid hydrogen
- Methanol and ethanol

Spark-Ignition, Direct-Injection Engine Vehicles

- Gasoline
- Methanol and ethanol

Compression-Ignition, Direct-Injection Engine Vehicles

- Diesel
- ▶ Fischer-Tropsch diesel
- Dimethyl ether
- Biodiesel

Fuel Cell Vehicles

- On-board hydrogen storage
 - Gaseous and liquid hydrogen from various sources
- On-board hydrocarbon reforming to hydrogen

Battery-Powered Electric Vehicles

Various electricity generation sources

Hybrid Electric Vehicles (HEVs)

- Spark-ignition engines:
 - Gasoline
 - Compressed natural gas, liquefied natural gas, and liquefied petroleum gas
 - Gaseous and liquid hydrogen
 - Methanol and ethanol
- Compression-ignition engines
 - Diesel
 - Fischer-Tropsch diesel
 - Dimethyl ether
- Biodiesel

Plug-in Hybrid Electric Vehicles (PHEVs)

- Spark-ignition engines:
 - Gasoline
 - Compressed natural gas, liquefied natural
 - gas, and liquefied petroleum gas
 - Gaseous and liquid hydrogen
 - Methanol and ethanol
- Compression-ignition engines
 - Diesel
 - Fischer-Tropsch diesel
 - Dimethyl ether
- Biodiesel

13

U.S. Shale Production Will Continue to Increase Significantly

- Large-scale production made possible by advancements
 - Horizontal drilling
 - Hydraulic fracturing
- Has generated interest in expanding NG use in several sectors
 - Expansion into vehicles would displace petroleum
 - But what are the GHG implications?

Source: EIA, Annual Energy Outlook 2013 Early Release

U.S. Shale Oil and Shale Gas Plays; Domestic Oil Transportation Logistics Challenges

Well-to-Pump GHG Emissions of Petroleum Gasoline

Gasoline combustion: about 75 g/MJ GHG emissions

Methane Leakage of Natural Gas Production and Distribution Is A Major Concern

Sector	CH ₄ Emissions: Percent of Volumetric NG Produced						
	EPA - Inventory (2011)	GREET Conv. Gas (2012)	GREET Shale Gas (2012)	NOAA - DJ Basin (2012)	NREL - Barnett Shale (2012)	API Survey (2012)	EPA - Inventory (2013)
Gas Field	1.18	1.93 (0.62 - 4.19)	1.19 (0.36 - 3.95)	2.3 - 7.7	0.9	0.52	0.44
Completion/ Workover		0.003 (0.002 - 0.005)	0.46 (0.006 - 2.75)		0.7		
Unloading		1.20 (0.27 - 2.98)	Ο		0		
Other Sources		0.73 (0.35-1.20)	0.73 (0.35-1.20)		0.2		
Processing	0.16	0.15 (0.06 - 0.23)	0.15 (0.06 - 0.23)		0		0.16
Transmission	0.38	0.39 (0.20 - 0.58)	0.39 (0.20 - 0.58)		0.4		0.36
Distribution	0.26	0.28 (0.09 - 0.47)	0.28 (0.09 - 0.47)				0.23
Total	1.98	2.75 (0.97 - 5.47)	2.01 (0.71 - 5.23)				1.19

WTW GHG Emissions of CNG Vehicles vs. Gasoline Vehicles -Methane Leakage and CNGV Efficiency Are Two Key Factors

Water Consumption of Shale Gas and Conventional Gas

Source: Clark and Horner, 2012

- Drilling of a shale gas well may consume 5 million gallons of water
- Water consumption varies significantly by shale play
- Recycling of flowback reduces consumption
 - 95% recycling in Marcellus
 - 20% recycling in Barnett and Fayetteville

U.S. and Brazil and the Two Major Biofuel Producing Countries

LCA GHG Emissions of Gasoline and Bioethanol Pathways

Wang M., et al., 2012, Environ. Research Letters

GHG Emission Sources for Corn and Sugarcane Ethanol

Life-Cycle Analysis of Electricity

Electricity Generation Mixes in Different Countries: Implication for Transportation Electrification

GHG Emissions of Battery-Powered Electric Vehicles Depend Primarily on Share and Efficiency of Coal Power Plants

From Huo et al. (2010)

Plug-in Vehicles Provide Varying GHG Emissions Reductions Depending on the Electric Generation Mix for Recharging

WTW Results: GHG Emissions of a Mid-Size Car (g/mile)

Gasoline (Today's Vehicle)	450				
Gasoline	340			H	 Coi
Natural Gas	270			H	Coi
Gasoline	235		je - e		
Natural Gas	185		\vdash		
Diesel	220		⊢− −−4		Hyl
Corn Ethanol (E85)	180		H(Vel
Cellulosic Ethanol (E85)	90	⊢− −−1			
Gasoline & U.S. Grid Mix	230		F	-1	Plu
Gasoline & Ultra-low Carbon Renewable	195		⊢− −-1		Ele
Cellulosic Ethanol (E85) & U.S. Grid Mix	105	F			(pov
Cellulosic Ethanol (E85) & Ultra-low Carbon Renewable	70	()			rang
Gasoline & U.S. Grid Mix	270	_			DI
Gasoline & Ultra-low Carbon Renewable	155	F	-1		Fiu
Cellulosic Ethanol (E85) & U.S. Grid Mix	180				Ele
Cellulosic Ethanol (E85) & Ultra-low Carbon Renewable	63				(ser
U.S. Grid Mix	230			-1	Bat
Ultra-low Carbon Renewable	0				Vel
H2 - Distributed Natural Gas	200		H		
H2 - Coal Gasification w/ Sequestration	95				Fue
H2 - Biomass Gasification	37-1				Vol
H2 Nuclear High T Electrolycis or Ultra low Carbon Penewable	40-				ver
	42				
	0	100	200	300	400

Conventional Internal Combustion Vehicles

Hybrid Electric Vehicles

Plug-in Hybrid Electric Vehicles (power-split, 10-mile electric range)

Plug-in Hybrid Electric Vehicles (series, 40-mile electric range)

Battery Electric Vehicles (100-mile range)

Fuel Cell Electric Vehicles

500

Low/high band: sensitivity to uncertainties associated with projection of fuel economy and fuel pathways

(DOE EERE 2010, Record 10001)

WTW Results: Petroleum Use of a Mid-Size Car (BTU/mile)

Gasoline (Today's Vehicle)	5000						
Gasoline	3760					Conv	entional Internal
Natural Gas	27					Com	bustion Vehicles
Gasoline	2570		H-				
Natural Gas Diesel	18 2380		 1			Hybr	id Electric
Corn Ethanol (E85)	800	H-1				Vehi	cles
Cellulosic Ethanol (E85)	760	H-1					
Gasoline & U.S. Grid Mix	2100		F 1			Plug-	in Hybrid
Gasoline & Ultra-low Carbon Renewable	2090		H			Elect	tric Vehicles
Cellulosic Ethanol (E85) & U.S. Grid Mix	670	4				(powe	r-split, 10-mile electric
Cellulosic Ethanol (E85) & Ultra-low Carbon Renewable	660 •	4				range)	
Gasoline & U.S. Grid Mix	1660		le I			Plua.	in Hybrid
Gasoline & Ultra-low Carbon Renewable	1630					Elect	tric Vohiclos
Cellulosic Ethanol (E85) & U.S. Grid Mix	550 🖻					(series	. 40-mile electric range)
Cellulosic Ethanol (E85) & Ultra-low Carbon Renewable	510					(001100	,, io inito cicente rango,
U.S. Grid Mix	61					Batte	ery Electric
Ultra-low Carbon Renewable	0					Vehi	Cles (100-mile range)
H2 - Distributed Natural Gas	21						
H2 - Coal Gasification w/ Sequestration	31					Fuel	Cell Electric
H2 - Biomass Gasification	100					Vehi	cles
H2 - Nuclear High-T Electrolysis or Ultra-low Carbon Renewable	16						
	0	1000	2000	3000	4000	5000	6000

Low/high band: sensitivity to uncertainties associated with projection of fuel economy and fuel pathways

Battery Life-Cycle Analysis Covers Battery Production and Recycling

GREET Battery LCA Approach

- With output from the Autonomie model, identify power and energy specifications for batteries for use in hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles
- Develop material inventories for these three battery types with the BatPaC model
- Establish material and energy flows for each battery component
- Estimate the energy consumed during battery assembly and battery recycling
- Assemble all data in GREET
- Analyze data to address key questions

Structural and Cathode Materials Dominate Lithium-Ion Battery LCA GHG Emissions

Dunn, J.B. et al. (2012)

For GREET model and technical reports, please visit

http://greet.es.anl.gov