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A Tactile Vision Substitution System for the Study of Active Sensing*

Brian Hsu. Cheng-Han Hsieh. Sung-Nien Yu. Ehud Ahissar. Amos Arieli. and Yael Zilbershtain-Kra

Abstracr—This paper presents a tactile vision substitution
system (TVSS) for the study of active sensing. Two algorithms,
namely image processing and trajectory tracking, were
developed to enhance the capability of conventional TVSS.
Image processing techniques were applied to reduce the
artifacts and extract important features from the active camera
and effectively converted the information into tactile stimuli
with much lower resolution. A fixed camera was used to record
the movement of the active camera. A trajectory tracking
algorithm was developed to analyvze the active sensing strategy
of the TVSS users to explore the environment. The image
processing subsystem showed advantageous improvement in
extracting object’s features for superior recognition. The
trajectory ftracking subsystem, on the other hand, enabled
accurately locating the portion of the scene pointed by the active
camera and providing profound information for the study of
active sensing strategy applied by TVSS users.

I. INTRODUCTION

The visually impaired people usually need to struggle in
their daily lives fo explore their outside environment. If more
information of the environment can be provided in some way
with the assistance of recent technology. then they could
adapt to the environment more rapidly. via build-in natural
learning processes [1. 2].

Sensory substitution for the visually impaired was first
introduced by Bach-y-Rita and coworkers [3-5]. They
invented the first sensory substitution system. which is a chair
that allow blind to “see” via tactile actuators attached to their
back and activated by a video camera. Later versions used
other body parts with the latest version including actuator
matrix placed on blind's tongue. The information was
captured by the camera and fed back to the tactile device. This
device is known as a tactile vision substitution system (TVSS)
which offers people who suffer from lacking sight an
opportunity to make a change.

A TVSS ftranslates visual input, usually from a video
camera. into the output of a tactile stimulation array. With the
assistance of digital image processing techniques. the most
significant features of the image could be extracted and
provided as augmented sensation to the visually impaired. As
a sequel. the users could more accurately distinguish
foreground objects from the background.

Since the idea of sensory substitution was introduced.

*Research supported by the National Science Council and the Mimstry of
Education. Tarwan, Republic of China and the Ministry of Science and
Technology, Israel.

Brian Hsu, Cheng-Han Hsieh, and Sung-Nien Yu are with the Department
of Electrical Engineenng and the Advanced Institute of Manufacturing with
High-tech Innovations, National Chung Cheng University, Chiayi County,
Tarwan (corresponding author’s phone: +886-3-2720411 ext 33205; fax:
+886-5-2720862: e-mail: ieesny@ccu.edu.tw).
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Department of Neurobiology, Weizmann Institute of Science, Rehovot,
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Figure 1. TVSS system setup. (a) VIMouse :
active camera and pointer: (c) active sensing experument.

(b) VIMouse with the

researchers gradually recognized the importance of actively
moving the camera in the use of the TVSS. Because tactile
resolution in the fingers is far more limited than the wvisual
resolution (and so is the resolution of the arrays of tactile
actuators relative to the number of camera pixels), the user of
TVSS usually need to move the camera around to try to
identify an object. This process is termed “active sensing.” [6]
The knowledge about how people develop effective strategies
to actively sense the environment is also an important issue in
the development of a TVSS.

This study stem from a cooperation project about sensory
substitution between the Laboratory for the Stmdy of
Adaptive Perceptual Processing directed by Prof. Ehud
Ahissar and the Active Sensing Laboratory directed by Dr.
Amos Arieli at the Weizmann Institute of Science in Israel
and the Biomedical Signal Processing and System Design
Laboratory directed by Prof. Sung-Nien Yu at the National
Chung Cheng University in Taiwan. The Isracli team set up
experiments for active sensing with a TVSS while the
Taiwanese team developed image processing algorithms
aiming to enhance active sensing performance of the
experiments. A frajectory fracking algorithm was jointly
developed to understand parficipants' active sensing
strategies.

This system contains two parts., namely (1) image
processing and (2) frajectory tracking. The image processing
part converts the color images acquired from the camera into
lower resolution binary images with valuable features
reserved. which designated to generate adequate output for
the tactile device. The trajectory tracking part. on the other
hand. tracks the trajectory of the participant on the stimuli and
provides information for the study of active sensing strategies
to explore the environment. without vision. using only TVSS.

II. SYSTEM OVERVIEW

The TVSS confains a tactile stimulation device and a
camera. Tactile stimuli was provided by the VTMouse
(Tactile World. Ra'anana. Israel) . as shown in Fig. 1 (a). The
VTMouse is a standard size computer mouse for the blind [7].
which consists three factile stimulation arrays of 32 pins each
(4x8) and provide tactile stimuli to the fingers at different
heights (4 levels).



A miniature video camera (active camera) (VQ25B-P37P;
Filtech Corp.. Yangchon-Gu Seoul. Korea) was aftached to
the VTMouse. as depicted in Fig. 1 (b) as the wvisual input
sensor. In parallel to the miniature camera is a red laser
pointer (605nm) which provides a marker associated with the
location of the VTMouse. A wide view camera (fixed camera;
1280x1024. RGB. 15Hz) was arranged in a fixed location
(Fig. 1 (C) to the left of the participant). With this
arrangement. the movement of the active camera is
identifiable in the fixed wide image taken by the fixed camera
for further analysis.

III. IMAGE PROCESSING ALGORITHM FOR THE TVSS

Figure 2 shows the block diagram of the imaging
processing algorithms developed for the TVSS. The color
video frames acquired by the CCD camera. originally
represented with red. green. and blue (RGB) attributes. were
first transferred into hue, intensity. and saturation (HIS) color
space [8]. Only the intensity part of the frame was reserved
and represented as the grey-levels of the image. Image
enhancement with histogram equalization [8] followed to
make the foreground objects more separable form the
background. The enhanced image needed to Dbe further
processed  with  downsampling. low-pass  filtering,
thresholding. and morphological process in order to generate
suitable output for the tactile stimulation array. These methods
are explained separately as follows.

A. Discrete Wavelet Transform for Downsampling

The tactile stimulation array had only 96 (12x8) pins as
output. Compared to the image frame with a size of 640x480.
the tactile array was far less in size. Therefore. the array
could only display a very small part of an image. or.
alternatively, the image could be shrunk to smaller resolution,
a process termead downsampling. In our previous works [7-9].
we have demonstrated the high capability of discrete wavelet
transform (DWT) in downsampling an image into a quarter of
the original size while preserving the most important features.
Therefore. we also applied DWT as a downsampling
processor in the study.

Figure 3 (a) shows the procedure of a two-dimensional
DWT. With low-pass (hfn]), high-pass (g/n]) filters. and
down-sampling operator ($2), each row of the input image x/nJ
is firstly separated into the low-frequency (L) and
high-frequency (H) parts. The similar column operators
proceed fo separate each column into low-frequency (L) and
high-frequency (H) parts. In this manner. the image is
separated into four subbands, namely LL, LH. HL. and HH.
with different frequency attributes, as depicted in Fig. 3 (b).

After two dimensional DWT, an image is divided into four
subband components of the same size (Fig. 2(b)). The
high-frequency bands contain rapidly changing information
such as noises and edges. The low-frequency bands. on the
other hand. contain the features with low variety such as the
shape of an object. The LL part was reserved as the
downsampled version of the original image [8]. Moreover.
since the property of the low-pass and high-pass filters used in
the DWT is determined by the mother wavelet. the mother
wavelet Rbio6.8 was empirically chosen to reserve the most
image power after downsampling.
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Figure 3. Two-dimensional discrete wavelet transform (DWT).
(a) concept of 2D DWT: (b) different subband components after 2D
DWT.

Two downsampling processes were used in the study. The
first downsampler was used to reduce the size of original
image such that the computational load of the following
process was reduced. The second downsampler was applied
after all the image processing had been done and then further
reduced the image into a size of 40x30 to better fit the
dimension of the tactile device.

B. Low-pass Filtering and Thresholding

A 5x5 mask average filter [6] was used as the low-pass
filter to eliminate noise and smooth abnormal edges in the
image. A thresholding operator followed to convert a
grayscale image into a binary image. The threshold value was
empirically determined to be 0.6 which resulted in the best
performance.

C. Moiphology Methods

After down-sampling. low-pass filtering. and thresholding,
the acquired color image was transformed into a
down-sampled binary image. However. shape defects and



missing areas of objects were to be fixed. Morphology
methods [10], including dilation and erosion, were employed
to tackle this problem.

Dilation is the process to gradually enlarge the boundaries
of regions of foreground pixels. The function is expressed as

(1

where B represents structuring elements of dilation operator
and S represents the image which is to be dilated. With this
operator, the areas of foreground pixels grow in size and holes
within those regions become smaller.

D=B®S={x|[(5)nB}

Erosion is the inverse of dilation. It erodes away the
boundaries of regions of foreground pixels. The function is
expressed as

E =BBS = {x|(5)x € B} (2)

where B represents structuring elements of erosion operator
and S represents the image which is to be eroded. With this
method, areas of foreground pixels shrink in size and holes
within those areas become larger.

The dilation operator was first applied to connect broken
lines and holes inside objects. The erosion operator followed
to erode the boundary regions back to the original size. With
these operators. holes inside the image were filled.

IV. TRAJECTORY TRACKING ALGORITHM

A. Diagram of the Trajectory Tracking Algorithm

Figure 4 is the block diagram of the trajectory fracking
procedure. Before tracking, the acquired images from the two
cameras were downsampled to reduce the computational load
of the following process. The laser pointer was used for
identifying the location of the participant on the wide view
image. Since the laser light may sometimes scatter and cause
errors in tracking, we firstly identify the location of the red
spot recorded by the fixed camera based on the difference
image of the present and previous frames. The location was
considered the probable center of the images acquired by the
active camera. We then searched for the real center in the
vicinity of the location for the most similar image region
acquired by the fixed camera compared to the active camera
image using the maximal index calculated from the
crosscorrelation function [8]. As a result, the strategy used by
the participants could be analyzed through ftracking the
trajectory of the participants on the stimuli during active
sensing tasks [12].

B. Correlation Coefficient as a Similarity Measure

In trajectory tracking. we had to measure the similarity
between the active camera image and image blocks of the
fixed camera image. Pearson correlation coefficient [6],
which measures the linear correlation of two variables, was
chosen as a similarity measure. The correlation coefficient
index is defined as

o TuSAm — DB = B)
Vo Ts — D) Er 2a(Br — B))

3)

where variables A and B are two different arrays, m and n are
the indexes of the array elements in the row and the column,
respectively, and A and B are the means of A and B.
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Figure 3. Result of the TVSS image processing algorithm: left column:
downsampled grayscale image; nght column: bmary image after

processing.

respectively. The value of the correlation coefficient index r
is between -1 and 1. The higher the r value is the more similar
A and B are.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

To test the performance of the system, active sensing
experiments were conducted in the laboratory at Weizmann
Institute of Science in Israel. The participants were eye
masked and asked to identify the objects placed in front of a
blank white wall. The responses of the participants were
recorded by the active camera for analysis.

Figure 5 shows one result of the image processing
algorithm for the proposed TWVSS. The left column shows the
downsampled grayscale image frames. The second column
shows the binary images after processing. which are fed into
the tactile device as input. Three objects, namely a cup, an
apple. and a book, were observed in the recorded sequence. It
is inferesting to note that, although reflection of light on the
smooth surface of objects may sometime produce artifacts in
the grayscale image, the application of image processing
techniques is able to fill the holes in the image and loosen the
problem. Although the mark on the cup sometimes appears as



a hole in binary image. the size is significantly reduced and
can be compensated by active sensing (see below). As a result.
all the three objects in the grayscale image were vividly
transferred into downsampled binary image with little loss of
shape information.

The records from both fixed and active cameras were
analyzed by the frajectory tracking algorithm. Figure 6
demonstrates one of the results. The left column shows images
acquired from the active camera. The middle column shows
the most similar image blocks acquired by the fixed camera. as
shown in the right column. which included images acquired
from the fixed camera with the most similar regions marked. It
can be seen that images acquired from active and fixed
cameras differ in some sense because of distinct shot angles
and orientations. However, the proposed trajectory tracking
algorithm for the TVSS constantly succeeded in locating the
most similar blocks from the fixed images.

After locating the image blocks from the fixed camera that
is most similar to that from the active camera. the trajectory of
the active camera movement could be tracked. Figure 7 shows
one of the results. The red points in the figure show the center
points of the located most similar images to the active images.
The result shows that the participant moves her hand back and
forth trying to identify objects in the scene according to the
tactile stimuli generated from the device. In this case, the
participant moved more frequently in the horizontal direction
than in the vertical direction searching for objects. After she
“felt” an object, she focused on the edges as an attempt to
identify the objects. The trajectory tracking provides an
insight into the participants’ behavior and strategy in using the
TWVSS for exploring the swrrounding environments.

WVI. CONCLUSION

This paper presents the preliminary result of the Tactile
Visual Substitution System developed for the study of active
sensing. Two subsystems were developed. The image
processing subsystem solves the problems. such as
high-to-low resolution transformation, light reflection on the
surface of objects. and texture artifacts. usually encountered
by traditional TVSS. The trajectory tracking subsystem. on the
other hand. enables the researchers to trace the movement of
the tactile device which reflects the strategies employed by the
TWVSS user to explore the environment. The preliminary
results of the study demonstrate the capability of the system in
offering a more effective TVSS and a more powerful
diagnosis system for the study of active sensing of the visually
impaired.
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A Portable Real-time ECG Recognition System Based on
Smartphone*

Tzu-Hao Yen. Chung-Yu Chang. and Sung-Nien Yu. Member, IEEE

Abstract—This paper proposed an smartphone-based
real-time ECG monitoring and recognition system. The

ECG signal was acquired by a MSP430FG4618
low-power microprocessor and was converted via a
Bluetooth module for wireless transmission to a

smartphone. A noise-tolerant ECG heartbeat recognition
algorithm based on discrete wavelet transform and
higher-order statistics was employed to identify different
types of heartbeats. This system achieved a high accuracy
0f98.34 %0 in identifying seven heartbeat types, which was

demonstrated to outperform other studies in the literature.

The heartbeat types were recognized in real-time; only 78
ms was required to identify a heartbeat. The portability,
real-time processing, and high recognition rate of the
system demonstrate the efficiency and effectiveness of the
device as a practical computer-aided diagnosis (CAD)
system.

I. INTRODUCTION

In recent years. the mortality of cardiovascular disease has
always been on top of the list. thus effective diagnosis and
treatment of these diseases has become a major issue in the
hospital. The first step in diagnosing cardiovascular diseases
usually depends on the recording and analysis of
electrocardiogram (ECG). which measures the electrical
activity of the cardiac conduction system. However. ECG
measurement usually requires the patients to carry a device.
e.g. a Holter. for more than 24 hours and record the signal.
The recorded ECG signals are then brought back to the
hospital to be examined by the physicians. This process would
take a long period of time and some mistakes or ignorance of
minor signs could be made. These issues give rise to the
requisite of portable ECG recording and recognition system.

Portable ECG products are not commeon in the medical
market. The reason is expensiveness. Therefore. if the
terminal device could be replaced by consumer electronics
that are possessed by a great portion of commeon people. the
cost of the device can be extensively lowered. According to
the publication of International Telecommunication Union in
January 2011 [1]. the global mobile phone users have
exceeded 50 billion people. Moreover. the International Data
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Figure 1. The architecture of the proposed system. (a) Generation of

sumulated ECG signals: (b) analog to digital conversion (A/D) and Bluetooth
transmission: (c) ECG signal monitoring and processing with smartphone.

market share has been as high as 39.5% in 2011 and expected
that it will grow to 45% in 2015. The report indicates there
will be more and more users have Android mobile devices.

Android is an open platform which enables the developer
to take advantages of the many features provided by the
platform to build novel applications. Several attempts have
been made to develop portable ECG devices based on
Android mobile devices. For example, the two companies
Polar and Zephyr have developed an Android platform
compatible Bluetooth heartbeat belt. The ECG signal and the
caleulated heart rate are transmitted to the Android phone by
Bluetooth. However. previous research usually focused on
ECG and heart rate monitoring, yvet lack the capability of
arrhythmia detection and diagnosis.

Therefore., we propose to integrate wireless ECG
transmutation. heart rate monitoring. and real-time arrhythmia
recognifion in an Android smartphone. The objective was to
build a convenient and effective portable computer-aided
diagnosis (CAD) system.

I. METHOD

The architecture of the proposed system is depicted in Fig.
1. This system is divided into three functional blocks. namely
(a) generation of simulated ECG signals: (b) analog to digital
conversion (A/D) and Bluetooth transmission: (¢) ECG signal
monitoring and processing with smartphone., each of which
will be described separately in the following sections.

A. Generation of Simulated ECG Sighals

A virtnal instrument built with LabVIEW program and NI
DAQmx input/output device was developed to generate
simulated ECG signals for the experiments. The ECG signals
were exfracted from the MIT/BIH arrhythmia database. By
programuming an analog output with the data files and setting



the sampling rate as 360 Hz. simulated ECG signals based on
the real data were generated for testing the performance of the
system.

B. Analog to Digital Conversion (4/D) and Bluetooth
Transmission

A microcontroller MSP430FG4618 (Texas Instruments
Co., Ltd., America) was selected to convert the analog signal
to digital [7]. The MSP430 family is designed for low cost,
low power consumption embedded applications, which is
particularly well suited for developing battery-powered
portable device. The controller provides 12-bit A/D
converters that would be sufficient for ECG signal acquisition.
Since MSP430FG4618 only accepts voltage ranging between
0 V and 2.5 V. signals were boosted by +1.5V using
LM358-OP (Texas Instruments Co., Ltd.. America) to avoid
possible aliasing or saturation.

The HC-05 chip (Wavesen Co.. Ltd.. China) was used to
convert the RS232 serial output from MSP430FG4618 to
Bluetooth 2.0 format. HC-05 is characterized as convenient,
low-power. and low-cost [3]. It replaced RS232 to
communication wirelessly between the MSP430FG4618 and
the smartphone.

D. R-point Detection

A median filter with appropriate window size was firstly
used eliminate the baseline wander in the ECG signal. Then,
the Pan and Tompkins algorithm [4] was used to locate the R
points of the heartbeats. Once the R points were located.
64-point QRS segments centered at R point were extracted
from the record for the calculation of features for each
heartbeats.

E. Feature Calculation

The feature sets play a major role in the effectiveness of a
classifier. We have previously applied higher-order statistics
(or cumulant) and simple RR-interval features to characterize
ECG signals for heartbeat type recognition and successfully
implemented a noise-tolerant ECG classifier on a desk-top
computer [5]. The application of higher order statistics for
characterizing signals has been shown to be effective in
suppressing the influence of a wide range of noises and
artifacts [5]. In this study. we adopted the same ideas with
minor modification and intended to fulfill the classifier on a
smartphone with Android platform. The challenges would be
the high speed requirement of a real-time system and the much
lower computational speed of the smartphone when compared
to a desk-top computer.

With each R point in the ECG signal. a 64-point QRS
segment centered at the R point was extracted. A five-level
DWT was used to decompose the segment into different
subband components. Higher-order (2“‘1. 3 and 4'hj
cumulants were calculated based on the components. For
clarity. the jm order cumulant of the D; subband was denoted
as Cy where i€{3. 4. 5} and jE{Z. 3. 4}. Four sets of
cumulant-related features and three RR interval-related
features were recruited in this study [6][11]. These features
are explained separately as follows.
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1. Standard Deviation of the Cumulant (CSD): the standard
deviation of the cumulant is defined as:

a
U

(1)

12 N_o P
=L=1
i€{3,4.5} andje{2. 3, 4}, where ¢;; is the sample mean of
the cumulant and [ is the time shift ranging from —L to +L.

12

. Normalized Summation (NS): the normalized summation is
defined as the sum of cumulants divides the sum of the
absolute cumulant. such that i€{3. 4, 5} and jE{2, 3, 4}.

NS, (2)
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. Number of Zero-Crossings (NZC): The number of
zero-crossing is important in characterizing the variation of
a signal. Since the D;s subband was observed to show
distinct zero-crossing features among different beat types.
we focused on the three higher-order cumulants of Dy, i.e.
Cso. Css. and Csy.

. Symmetry (SYM): The.symmetry is defined as:

(3)

L Fa
SYM, =3 le, () -c, (—F)/Z e, )|
I=1 I=—L
i€{3. 4. 5} and jE{3. 4}. Since the Symmetry of the 2™
cumulant is zero, we only need to extract from the 3™ and
4™ cumulants.

]

. RR Interval-related Features: The RR interval is defined as
difference in the time between two adjacent R peaks. We
extracted three RR interval-related features. including the
instantaneous RR inferval, the rafio befween the
instantaneous and the previous ones, and the ratio between
the previous and the one before it.

In summary. the feature wvector contains 30 feafures,
including nine CSDs. nine NSs, three NZCs, six SYMs. and
three RR interval-related features. Each feature was
normalized by subtracting the mean value from the feature and
dividing by the feature’s standard deviation. This process
intended to normalize all the features to the same level.

F. Classification

The back propagation neural network (BPNN) is a
multi-layer perceptron (MLP) [8] which has been proven to be
suitable for use in the classification of nonlinear data. The
typical BPNN consists of three layers. including an input
layer. a hidden layer. and an output layer. Hyperbolic tangent
sigmoid funection is used as activation function and the weights
between neurons of consecutive layers are modified by back
propagating the error signals backwardly layer by layer to
approach optimal solution. The number of neurons in the
hidden layer would affect the nonlinearity of the neural
classifier, and is empirically chosen as sixty. The training
phase of the classifier was done on a desk-top computer and
the optimal weights were saved and downloaded onto the



smartphone for the classifier in the testing phase of the
real-time classifier.

G. Android Platform

There are two reasons for choosing Android platform in
the study. First. Android is an open source platform that based
on the Java of Linux core system and the Android SDK
provides the tools and APIs necessary to begin developing
applications on the Android platform. Second, Android
smartphone has successfully gained a significant market share
in recent years. In this study, we used HTC Incredible S. The
phone has CPU 1GHz. 768MB RAM and runs the version
2.3.2 of Android operational system [9].

The flow chart of the functions on the smartphone is
depicted in Fig. 2. First of all. the Bluetooth function on the
smartphone must be turn on. which then searches for the
nearby device for connection. Once connected, the
smartphone begins to receive the raw ECG data transmitted
from the HC-05 chip and display on the screen. The received
data was processed in a five-second basis. The R points were
first located and the feature sets and heart rates were
calculated. The features were fed into the trained BPNN
classifier and the results were displayed on the screen. The
raw data. heart rate, and ECG type were saved to the SD card.

III. RESULTS AND DISCUSSIONS

The first step in using this system was connecting the
smartphone to the Bluetooth data transmission. A Bluetooth
connecting interface was developed. After touching the button
on the smartphone, three functional keys appear on the screen
(Fig. 3 (a)). Touching the “Make discoverable™ key enables
the smartphone to search for nearby Bluetooth devices. After
touching the “Connect a device” key, the names of these
devices are shown on the screen (Fig. 3 (b)). Select a device
and the smartphone would try fo connect to it through
Bluetooth. If Bluetooth is connected successfully, the
received ECG data are shown on the screen. If the connection
failed. the system would show an alarm sign of “Not
connected and request for another connection.

The graphic user interface (GUI) includes the display of
ECG waveform. heart rate. and recognized beat type. as
depicted in Fig. 4. The heart rate was calculated from the
inverse of the averaged five consecutive RR-intervals,
intending to reduce the heart rate errors caused by false
detection of R peaks. The waveform was displayed and
processed in a S-sec basis and the average time to classify a
beat type was 78 ms.

To evaluate the performance of the system in ECG
recognition, fifteen records (100, 105, 106, 109, 111, 114,
116, 118, 119, 124, 200, 207.209. 212. 214) were selected
from the MIT / BIH arrhythmia database [10]. The
performance of the system was measured by the recognifion
rates of individual beat types and the average accuracy.

With the analog ECG signals simulated by the virtual
instrument built with LabVIEW program and NI DAQmx
input/output device. the recognition rates of the portable
real-time ECG beat recognition system were calculated and
summarized in Table I. An impressively high average
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Figure 2. Flow chart of the programs on the smartphone.
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Figure 4. Graphic user interface on the smartphone.

TABLE I CLASSIFICATION RESULTS USING BPNN

ECG beat tvpe Recognition rate (%a)
NORMAL 98.98
LBBB 98.58
RBBB 97.62
PVC 97.70
APB 88.29
VEB 93.27
VEFW 92.68
Average accuracy 98.34




accuracy of 98.34 % was achieved. It is noticeable that the
recognition rates were high across different beat types. The
lowest rate of 88.29 % was associated with Atrial premature
Beats (APB). Referring to our other studies [11]. the
recognition rates of APB were usually among the lowest. The
requirement of real-time and accurately detecting the R-points
for calculating effective features further deteriorated the
results. This may be improved by modifying the R-point
detection algorithm and adding more APB samples in the
training phase of the classifier.

It is also interesting to compare the performance of the
proposed method to that of other studies. Three effective
methods [12-14] were selected for comparison. The
comparative results are summarized in Table II. The high
average accuracy of the proposed method outperforms the
other three methods in discriminating the highest number
(seven) of beat types when compared to five in [13] and four
in [14]. The results in Tables 1 and 2 support the effectiveness
of using the proposed method in a smartphone to discriminate
ECG arrhythmias in real-time.

The quick classification and high accuracy of the system
demonstrated the feasibility of the system as an effective
portable and real-time device for ECG beat recognition.

IV. CONCLUSION AND FUTURE WORK

A portable and real-time cardiac arrhythmia recognition
system based on smart phone was proposed in the study. The
ECG signal was acquired by a MSP430FG4618 controller and
transmitted wirelessly through Bluetooth by a HC-05 chip.
The signal was received and processed on a smart phone with
Android platform. A noise-tolerant algorithm based on
wavelet decomposition and higher-order statistics were
exploited to identify the heartbeat types. This method was
demonstrated to be effective and efficient. High accuracy of
08.34 % was achieved to successfully differentiate seven
types of heartbeats with a short average recognition time of 78
ms/beat. The proposed system was demonstrated to
outperform other systems published in the literature. The
portability and real-time processing capabilities of the system
further enhance the clinical value of the system as a
computer-aided diagnosis (CAD) device.

This paper shows the prototype of the system. However,
this prototype still leaves room for improvement. such as
refining the graphic user interface and improving the
recognition rate of APB. Furthermore. other physiological
parameters, such as temperature, blood pressure, blood
oxygen level. etc.. could be integrated to build a portable
multi-functional health monitoring device with real-time
computer-aided diagnosis.
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TABLE II. Comparison of different ECG beat classification methods.

Method Number of beat fype Accuracy

FHyb-HOSA [12] 7
MME [13]

Neuro-Fuzy [14] 4
This Study 7

96.06 %
5 07.78 %
98.00 %
08.34 %
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Detection of Myocardial Ischemia Episode Using Morphological
Features*

Cheng-Hsiang Fan. Yu Hsu. Sung-Nien Yu. Member, JEEE. and Jou-Wei Lin

Abstract—In this study, we propose to use morphological
features that are easy to identify to differentiate myocardial
ischemic beats from normal beats. In general, myocardial
ischemia causes alterations in electrocardiographic (ECG) signal
such as deviation in the ST segment. When the ST segment level
deviates from a certain voltage, the beat would be diagnosing as
myocardial ischemia. To emphasize on ST variations, the QRS
complex of the ECG signal was first subtracted and replaced
with a straight line. Five—level discrete wavelet transform (DWT)
followed to decompose the waveform into subband components
and the AS subband, which is most sensitive to the changes in the
ST segment, was reconstructed for the calculation of 12
morphological features. The support vector machine (SVM) and
the 10-fold cross-validation method were emploved to evaluate
the performance of the method. The results show high values of
95.20%, 93.29%, and, 93.63% in sensitivity, specificity, and
accuracy, respectively, that were demonstrated to outperform
the other methods in the literature.

I. INTRODUCTION

“Myocardial ischemia is the pathological state underlying
ischaemic heart disease. It can lead to myocardial infarction
(commonly known as heart attack) which in its acute form can
lead to the death of the affected person.” [1]. The most
important cause of myocardial ischemia is coronary artery
stenosis  or obstruction. Myocardial ischemia causes
alterations in electrocardiographic (ECG) signal such as
deviation in the ST segment [2]. When the ST segment
deviates more than a certain level. the beat would be
diagnosing as myocardial ischemia.

Recently. several studies have been conducted to
developing computer-aided diagnosis algorithms for the
diagnosis of myocardial ischemia. Exarchos and coworkers
proposed to use rule-based mining technology to identify
myocardial ischemia heartbeat from normal heartbeat in 2006
[3]- Khoshnoud and coworkers used subband ECG signal
decomposition with multi-level wavelet analysis and claimed
that their method provided an easier way to locate the
important points of the waveform for myocardial ischemia
diagnosis with probabilistic neural network (PNN) [4].

*Research supported by the National Science Council and the Mimstry of
Education, Tarwan, Republic of China.

Cheng-Hsiang Fan. Yu Hsu, and Sung-Nien Yu are with the Department
of Electrical Engineering and the Advanced Institute of Manufacturing with
High-tech Innovations, National Chung Cheng University. Chiay:r County,
Taiwan (phone: +886-3-2720411 ext 33203; fax: +886-35-2720862; e-mail:
fanchenshan@gmail com; anderson?3i@hotmail com; 1eesnvi@ccu.edu tw

(correspondimng author)).

Jou-Wer Lin 15 with the Cardiovascular Center. National Taiwan
Unsversity Hospital Yun-Lin Branch and the College of Medicine, National
Taiwan University. Dou-Liou City. Yun-Lin County., Taiwan. (e-mail:
jouweilin(@

rahoo.com).

22

| Start )

Load ECG signal

—

Pre-processing

R peak detection

1

Beat waveform
(80 samples)

QRS subtraction

l

Discrete Wavelet
transform

Morphological
feature calculation

—

Classifier

Figure 1. Experimental procedure.

However, conventional methods usually required to find
the fiducial points. e.g. T wave. R peak, ISO point. J point, as
features for myocardial ischemia detection [5]. but the fiducial
points may not be easy to locate when the ECG signal is noisy.
Therefore, in this study. we proposed to use morphological
features that were calculated from the entire heartbeat
waveform. With this method. only the R point of the heartbeat.
which is the easiest fo locate. is to be located and the requisite
of extremely clean signal for accurately locating several key
points is loosened. The performance of the method was
validated using support vector machine classifier and 10-fold
cross-validation method.

II. METHODS

A. Database:

The data used in the experiments were obtained from the
“European Society of Cardiology (ESC) ST-T database™ [6].
This database includes 78 data files recorded from myocardial
ischemia patients. Each file contains two-lead. two-hours
ECG signals sampled at 250 Hz. The start and end times of the
ST-segment changes (myocardial ischemia episode; MI
episode) were clearly annotated in the files.

B. Discrete Wavelet Transform

Discrete wavelet transform (DWT) was employed to
decompose the ECG signals info subband components. The
DWT provides a good time-frequency representation of a
signal by using variable sized windows. Long time windows



are used to get a finer low frequency resolution. Short time
windows are used to get high frequency information. WT is
suitable for the analysis of non-stationary signals such as
ECG.

The ECG signal can be decomposed into finer details by
multi-level discrete wavelet transform (DWT) using high-pass
(gfn]) filter. low-pass (h/n]) filter. and downsampling (32).
[7]. After the first level decomposition. two signals
representing the detail (high-frequency) and the approximate
(low-frequency) are obtained. The approximate signals are
further decomposed into the detail and the approximate after
the second level decomposition. et al. as depicted in Fig. 2 (a).
Subband components can be reconstructed back to the length
of the original signal x/n] by inverse DWT (IDWT). as
depicted in Fig. 2 (b). This process can also be used to
eliminate noises by setting components in certain subbands to
be zero and perform the IDWT.

C. Preprocessing

The aim of the preprocessor was to remove the baseline
wander and noise artifacts frequently observed in ECG
signals. ECG baseline wander usually caused by breathing or
unexpected movement of experimental settings. which usually
cover the frequency range below 1Hz [8]. In order to eliminate
baseline wander. we used DWT to decompose signal to the
seventh level and then set the approximate coefficient A7 to
zero and perform the IDWT. In this manner, subband
components below 0.97 Hz were removed from the signal.

The second part of the preprocessor was to remove noise
artifacts. The soft-thresholding method proposed by Donoho
[9] was adopted for this purpose. Seven levels of DWT were
applied to the signal first. The subband coefficients with
minor values were considered noise and were set to zero
before the application of IDWT to eliminate the noise.

D. R Peak Detection

In order to accurately locate the R peaks in ECG, we
focused only on the D, and D, subband components that
show the most significant features of the QRS complex [10].
First of all. all the other subband components. except that of
D, and D, . were set to zero. Moreover. to highlight the
location of the QRS complex. the coefficient values in both
D, and D, were squared and the smaller values (threhold=
standard deviation of the reconsfruction signal) eliminated
before performing IDWT. The location of the peaks in the
reconstructed signal were the tentative positions of the R
peaks, as depicted in Fig. 3 (a). However, since DWT
sometimes causes minor shift of the waveform, the positions
of the real R peaks (Fig. 3 (b)) were determined by searching
the highest peaks in the vicinity (10 samples) of the tentative
R peaks (Fig. 3 (a)) in the preprocessed ECG signal.

E. Calculation of Morphological Features

After the R peak has been located. a 80-point waveform.
with 35 samples before and 44 samples after the R peak (Fig.
4), was segmented as the representative waveform of a
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Figure 4. 80-sample ECG waveform of a heartbeat.

heartbeat. The three points J. JX. and ISO closely related to
the R peak were first located on the waveform according to the
heart rate. as shown in Table I and Fig. 4. The QRS complex
was defined as the part of waveform between the ISO and J
points. In order to concentrate only on the features associated
with ST segment. the QRS complex was first removed from
the original waveform and replaced with a straight line (dash
line in Fig. 4).A five-level DWT followed to decompose the
QRS subtracted waveform into different subbands. The
low-frequency part (AS) of the s™level DWT was
reconstructed using IDWT. Six features were exploited to
characterize the reconstructed A5 component, namely (1) the
power the AS component (Power). (2) the power ratio of the
AS to the original signal (Power ratio). (3) JX potential. (4) ST



level, (5) ST deviation. and (6) ST slope, as summarized in
Table IL

In order to characterize the variation of the waveform from
a typically “normal™ one. a reference waveform was generated
by calculating the average waveform of the 80-point beat
waveforms in the first 30 sec record, as adopted by the
European Society of Cardiology to calculate the “normal™
waveform for the database [6]. Six features associated with
the relationship between the reconstructed A5 components
from the fest and the reference waveforms were calculated.
including (1) the correlation coefficient (CC). (2) the mean
(Mean_CF) and (3) the standard deviation (SD_CF) of the
cross-correlation function. and (4) the mean (Mean D). (5)
the standard deviation (SD_D). and (6) the power (Power_D)
of the difference waveform between the test and reference
waveforms.

Each feature was normalized by subtracting the mean
value from the feature and dividing by the feature’s standard
deviation. This process intended to normalize all the features
to the same level.

F. Support Vector Machine Classifier

Support vector machine (SVM) maps the training samples
from the input space into a higher-dimensional feature space
via a mapping (kernel) function [11]. Any product between
vectors in the optimization process can be implicitly
computed to generate a hyperplan to categorize the samples
into two classes.

For a fraining set of instance-label pairs (xiyi). i=0....L

where x =R and y=[-1.1], and a non-linear operator

mapping with kernel function ¢ . the optimization problem
becomes

min

1 7
Wb ?11- w+ 8

g
25
i-1

(1

subject to ¥, (11*Iga(1'?.)+b)+ £,—-1=20,£,=20

where §>01is the penalty parameter for the error termand &, is
the set of slack variables that is infroduced when the training
data is not completely separated by a hyperplane. To solve
this problem. Vapink [11] has shown that the selution can be
found by minimizing both the errors on the training set
(empirical risk) and the complexity of the hypothesis space.
Consequently. the decision found by SVM is a tradeoff
between error and model complexity. Numerous studies have
demonstrated the superiority of using SVM classifier over
other classifiers in paftern classification tasks. Consequently.
we employ the SVM classifier in the study. The radial basis
function (RBF) was empirically selected as the kernel function
of the SWVM classifier.

ITI. RESULTS AND DISCUSSIONS

Fourteen data files were selected from the database for
experiments. Based on the information about myocardial
ischemia episode provided by the database. 3970 ischemic

TABLEL LOCATIONS OF THE KEY POINTS
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Heart rate (HR) J JX IS0
HR = 120 bpm R+40ms R+60ms R-40ms
120 bpm = HR = 100 bpm B+40ms R+60ms R-40ms
HE < 120 bpm BA+60ms R+80ms R-40ms
TABLE IL MORPHOLOGICAL FEATURES CALCULATED FROM THE QR_S
REMOVED WAVEFOEM
Feature Feature Description
Power Power of the A5 subband signal Feature 1
. Power ratio of the A5 subband to the
Power ratio . . Feature 2
original signal
JX potential Potential of the JX point Feature 3
ST level Potential difference between Jand ISO Feature 4
ST deviation ST level change from the normal Feature 5
ST slope Slope of the segment between J and JX Feature 6
cc Correlation coefficient of the test and Feature 7
reference waveforms
Mean CF mean of the cross-correlation function Feature 8
SD CF Standard dm‘l.amon of r_he Feature 9
- cross-correlation function
Mean_D Mean of the dJ:EE‘erenct_e waveform of the Feature 10
test and reference waveforms.
SD_D Standard deviation of the difference Feature 11
waveform
Power D Power of the difference waveform Feature 12

and 28890 normal heartbeat waveforms were segmented from
the data files for analysis.

The performance of the classifier was measured by three
statistics indices. namely (1) specificity: the percentage of
correctly classified normal beats among the total normal beats;
(2) sensifivity: the percentage of cormrectly classified
myocardial ischemia beats among the total ischemic beats: (3)
accuracy: the percentage of correctly classified beats among
all the beats.

The ten-fold cross-validation method [12] was employed
to evaluate the performance of a classifier. The test sample
beats were firstly divided into ten test sample groups with the
same distribution of attribute. Each sample group was
alternatively reserved as the test group. The other nine groups
were used to train the classifier and the performance of the
classifier was measured by using the reserved group as test
samples. This procedure repeats until all the sample groups
had been reserved once as fest samples. The performance of
the classifier was evaluated by the average values of the three
indices in the ten ftrials.

The results were summarized in Table III. The proposed
morphological features and SVM classifier achieved a
sensitivity of 84.69% and a specificity of 97.25%. resulting in




D0

an accuracy of 95.22%. The results were impressive,
especially with the high specificity and accuracy. However,
we have noticed that the sensitivity was much lower than the
specificity. This phenomenon was caused by the imbalanced
data sets. which would favor the major (normal) class and

ignore the minor (ischemic) class.

Therefore. we sought to resolve this problem with
over-sampling [13]. which increases the number of samples in
the minor class with data interpolation (or over-sampling)
based on the real samples to the same level of the major class.
The performance of the classifier using over-sampling in the
training phase is demonstrated in Table IV. Comparing the
performance in Table IIT and Table I'V. a dramatic increase in

the sensitivity was observed with the over-sampling technique.

Only a minor decrease in specificity was observed. which was
believed to be the compensation caused by oversampling in
the minor (ischemic) class. The two effects resulted in a
classifier equally effective in recognizing normal and
ischemic ECG beats.

The performance of the proposed system was compared to
that of two representative methods published in the literature.
although the databases were not exactly the same. One is the
rule-based mining method proposed by Exarchos and
coworkers [3]. which achieved 87% in sensitivity and 93% in
specificity. The other is the method proposed by Khoshnoud
and coworkers. who used subband ECG signals for locating
important myocardial ischemic points for classification with
probabilistic neural network (PNN) [4]. A sensitivity of
96.67% and a specificity of 89.18% were reported. The
comparative results were summarized in Table V. It is
impressive that the proposed method with over-sampling
achieved sensitivity and high specificity. which is superior to
the other methods that only show large wvalue in either
sensitivity or specificity. This property of the method is
believed to be favorable for a computer-aided myocardial
ischemia diagnosis system.

I'V. CONCLUSION

We proposed a method for the detection of ischemic
heartbeats based on morphological features. The objective of
the study was to use only the R point which is easily
identifiable and bypass the need to identify the key points that
are apt to be buried in noise and might be difficult to be
correctly located. such as the S and T points. Easily
identifiable key points only depending on the location of the R
point and the heart rate were used instead (Table I).
Morphological features were calculated from the A5 subband
components of the QRS complex subtracted waveform. This
approach minimized the interference of the QRS complex in
the calculation of ST-related features and only focused on the
variation of the ST segment in characterizing ischemic
waveform.

Impressive performance was observed with the
morphological features. The application of oversampling
technique to balance the samples in the two data sets further
improved the performance of the classifier. The results
demonstrate the effectiveness of the proposed method in
accurately detecting ischemic beats using morphological
features that are easy to calculate.

TABLE Il EXPERIMENTAL RESULTS
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Beat Number of Sensitivity Specificity | Accuracy
Type Samples (%a) (%a) (%)
(Train+Test)
Ischemic 6489+722 84.69 97.25 95.22
Normal 3372443748
TABLE IV THE EFFECT OF OVER-SAMPLING IN ISCHEMIC CLASS
Beat Number of Sensitivity Specificity | Accuracy
Type Samples (%0) (%) (%o
(Train+Test)
Ischemuc | 33724+722 95.40 93.29 93.63
Normal 3372443748
TABLE V COMPARISON WITH OTHER STUDIES
Method Sensitivity Specificity Accuracy
Rule-based [3] 87% 93% 90%
PNN classifier [4] 96.67% 89.19% 90.75%
Proposed method 9540 9329 9363
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