INER-F0711

出國報告(出國類別:實習)

赴美國維吉尼亞理工大學未來能源電子中心進行電力電子實習公差報告

- 服務機關:核能研究所
- 姓名職稱:羅國原 助理研究員
- 派赴國家:美國
- 出國期間: 102年5月15日~102年7月10日
- 報告日期: 102年8月12日

摘要

近年來政府積極推動再生能源與新能源相關技術發展,然由於再生能源 具有間歇性與不確定性,若區域之再生能源佔比提升,勢必造成區域電網電壓之 浮昇或驟降,間接衝擊區域電網系統運轉之穩定性,因此本所已規劃發展自主式 分散型區域電力控管技術與微電網之相關研究,可讓分散式再生能源使用的效率 提高,電網的穩定度增加與供電的品質提高,進而達成再生能源擴大應用與節能 減碳之政策目標。目前正執行再生能源分散式電力微型電網電力電子設計與配電 系統之建置與實驗,爲持續與國際先進技術交流,並了解國際最新發展情勢,故 赴美國維吉尼亞理工大學未來能源中心實驗室進行電力電子技術研習,除學習高 效率電力轉換器硬體設計與控制技術外,並了解國際間如何因應能源危機和再生 能源或分散式電源倂入市電所帶來的問題和未來發展方向。

本研習計畫時程從2013年5月15日至2013年7月8日,計畫目標為發展1 套高效率雙向三相電力轉換器並可應用於微電網系統上。系統規格須符合在負載變動20~100%條件下,DC-AC轉換效率方面需維持於97%以上、輸入電壓為380 DC(V)、輸出電壓為三相220 AC(V)。

						▤								次	*											
摘	要	•••	•••	•••	••	• •	••	••	•	••	• •	•	••	•		••	•	••	•	•	••	•	••	•	••	i
^	、目的	••	•••	••	••	• •	••	••	•	••	••	•	••	•	••	••	•	••	•	•	••	•	••	•	••	1
<u> </u>	、過程	••	•••	•••	••	•••	••	••	•	••	••	•	••	•	••	••	•	••	•	•	••	•	••	•	••	2
<u> </u>	、心得	••	•••	•••	••	•••	••	••	•	••	••	•	••	•		••	•	••	•	•	••	•	••	•	••	3
四	、建議	事項	Į.,	•••	••	•••		•••	•		• •	•		•			•		•	•		•	•••	•	. 4	14

附 圖 目 錄

圖一: 三相 DUAL BUCK INVERTER 電路 3
圖二: DUAL BUCK INVERTER 工作示意圖 4
圖三: 單相 DUAL BUCK INVERTER 模擬電路 5
圖四: Buck 的輸出電壓波形 5
圖五: DUAL BUCK 的輸出電壓與電流波形 6
圖六: DUAL BUCK的等效模型 6
圖七:數學模型計算結果 7
圖八: 單相 DUAL BUCK INVERTER 頻域模擬電路 7
圖九:單相 DUAL BUCK INVERTER 波德圖
圖十: PSPICE 模擬和平均模型模擬結果 8
圖十一: 三相 DUAL BUCK/DUAL BOOST INVERTE 模擬電路模型 9
圖十二: 三相 DUAL BUCK/DUAL BOOST INVERTE 模擬結果 9
圖十三: CLARKE 座標軸轉換 10
圖十四: PARK座標軸轉換 10
圖十五: 三相座標軸 11
圖十六: D SUBSPACE IN ABC SPACE 11
圖十七:旋轉座標軸 12
圖十八: 三相 BUCK INVERTER 等效示意圖 13
圖十九: 三相 BUCK INVERTER 等效示意圖 14
圖二十: 三相 BUCK INVERTER 等效示意圖 14
圖二十一: po 軸等效模型 16
圖二十二:設計控制器 DECOUPLING 16
圖二十三: COUPLING DQ 模擬結果 17

圖二十四:	設計控制器 DECOUPLING 模擬結果	17
圖二十五:	波德圖模擬結果	18
圖二十六:	鎖相迴路模擬電路	18
圖二十七:	鎖相迴路模擬結果	19
圖二十八:	三相系統鎖相迴路模擬電路	20
圖二十九:	三相系統鎖相迴路模擬結果	20
圖三十: DS	SP 控制板照片	21
圖三十一:	電源模組電路	21
圖三十二:	LDO 內部方塊	22
圖三十三:	ADC的 FILTER 電路	22
圖三十四:	ADC 電路頻率響應	22
圖三十五:	ADC 差動降壓電路	23
圖三十六:	ADC 控制 IC	24
圖三十七:	BUFFERVIC 通道控制	24
圖三十八:	GPIO 接腳	24
圖三十九:	電位提升電路	24
圖四十:數	位轉類比 IC	25
圖四十一:	隔離轉換器	25
圖四十二:	DAC 輸出電路	25
圖四十三:	主電力級照片	26
圖四十四:	主電力級輔助電源	26
圖四十五:	PWM 輸出邏輯控制	27
圖四十六:	光耦合器隔離電路	27
圖四十七:	33153 驅動電路	28
圖四十八:	驅動 IC 內部方塊	28

圖四十九:	HALL SENSOR 電流電路	29
圖五十: HA	LL SENSOR 電壓電路	29
圖五十一:	製作完成 PCB 板正面	30
圖五十二:	製作完成 PCB 板反面	30
圖五十三:	電腦連線測試開迴路	30
圖五十四:	電腦連線測試讀取 DSP 暫存器值	30
圖五十五:	CCS5 安奘後組譯成功	31
圖五十六:	DSP 控制畫面	31
圖五十七:	電感繞製照片	32
圖五十八:	測試電感飽和	32
圖五十九:	頻寬較低的 PI 控制器測試	33
圖六十: 頻	寬較高的 PI 控制器測試	33
圖六十一:	換流器輸出測試的照片	34
圖六十二:	換流器輸出電流波型	34
圖六十三:	效率測試	34
圖六十四:	安裝 SPRC530 重新設定路徑	35
圖六十五:	多種 PWM 技術輸出模擬	35
圖六十六:	多種 PWM 技術輸出模擬結果	36
圖六十七:	多種 PWM 技術比較	37
圖六十八:	EZDSP 介面檢測	38
圖六十九:	RECTIFIER MODE 測試相位	38
圖七十: RE	CTIFIER MODE 測試環境	39
圖七十一:	發電機與電動機照片	39
圖七十二:	GENERATOR MODE 測試環境	40
圖七十三:	GENERATOR MODE 測試結果(電流 2.1A)	40

圖七十四:	GENERATOR MODE 測試結果(電流 3.7A)	40
圖七十五:	XDS510與CCS5設定	41
圖七十六:	維吉尼亞理工大學未來能源電子中心	42
圖七十七:	FEEC太陽能板測試區域	42
圖七十八:	太陽能高爾夫球車	43
圖七十九:	高效率太陽能換流器	43
圖八十:與	J	43

一、目的

近年來本所致力於再生能源領域之研究,未來規劃整合配電自動化之微電網系統擴充與台電配電饋線實際併接,以發展智慧型微電網系統電力電子技術,目前正執行再生 能源分散式電力微型電網供電系統之建置,國際上各知名的電力電子實驗室亦正積極投入研究於先進能源電力電子領域,以高效率高功率為未來目標,為持續與國際先進技術 交流,並了解國際最新發展情勢,故赴美國維吉尼亞理工大學未來能源中心實驗室進行 電力電子技術研習,主持未來能源中心的賴日生教授現為IEEE fellow,並且為美國能 源部(DOE) Electric Power Research Institute (EPRI) Power Electronics Applications Center (PEAC)國際著名學者,著作與承接計畫之經驗均豐碩;另外對於 所領導之研究團隊也均有智慧電網相關之研發經驗與文獻發表,其帶領的未來能源電子 中心發展的電力轉換系統具有世界領先地位。

本研究研習計畫時程從2013年5月15日至2013年7月8日,計畫目標為發展1 套高效率雙向三相電力轉換器並可應用於微電網系統上。系統規格須符合在負載變動20~100%條件下,DC-AC 轉換效率方面需維持於97 %以上、輸入電壓為380 DC (V)、輸出電壓為三相220 AC(V)。

二、過程

本次公差時間含去程及回程 56 天,規劃進度為:

日期	工作項目					
5/15	搭機赴美國維吉尼亞理工大學未來能源電子中心					
5/16~5/20	Study Related Papers					
	Arrange the design data and components.					
1st week	Order for Hardware Components					
(5/20~5/26)	Installation for Protel, CCS 5, and EZDSP					
	Study Main Circuit Design, Theory, and related Paper					
	Build Coding Environment and Study DSP code					
2nd week	Study DSP Code (28335 setup, main program, and interrupt)					
(5/27~6/2)	System Simulation with Open Loop (Single Phase)					
	Build Hardware					
3rd week	Study DSP Code (ADC, PLL, and SPWM)					
(6/3~6/9)	Build Hardware and Test Environment					
	System Simulation with Close Loop (Three-Phase)					
4th week	Study Main Circuit(Modeling and Layout)					
(6/10~6/16)	Build Hardware					
	Pretest for Inverter System					
5th week	Study Controller Design and Analysis Stability					
(6/17~6/23)	Test and Debug DC-AC Inverter System (Ouput Current and Power					
	Control)					
6th week	Build Test Report					
(6/24~6/30)	Test and Debug DC-AC Inverter System (Ouput Current and Power					
	Control)					
7th week	Finish Project Report					
(7/1~7/8)	Test DC-AC Inverter System (Efficiency and THD)					
7/9~7/10	搭機返回台灣					

三、心得

(一) 維吉尼亞理工大學未來能源電子中心簡介

維吉尼亞理工大學位於美國維吉尼亞州的黑堡(Blacksburg),未來能源電子中心 (FEEC)的主持人為賴日生教授,賴教授於 1989 年美國田納西州大學取得博士學位後進 入田納西州橡樹嶺國家實驗室,並成為電力電子首席科學家,1996 年進入維吉尼亞理工 大學建立未來能源電子中心,帶領未來能源電子中心持續發展高效率的電力電子技術, 賴教授擁有 21 項專利,並發表了超過 60 篇期刊論文。目前該中心成員中有 4 位教授、 16 位博士生和 5 位碩士生。未來能源電子中心研發項目包括: SOFC 高效率電能轉換器、 高效率軟切換馬達變流器、電動車非接觸充電器、太陽能微轉換器、太陽能高效率換流 器、風能電力轉換器、太陽能模擬器、中壓串接式換流器、感應加熱器與高頻率功率開 關應用。

(二) Dual Boost/Dual Buck 轉換器

本次研習計畫的主要目標為開發一套三相 Dual Boost/Dual Buck 的的轉換器,其 主電路如下圖一所示,S1、S3 跟 S5 分別為三相正半週的主切換開關,S2、S4 跟 S6 分 別為三相負半週的主切換開關,圖二為其中一臂的示意圖,以 Dual Buck 為例,當 A 相 電壓為正時,S1 導通電流經過 S1 和 Lp 對電感 Lp 充電,S1 關閉時 Lp 電感電流經過 D4 放電,反之當 A 相電壓為負時,S4 導通電流經過 S4 和 Ln 對電感 Ln 充電,S4 關閉時 Ln 電感電流經過 D1 放電,電路特點主要為無一般 Shoot-Through 的問題可增加可靠度和 維持高效率。

圖一: 三相 Dual Buck Inverter 電路

圖二: Dual Buck Inverter 工作示意圖

(三) 單相 Inverter 分析

爲簡化了解 Dual Buck 或 Dual boost 工作原理,先以單相 Inverter 來分析,簡單 來說 Dual Buck Inverter 就是以兩個對耦的 Buck 架構來針對交流的正負半週電壓分別 作電流控制,我們先以單相系統建模,並可利用電路模擬軟體來了解電路動作原理,圖 三為單相 Inverter 的電路模擬,模擬電路中先設計 PI 控制器來控制輸出電流,其中也 包含感測電路和 PWM 邏輯電路,電路模擬參數為:

Output power	1kW
Output ac voltage	110Vac
Output frequency	60Hz
Switching	50kHz
frequency	
Output Inductor	2mH
Input DC voltage	400V
Controller type	PI

圖三: 單相 Dual Buck Inverter 模擬電路

圖四為其中之 Buck 的輸出電壓波形(開關後),正半周時利用控制 S1 開關即可切換 出+200V 與-200V 的脈波,改變輸出脈波導通寬度來控制輸出電流,圖三為閉迴路控制 模擬結果,與市電並聯的電流可控制為正弦型式,輸出約為 1kW。

圖四: Buck 的輸出電壓波形

圖五: Dual Buck 的輸出電壓與電流波形

(四) 單相等效模型推導:

單相 Dual Buck 模型推導可以圖六來說明,其中利用導通週期來控制輸出電壓經由 濾波得到正弦電流和電壓,假設忽略電感和電容的內阻,我們可以得到開路轉移函數:

圖六: Dual Buck 的等效模型

接著我們再利用數學軟體幫助來將推導數學模型畫出開迴路的波德圖,以下為設定參 數:

Vdc = 210;

 $R_F = 5.76;$

- $R_N = 1440;$
- L = 180e-6;
- C = 35e-6;

NUMF = [(R_F*C) 1]; DENF = [(L*C) (L/R_F) 1]; SYSF = (Vdc/R_F)*(tf(NUMF,DENF)); NUMN = [(R_N*C) 1]; DENN = [(L*C) (L/R_N) 1]; SYSN = (Vdc/R_N)*(tf(NUMN,DENN)); SYS = SYSF/5; bode(SYS)

其中/5為電路模擬中開迴路PWM比較鋸齒波振幅10/2(2倍Vdc),計算結果為圖七所示, 為無載情況下的開迴路增益和相位,其中可以發現無載的情況下,2kHz時確實為35uF和 180uH(LC)的諧振點,圖八為電路頻域模擬電路圖,圖九為電路頻域模擬,顯示推導後 的計算結果與模擬結果符合,之後便可以數學模型建立閉迴路的分析並設計控制器,再 利用三相dq轉換後的dq軸可用PI控制器來補償設計。

圖八: 單相 Dual Buck inverter 頻域模擬電路

第7頁

圖九:單相 Dual Buck inverter 波德圖

之後再比對未來能源中心實驗室之前建立的電路模擬和平均模型(圖十),最後再次驗證 推導過程正確和模擬也相符。

圖十: PSPICE 模擬和平均模型模擬結果

(五) 三相轉換器電路模擬與模型推導

完成單相系統分析後,接下來則開始分析三相 Dual Buck/Dual Boost Inverter 操 作原理和設計,首先利用電路模擬軟體建立三相電路模型,下圖十一為其模擬電路模 型,包含主迴路、控制器,三相標轉直交軸座標轉換、鎖相迴路和 C 程式控制處理模塊。 圖十二為模擬結果,結果顯示在三相平衡 Y 接系統上所設計 Dual Buck 換流器電路可輸 出與市電同相正弦電流,模擬規格為:

Output power: 2.7kW

Output voltage: 120/208 (Y接3相)

Switching frequency: 33kHz

圖十二: 三相 Dual Buck/Dual Boost Inverte 模擬結果

三相座標(abc)的向量可以對應到兩相正交的座標($\alpha \beta$),假設 α 軸和 a 軸相同我 們可以下圖十三來說明, $i_{s\alpha} = i_a$, $i_{s\beta} = \frac{1}{\sqrt{3}}i_a + \frac{2}{\sqrt{3}}i_b$,此為 Clarke 轉換,然而三相座標 轉換至兩軸正交的座標($\alpha \beta$)上依然是隨著角速度做變化,因此我們再將兩相正交的座 標系統轉換至旋轉座標系統(dq)。當把三相座標軸轉換直交軸後,換流器三相電流的命 令變成直流値,因此傳統的 PI 控制器便可設計在主迴路上控制。

圖十三: Clarke 座標軸轉換

以下圖十四來說明, $i_{Sd} = i_{\alpha} \cos \theta + i_{\beta} \sin \theta$, $i_{Sd} = -i_{\alpha} \sin \theta + i_{\beta} \cos \theta$,

 $\begin{bmatrix} i_{Sd} \\ i_{Sq} \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix}$

此為 Park 轉換其中 θ 為與 a 軸相位差。

圖十四: Park 座標軸轉換

Dual buck inverter 模型推導:

位更了解三相電力系統裡的數學模型,我們先以三相電壓或電流可用三個 abc 座標軸來 表示,其模型建立在三相座標上如圖十五所示。以三相電壓來說彼此相差 120 度:

圖十五:三相座標軸

因此我們在 abc space 裡找出一個 subspace 垂直向量[111]^T,稱為 d 如圖十六所示,在三相平衡的系統裡我們可以得到:

 $i_a + i_b + i_c = 0$ or $v_a + v_b + v_c = 0$

因此發現在三相平衡系統裡,三相電壓或電流位於在於 d 的 subspace 裡,所以三相座 標(abc)的向量可以對應到 subspace 裡兩相正交的座標($\alpha \beta$)。

圖十六: d subspace in abc space

若只單純考慮將 abc space 轉換至 $\alpha \beta \gamma$ space,我們可以得到(Clarke Transformation):

$$\begin{bmatrix} v_{\alpha} \\ v_{\beta} \\ v_{\gamma} \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} v_{a} \\ v_{b} \\ v_{c} \end{bmatrix} \alpha \text{ mas a } 2 \text{ subspace } \beta \text{ subspace } \text{ a subspace } \text{ a } \beta \text{ subspace } \beta$$

交 α 軸的座標軸, γ 軸為 co-linear 於 abc 空間裡向量[111]^T。但因為是三相平

衡系統,所以我們只要考慮在 d subspace, γ 軸為 0,為簡化把 $v_a + v_b + v_c = 0$ 代入上 式得到:

$$\begin{bmatrix} v_{a} \\ v_{\beta} \end{bmatrix} = \begin{vmatrix} \frac{\sqrt{3}}{\sqrt{2}} & 0 \\ \frac{\sqrt{2}}{2} & \sqrt{2} \end{vmatrix} , \quad \text{ \underline{v}_{a} } \text{ \underline{v}_{b} } \text{, \underline{v}_{b} } \text{ \underline{v}_{a} } \text{ \underline{v}_{b} } \text{ $\underline{v}_$$

從原本 abc space 的向量[111]^T,往反方向來看可以得到圖十七,因為平衡三相的 電壓可表示為正弦並相差 120 度變化,在 d subspace 表現為繞著 $\alpha \beta$ 軸原點旋轉,因 此我們利用同步旋轉座標再轉換電流(Park Transformation):

$$\begin{bmatrix} i_d \\ i_q \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} i_\alpha \\ i_\beta \end{bmatrix}$$

dq 軸旋轉的速度 ω 為三相系統電壓的角速度積分後為角度,d 軸上的分量為與旋轉角度同相分量,q 軸上的分量為與旋轉角度差 90 度分量,d 軸上的分量為 q 軸為 0 即為虛 功分量。q 軸上的分量為 d 軸為 0 即為實功分量。

$$i_{a} = i_{a}\cos\theta + i_{\beta}\sin\theta = i_{a}\cos\theta + (\frac{1}{\sqrt{3}}i_{a} + \frac{2}{\sqrt{3}}i_{b})\sin\theta$$

假設當角度為0且電流同相時, $i_a = 0$, $i_d = 0$,虛功為0。

$$i_{q} = -i_{\alpha}\sin\theta + i_{\beta}\cos\theta = -i_{a}\sin\theta + (\frac{1}{\sqrt{3}}i_{a} + \frac{2}{\sqrt{3}}i_{b})\cos\theta$$

假設當角度為0且電流同相時, $i_a = 0$, $i_b = 0.866$, $i_q = 1 虛功為1$ 。

圖十七:旋轉座標軸

Three-phase Modeling: 三相 Buck Inverter 可用圖十八來表示

圖十八: 三相 Buck Inverter 等效示意圖

$v_{AB} = -L\frac{di_a}{dt} + v_{ab} + L\frac{di_b}{dt}$
$v_{BC} = -L\frac{di_b}{dt} + v_{bc} + L\frac{di_c}{dt}$
$v_{CA} = -L\frac{di_c}{dt} + v_{ca} + L\frac{di_a}{dt}$
$\begin{bmatrix} v_{ab} \\ v_{bc} \\ v_{ca} \end{bmatrix} = \begin{bmatrix} S_a - S_b \\ S_b - S_c \\ S_c - S_a \end{bmatrix} V_{dc} = \begin{bmatrix} S_{ab} \\ S_{bc} \\ S_{ca} \end{bmatrix} V_{dc}$
$i_{dc} = \begin{bmatrix} S_a \\ S_b \\ S_c \end{bmatrix}^T \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} = \begin{bmatrix} S_{ab} \\ S_{bc} \\ S_{ca} \end{bmatrix}^T \begin{bmatrix} i_{ab} \\ i_{bc} \\ i_{ca} \end{bmatrix}$

 $\begin{bmatrix} v_{AB} \\ v_{BC} \\ v_{CA} \end{bmatrix} = L \frac{d}{dt} \begin{bmatrix} -i_a + i_b \\ -i_b + i_c \\ -i_c + i_a \end{bmatrix} + \begin{bmatrix} v_{ab} \\ v_{bc} \\ v_{ca} \end{bmatrix}$ (D) $\mathbb{E}[i_a = i_{ab} - i_{ca} - i_b = i_{bc} - i_{ab} - i_{ca} - i_{bc}] \mathbb{E}[i_{ca} = i_{ab} - i_{ca} - i_{ab} - i_{ca} - i_{bc}] \mathbb{E}[i_{ca} = i_{ab} - i_{ca} - i_{bc}] \mathbb{E}[i_{ca} = i_{ab} - i_{ca} - i_{bc}] \mathbb{E}[i_{ca} = i_{ab} - i_{ca} - i_{ab} - i_{ca} - i_{bc}] \mathbb{E}[i_{ca} = i_{ab} - i_{ca} - i_{ab} - i_{ca} - i_{bc}] \mathbb{E}[i_{ca} = i_{ab} - i_{ca} - i_{bc}] \mathbb{E}[i_{ca} = i_{ab} - i_{ca} - i_{ab}] \mathbb{E}[i_{ca} = i_{ab} - i_{ca} - i_{ab}] \mathbb{E}[i_{ca} = i_{ab} - i_{ca} - i_{bc}] \mathbb{E}[i_{ca} = i_{ab} - i_{ca} - i_{bc}] \mathbb{E}[i_{ca} = i_{ab} - i_{ab}] \mathbb{E}[i_{ca} = i_{ab}] \mathbb{E}[i_{ab}] \mathbb{E$

$$\begin{bmatrix} v_{ab} \\ v_{bc} \\ v_{ca} \end{bmatrix} = \begin{bmatrix} S_{ab} \\ S_{bc} \\ S_{ca} \end{bmatrix} V_{dc} \approx \begin{bmatrix} d_{ab} \\ d_{bc} \\ d_{ca} \end{bmatrix} V_{dc} \quad i_{dc} = \begin{bmatrix} S_{ab} \\ S_{bc} \\ S_{ca} \end{bmatrix}^{T} \begin{bmatrix} i_{ab} \\ i_{bc} \\ i_{ca} \end{bmatrix} \approx \begin{bmatrix} d_{ab} \\ d_{bc} \\ d_{ca} \end{bmatrix}^{T} \begin{bmatrix} i_{ab} \\ i_{bc} \\ i_{ca} \end{bmatrix}$$

$$\frac{d}{dt} \begin{bmatrix} i_{ab} \\ i_{bc} \\ i_{ca} \end{bmatrix} = \frac{1}{3L} \begin{bmatrix} d_{ab} \\ d_{bc} \\ d_{ca} \end{bmatrix} V_{dc} - \frac{1}{3L} \begin{bmatrix} v_{AB} \\ v_{BC} \\ v_{CA} \end{bmatrix}$$

$$i_{dc} = \begin{bmatrix} d_{ab} \\ d_{bc} \\ d_{ca} \end{bmatrix}^{T} \begin{bmatrix} i_{ab} \\ i_{bc} \\ i_{ca} \end{bmatrix}$$

因此可得到等校模型圖十九,最後再簡化成圖二十

圖十九: 三相 Buck Inverter 等效示意圖

圖二十: 三相 Buck Inverter 等效示意圖

此時我們再將 dq 轉換的技巧代入等效電路中,

$$\begin{split} T_{\alpha\beta/abc} &= \begin{bmatrix} 1 & 0 \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} \end{bmatrix} \\ \frac{d}{dt} T_{\alpha\beta/abc}^{-1} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \\ i_{\gamma} \end{bmatrix} &= \frac{1}{3L} T_{\alpha\beta/abc}^{-1} \begin{bmatrix} d_{\alpha} \\ d_{\beta} \\ d_{\gamma} \end{bmatrix} V_{dc} - \frac{1}{3L} T_{\alpha\beta/abc}^{-1} \begin{bmatrix} v_{\alpha} \\ v_{\beta} \\ v_{\gamma} \end{bmatrix} \Rightarrow \frac{d}{dt} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \\ i_{\gamma} \end{bmatrix} &= \frac{1}{3L} \begin{bmatrix} d_{\alpha} \\ d_{\beta} \\ d_{\gamma} \end{bmatrix} V_{dc} - \frac{1}{3L} \begin{bmatrix} v_{\alpha} \\ v_{\beta} \\ v_{\gamma} \end{bmatrix} \\ i_{dc} &= \begin{bmatrix} d_{ab} & d_{bc} & d_{ca} \end{bmatrix} T_{\alpha\beta/abc}^{-1} T_{\alpha\beta/abc} \begin{bmatrix} i_{ab} \\ i_{bc} \\ i_{ca} \end{bmatrix} = \begin{pmatrix} T_{\alpha\beta/abc} \begin{bmatrix} d_{ab} \\ d_{bc} \\ d_{ca} \end{bmatrix} \end{pmatrix}^{T} T_{\alpha\beta/abc} \begin{bmatrix} i_{ab} \\ i_{bc} \\ i_{ca} \end{bmatrix} = \begin{bmatrix} d_{\alpha} \\ d_{\beta} \\ d_{\gamma} \end{bmatrix}^{T} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \\ i_{\gamma} \end{bmatrix} \end{split}$$

因為為三相平衡系統 $v_{\lambda} = d_{y} = i_{y} = 0$

 $\frac{d}{dt} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} = \frac{1}{3L} \begin{bmatrix} d_{\alpha} \\ d_{\beta} \end{bmatrix} V_{dc} - \frac{1}{3L} \begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix}$ $i_{dc} = \begin{bmatrix} d_{\alpha} \\ d_{\beta} \end{bmatrix}^{T} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix}$

再使用 Park Transformation

$$\begin{split} T_{dq/\alpha\beta} &= \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \\ \frac{d}{dt} T_{dq/\alpha\beta}^{-1} \begin{bmatrix} i_d \\ i_q \end{bmatrix} &= \frac{1}{3L} T_{dq/\alpha\beta}^{-1} \begin{bmatrix} d_d \\ d_q \end{bmatrix} V_{dc} - \frac{1}{3L} T_{dq/\alpha\beta}^{-1} \begin{bmatrix} v_d \\ v_q \end{bmatrix} \Rightarrow \\ \frac{d}{dt} T_{dq/\alpha\beta}^{-1} \begin{bmatrix} i_d \\ i_q \end{bmatrix} + T_{dq/\alpha\beta}^{-1} \frac{d}{dt} \begin{bmatrix} i_d \\ i_q \end{bmatrix} = \frac{1}{3L} T_{dq/\alpha\beta}^{-1} \begin{bmatrix} d_d \\ d_q \end{bmatrix} V_{dc} - \frac{1}{3L} T_{dq/\alpha\beta}^{-1} \begin{bmatrix} v_d \\ v_q \end{bmatrix} \Rightarrow \\ T \frac{d}{dt} T_{dq/\alpha\beta}^{-1} \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} i_d \\ i_q \end{bmatrix} = \frac{1}{3L} \begin{bmatrix} d_d \\ d_q \end{bmatrix} V_{dc} - \frac{1}{3L} \begin{bmatrix} v_d \\ v_q \end{bmatrix} \Rightarrow \\ \frac{d}{dt} \begin{bmatrix} i_d \\ i_q \end{bmatrix} = \frac{1}{3L} \begin{bmatrix} d_d \\ d_q \end{bmatrix} V_{dc} - \frac{1}{3L} \begin{bmatrix} v_d \\ v_q \end{bmatrix} - \begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix} \begin{bmatrix} i_d \\ i_q \end{bmatrix} \\ i_{dc} = \begin{bmatrix} d_a \\ d_\beta \end{bmatrix}^T T_{dq/\alpha\beta}^{-1} T_{dq/\alpha\beta} \begin{bmatrix} i_a \\ i_\beta \end{bmatrix} = \left(T_{dq/\alpha\beta} \begin{bmatrix} d_a \\ d_\beta \end{bmatrix} \right)^T T_{dq/\alpha\beta} \begin{bmatrix} i_a \\ i_\beta \end{bmatrix} = \begin{bmatrix} d_d \\ d_q \end{bmatrix}^T \begin{bmatrix} i_d \\ i_q \end{bmatrix} \end{split}$$

最後我們得到 dq 軸等效模型

圖二十一: dq 軸等效模型

$\frac{d}{dt} \begin{bmatrix} i_d \\ i_q \end{bmatrix} = \frac{1}{3L} \begin{bmatrix} d_d \\ d_q \end{bmatrix} V_{dc} - 1$	$\frac{1}{3L} \begin{bmatrix} v_d \\ v_q \end{bmatrix} - \begin{bmatrix} 0 \\ \omega \end{bmatrix}$	$-\omega \\ 0 \end{bmatrix} \begin{bmatrix} i_d \\ i_q \end{bmatrix}$
--	---	---

;	$\begin{bmatrix} d_d \end{bmatrix}$	$T \begin{bmatrix} i_d \end{bmatrix}$
$u_{dc} ==$	$\lfloor d_q \rfloor$	$\lfloor i_q \rfloor$

再分析整個系統時,我們需在控制器裡把 d 軸等效電路上受 iq 影響的 coupling 成分消除,把 q 軸等效電路上受 id 影響的 coupling 成分消除,因此控制器設計如圖二十二, 另外當市電併聯時,利用重疊定理可以看出,市電造成電流因素的也可在控制程式裡消除。圖二十三為未將 dq 軸等效電路上互相影響成分 decoupling 消除的模擬結果,圖二 十四為已將 dq 軸等效電路上互相影響 decoupling 消除的模擬結果,其中可以發現 decoupling 消除的模擬結果,電流可以控制到很快就穩定,圖二十三為一開始電流有不 穩定的現象。

圖二十二:設計控制器 decoupling

圖二十四:設計控制器 decoupling 模擬結果

最後系統迴路轉移函數我們可以得到:

 $T_s = G_{PI} \times \frac{e^{-st}}{sL}$ 其中 e^{-st} 為數位 delay 的 term。控制器則設計為: $G_{PI} = k_P + \frac{k_i}{s}$ $k_P = 0.015, \ k_I = 1.644$ 頻率響應如圖二十五所示,結果爲穩定。PM 爲 67.3 度。

圖二十五: 波德圖模擬結果

(六) 鎖相迴路

對於市電併聯轉換器中所設計的鎖相迴路原理為圖二十六所示,其利用單相的電壓 以得到角度,將電壓相乘後進入低通濾波器取得其直流成分,再乘上一個比例積分值得 到加在 60Hz 上之角頻率,積分後得到鎖相的角度,利用一個較高頻的弦波去追相位, WT 部分包含了積分的概念在裡面,追蹤相位結果顯示在圖二十七,其中可以發現紅色輸 出相位很快就可以追到藍色市電相位。

圖二十六: 鎖相迴路模擬電路

圖二十七: 鎖相迴路模擬結果

另外參考其他三相系統DSP程式裡PLL的部份如下:

DSP code (PLL)

cos_thetaPLL = cos(thetall_PLL);

sin_thetaPLL = sin(thetall_PLL);

Valpha_PLL = inv.Vab;

Vbeta_PLL = (inv.Vbc - inv.Vca)*INV_SQRT3;

Vd_PLL = cos_thetaPLL*Valpha_PLL + sin_thetaPLL*Vbeta_PLL;

Vq_PLL = -sin_thetaPLL*Valpha_PLL + cos_thetaPLL*Vbeta_PLL;

```
Err_PLL = Vd_PLL;
```

w_PLL_integ += Err_PLL*Ki_PLLT;

w_PLL_PIout = Err_PLL*Kp_PLL + w_PLL_integ;

```
w_PLL_fb = a_PLL_LPF*w_PLL_PIout + b_PLL_LPF*w_PLL_fb;
```

 $w_PLL = w_PLL_fb + w_PLL_ff;$

thetall_PLL = BOUND_PI(thetall_PLL + w_PLL*Tsamp);

theta_PLL = BOUND_PI(thetall_PLL + PLL_offset);

程式裡的 PLL 步驟和方式與模擬略有不同,但概念上相似,我們依照程式建立新模擬檔, DSP 程式中利用線電壓來作鎖相訊號,相電壓的相位可使用線電壓相位減 30 度來得到, 圖二十八爲依照程式所建立的模擬檔,其中差異較大爲 PLL 中利用 dq 軸轉換得到虛功 電壓訊號 Vd,目標再把 Vd 控制爲零使得到角度與市電電壓同相,其中 Vd 爲零時鎖相角 度可能會相差 180 度,因此將 Vd 設爲正值去運算則可得到與市電相同角度,模擬結果 如圖二十九所示。

圖二十九: 三相系統鎖相迴路模擬結果

(七) Dual Boost/Dual Buck 轉換器系統製作與測試

目前開發轉換器控制使用的 DSP 為 28335,在未來能源電子中心開發軟體為 CCS5, DSP 燒錄的方式是以開發軟體搭配 J-Tag 介面,除燒錄程式外也可以進行偵錯和 Watch Window。

TI28335DSP board 硬體:

圖三十為 DSP 控制板照片,可以分成7個單元來說明:

圖三十: DSP 控制板照片

Power Unit:

圖三十一是包含兩個電源模組提供 5V 和+/-15V 給控制板中的輔助電源,另外一顆 TPS767D301為TI所設計給DSP所使用電源IC,為一線性LDO設計,具有快速的Transient 響應和Thermal Shutdown功能輸入為 5V 輸出可設計為一 3.3V 和可調整 1.9V, 1.9V 的 輸出可由電阻 R8 和 R9 來設定,內部方塊如圖三十二可知:

$$V_o = V_{ref} \left(\frac{R_1 + R_2}{R_2} \right)$$
, 1.9=1.1834(48.3/30.1), 其中盡量設計 Feedback 腳輸出電流約

50uA,電流太高增加不必要損失,太小則會被 leakage current 影響造成輸出電壓不準。

圖三十一: 電源模組電路

圖三十二: LDO 內部方塊

DSP ADC Input:

DSP board 上設計了 16 組 ADC input 到 DSP 裡,圖三十三為其中 ADC 的 Filter 電路和 接線,其中 2 orders low pass filter 和 RC-filter 可分別推導為:

 $\frac{V_o}{V_{in}} = \frac{1}{1+2SC_1R+S^2C_1C_2R^2} = \frac{1}{(1+SCR)^2} , \frac{V_{out}}{V_o} = \frac{1}{1+SC_3R_3} , 圖三十四爲其頻率響應。但$ 在此 Project 中爲增加 ADC 轉換的精度,並沒有使用此輸入部分和 DSP 內部的ADC(0~3.3V)而是使用外部 ADC,輸入類比電壓較高且不容易受雜訊影響。

圖三十三: ADC 的 Filter 電路

圖三十四: ADC 電路頻率響應

第 22 頁

Sensors and ADC Converters:

Project 裡的 Sensor 訊號都利用外部 ADC 來達成, AD7865 為使用 IC, 具有 4 Analog inputs 和 14bits 的解析度,且可設計 Analog input range 為-10 ~ +10V。圖三十五 為其電路 Differential Amplifer 為 INA148,其 Common-mode 電壓可達到+-200V,在 DSP 板輸入端有提供+-15 電源,訊好可由電阻降壓後進入 INA148 後輸出經過 Filter $\frac{V_o}{V_{in}} = \frac{1}{1+2SC_1R+S^2C_1C_2R^2} = \frac{1}{(1+SCR)^2}$,再進入 AD7865,輸出數位値經過 Buffer IC SN74LVTH162245DGGR,同時將電壓 level 降至 3.3V, AD7865 在這邊使用軟體控制的 Channel Selection,利用 DBO~DB3 來決定 channel 如圖三十六所示,圖三十七為 Buffer IC 的方向控制邏輯。

圖三十五: ADC 差動降壓電路

Pin	Mnemonic	Description
1	BUSY	Busy Output. The busy output is triggered high by the rising edge of CONVST and remains high until conversion is completed on all selected channels.
2	FRSTDATA	First Data Output. FRSTDATA is a logic output which, when high, indicates that the Output Data Register Pointer is addressing Register 1—See Accessing the Output Data Registers.
3	CONVST	Convert Start Input. Logic Input. A low-to-high transition on this input puts all track/holds into their hold mode and starts conversion on the selected channels. In addition, the state of the Channel Sequence Selection is also latched on the rising edge of CONVST.
4	CS	Chip Select Input. Active low logic input. The device is selected when this input is active.
5	RD	Read Input. Active low logic input which is used in conjunction with \overline{CS} low to enable the data outputs. Ensure the \overline{WR} pin is at logic high while performing a read operation.
6	WR	Write Input. A rising edge on the \overline{WR} input, with \overline{CS} low and \overline{RD} high, latches the logic state on DB0 to DB3 into the channel select register.

圖三十六: ADC 控制 IC

CONTRO	L INPUTS	OUTPUT O	IRCUITS	OPERATION
OE	DIR	A PORT	B PORT	OPERATION
L	L	Enabled	Hi-Z	B data to A bus
L	н	Hi-Z	Enabled	A data to B bus
н	х	Hi-Z	Hi-Z	Isolation

圖三十七: BuffervIC 通道控制

DSP and GPIO: GPIO 接腳如圖三十八,之後會接上 power board 或其他外部 I/O 訊號。

圖三十八: GPIO 接腳

Driver Output :

PWM 驅動訊號從 DSP 輸出至 74ACT541 Buffer IC 把電壓由 DSP 輸出 3.3V 提升至 5V, 電位提升電路如圖 10 所示。

圖三十九: 電位提升電路

第 25 頁

圖四十二: DAC 輸出電路

PCB 板製作

圖四十三為主電力級照片,主要分為感測電路、驅動電路與電源電路,以下分成三部份

DSP board設計了數位輸出轉類比訊號,電路如下圖所示,數位訊號經過ADuM5400隔離 DC-DC converters輸出,再由TLV5614 DA轉換器(4個12bits)經過一RC濾波後至外部BNC 接頭,輸入為5DP和DGND,轉換隔離電壓為5DAC和DACGND。

圖四十:數位轉類比 IC

圖四十三: 主電力級照片

主電力級輔助電源

電源為 CC62412,為 24V 輸入+/-15V 輸出,電路圖如圖四十四所示,輸出的+/-15V 主要 提供給電流和電壓 Sensor 電源和內部 IC。

圖四十四: 主電力級輔助電源

驅動電源 IC 總共六臂的 MOSFET 驅動電源由分別圖 3 的 MSVH-251505 提供,總共有 6 顆, 提供隔離的+15V 電源和-5V 電源給 driver IC 33153 和光耦合 IC (5V)來使用,驅動電 路部份先由控制器輸出 PWM 訊號至圖四十五的保護控制電路,圖四保護控制電路由 NAND 組成,利用 Fault 或 Enable 訊號控制 PWM 是否有輸出,未來可搭配硬體保護電路所使 用。

圖四十五: PWM 輸出邏輯控制

經過 NAND 的硬體保護控制電路後,PWM 訊號進入 HCPL0601,光耦合器用來隔離控制和 驅動電壓,隔離後的訊號電壓由各個獨立的 MSVH-251505 電源提供,另外一顆光耦合器 則用來隔離 33153 傳回的 Fault 訊號和送至控制器和前面的 NAND 保護控制電路,如圖 5 所示。

圖四十六: 光耦合器隔離電路

經過HCPL0601光耦合器PWM訊號進入33153驅動IC,如圖四十七所示,33153的部方塊圖 如圖四十八所示,33153有1A的Source 能力和2A的Sink能力,其中Dset腳用來偵測DS電 壓是否在turn-on的時候小於6.5V,利用內部比較器送出Fault訊號,而sense腳則可用 來偵測硬體過電流故障,目前並沒有使用,33153是一個可以整合硬體保護電路的驅動 IC,同時也可以提供負電壓的turn-off準位。turn-on 電阻設計為20歐姆,因此turn-on 最大電流為[15-(-5)/20=1,約為1A,turn-off 電阻設計為10歐姆,因此turn-off最大 電流為(-5)-15/(20//10)=-3,IC限制約為2A,設計一二極体來控制turn-off電阻,其 中放至一個過電壓保護的突壓吸收背對背的齊納吸收器,防止MOSFET被擊穿時高壓灌入 GATE端造成Driver電路的損壞,另外C3會影響Fault訊號的Blanking時間。內部有一個 270uA 的電流源,電容值為120pF,經過計算其blanking time 為2.89(us) [Idt=Cdv, 270u*Tbt=120p*6.5,Tbt=2.89u(s)]。當Vgs 欲turn on 瞬間Input 瞬間 turn off,造成270uA 下方之BJT turn off 及兩個AND gate 之輸入一端轉正。 Desat 準位 由零開始改變, Desat 準位在+15V以下270uA 接流至Vcc, 接下來等到VDS 低於15V 則 270uA 開始充電至外部120pF 的電容。再經過2.89(us)之後看看VDS 是否還高於6.5V, 是的話即送出Fault 訊號。Blanking time 設定太大則沒有檢查的意義,太小則容易誤 觸發。

圖四十七: 33153 驅動電路

圖四十八:驅動 IC 內部方塊

感測電路

圖四十九為Hall sensor 抓取Inverter 之輸出電流,電流訊號提供給DSP控制板。圖五 十為Hall sensor 抓取Inverter 之輸出電壓,電壓訊號提供給DSP控制板,此感測方式 較簡單且具有隔離效果,但成本較高。

圖四十九: Hall sensor 電流電路

圖五十: Hall sensor 電壓電路

圖五十一和圖五十二分別為焊製好的 PCB 板正反面照片,可先作開迴路控制和控制訊號 測試,因此 MOSFET 和 Power Diode 還沒裝上,圖五十三和圖五十四分別為利用 EZDSP 連接燒錄後跟電腦連線測試開迴路照片,成功控制驅動電路 PWM 訊號,且輔助電源動作 皆正常。

圖五十一:製作完成 PCB 板正面

圖五十二:製作完成 PCB 板反面

圖五十三: 電腦連線測試開迴路

圖五十四:電腦連線測試讀取 DSP 暫存器值

如果在開發時 CCS5 沒安裝 SPRC530, TI28335 的 Head Files 和 Example, CCS5 組譯時 因為找不到而發生錯誤,安裝後組譯成功如圖五十五所示,程式中對 6 組 PWM 輸出控制 部分註解掉,再從 EZDSP 的 Command Window 下命令控制,圖五十六則為 DSP 控制畫面,

其中設定 PWM 都開為 50%, 並利用軟體裡的 Watch Window 來做 Debug 使用。

All Insert Delete Load Sym Save Name AD_EXT1 AD_EXT2_GAIN EPwm4Regn TEPP EPwm5Regn TEPP EPwm6Regn TEPP All In: fiost 0x00C0C8 0x00C030 0x00C002 0x00C26A 0x00C29A 0x00C29A Wrpm Wrpm_mf 🚽 🏉 O 🥥 👋 🔁 Þ 🛛 😡 🗸 0 a a 2 🕫 0 🐔 Q Q 4 70 ±+ 0226

圖五十六: DSP 控制畫面

有關電感繞製, inverter 系統所使用的電感皆為自己手工繞製, 其設計方法以下說 明參考,電感大小基本上會影響到輸出電流上漣波和工作模式,理論上是越大越好,但 受限於材料成本與體積限制,因此系統設計電感約為950uH,且由於電感操作時若通過 較高電流會影響使電感感量下降,在設計上應考量的地方,所選擇的 77192 Core 為 60u 的 Kool Mu 且三個串聯, AL 為 138nH/N², 理論上圈數方式為, 950000/138/3=2294.7, 開根號後得到 47.9 圈,實際製作後為 47 圈,完成圖如圖五十七所示,電感最大電流為 5000/3/120*1.41421=19.64A 參考資料上的電感衰減圖五十八,橫軸為 47*20=940,電 感感量電流在最大時約衰減為 50%,參考先前測試電感飽和資料,計算其電流等效感量 為L=v/(di/dt),約為750uH。

圖五十七: 電感繞製照片

測試 standalone 時需改變程式中參考角度程式如下所示

inv.theta = BOUND_PI(w_OPL*ref_time);

w_OPL = TWO_PI*f_OPL

ref_time += Tsamp

爲0到pi的值,產生從0到2Pi的值,wc_cc 爲設計開迴路轉移函數 cut-off frequency。 電流控制器調整,程式中設計

inv.Ki_cc = wc_cc*9;

inv.Kp_cc = wc_cc*.96e-3;

inv.Ki_ccT = inv.Ki_cc*Tsamp;

inv.Vq_integ += inv.Ki_ccT*inv.Iq_err;

inv.Vq_integ = LIMIT(-Vdc_ref,Vdc_ref,inv.Vq_integ);

```
inv.Vq_fb = inv.Vq_integ + inv.Kp_cc*inv.Iq_err;
```

假設 wc_cc=2*pi*500=3140,控制器轉移函數為

$$\frac{inv.V_{q_{-}fb}}{I_{q_{-}err}} = \frac{K_{i_{-}cct}z}{(z-1)} + K_{p_{-}cc}$$

圖五十九為頻寬較低的 PI 控制器的頻率響應和實驗結果,圖六十為頻寬較高的 PI 控制器的頻率響應和實驗結果,由對應的實驗結果可看出來,利用頻寬較低的 PI 控制器 Inverter 輸出電流較爲穩定。

圖五十九:頻寬較低的 PI 控制器測試

圖六十:頻寬較高的 PI 控制器測試

圖六十一為輸出測試的照片,目前測試約1.2kW 左右。圖六十二為其測試電流波形, 其中可以發現在 Inverter 的 MOSFET 分別於零交越點切換時電流有失真現象,因為 MOSFET 在交越點後會開始截止或產生 PWM 波形。在三相系統則為每 60 度產生電流失 真。由於波形並未經過電容濾波,未來若增加一級濾波器電流上的漣波應可以降低。 Inverter Mode 測試目前以電阻性負載為主,測試過程中系統穩定且效率並無異常, 圖六十三為先前測試效率最高點且不含輔助電源,最高轉換效率在輸入直流 300V/2.4kW 時可得到 98%以上。

B 六 十一: 換流器輸出測試的照片

圖六十二: 換流器輸出電流波型

圖六十三: 效率測試

安裝 SPRC530, TI28335的 Head Files 和 Example, CCS5 需重新設定路徑如圖六十四所示,由 File 進入選擇 Properties 再選擇 Include Options 修改路徑

圖六十四:安裝 SPRC530 重新設定路徑

Rectifier mode test

Rectifier test 中 VT的 Ahmed 博士介紹了不同的 PWM 技術,以下則用模擬電路來說明, 模擬檔案如圖六十五所示,

圖六十五: 多種 PWM 技術輸出模擬

其中控制命令的模擬結果如圖六十六所示,簡單來說,VT FEEC 所使用的 DPWM 在峰值附 近時切換,以 RECTIFIER 的 mode 情況下可將 PWM turn-off,利用其它兩相的 Mosfet 來切換,可減少損失增加效率,圖六十七為先前 VT FEEC 所做的比較,以 DPWM 切換效 率較高,未來則會針對這不同控制方式作一說明。

圖六十六:多種 PWM 技術輸出模擬結果

圖六十七: 多種 PWM 技術比較

測試 Rectifier Mode 時,預先確認了鎖相的功能,我們使用 DSP 軟體開發介面來檢測 如圖六十八所示,同時利用 Watch window 來 Debug 甚至將暫存器值以圖形來輸出閱讀, 我們利用 Command window 設定 DAC 輸出, channel 0 為角度, channel 1 為 Vab,實際 接線測試結果如圖六十九所示,感測電壓與實際 DSP 讀到且經由 DAC 輸出電壓一致,角 度也為 0 開始增加, PLL 工作正常。

Ul Watch-1					Command-1	Command-2
U Watch-1						
All Insert	Delete Los	id Sym Save S	Sym 1 sec	•		
Mariae Name		Value	 Type 	Address	- rm = 1	deg_Dac[0].pdChData=
inv lq_ref		0	floet	0x00C2A6		day Dec [0] (Cale all)
pun_phing_	NGA	0	int	0x00C301	met_control_mode=0 //Curnent Control	der Dicfil piChDate-Dick 557
rect.Da		0	floet	0x00C1B6	rect_control_mode=1 #Speed Control	der Dacfilm:Type-2
rectile		0	ficet	0x00C180	met_control_mode=2./Woltage Control	deg_Duc[1]fDcale =60
sect.lc		0	floet	0x00C184		
rect.ld		0	floet	0x00C18C	MPPT = 0	deg_Doc[0] piChData-Street.la
rect1d_ref		0	floet	0x00C1DA	flag_senotclem = 0	deg_Duc[0] to:Type=2
rectig		0	ficet	0x00C18E		deg_Duc[0]fScale =40
mette of		n	finat	nvmr186	pecta_peteo	deg_Duc[0] piChData~diVdc
Watch-2				- O X F	In CLINIC	deg_Dac[0] to Type-2
All Inset	Delete Los	d Sym Save !	Sym 1 cor	a 4	Wram at=700	dag Dac[2] to Data Aline Yo and
			11 100	<u> </u>	Wgm_st=1000	das Dar[2] as Dasa?
Nume 1	Value	 Type 	Address #	Dimensi A 0		deg Dac[2] filcale =400
Kp_opt	0	floet	0x00C09A	8	flag_inv_voltage=0	
PR_Cost	0	chur	0x00C017	4	Vdc_md=300	deg_Duc[0] piChDataw&izv.Yq_ff
Tower	0	floet	05000020		1	deg_Duc[0].ucType=2
Tower_ave	0	floet	050000034		uv 16_mf=0	deg_Dac[0]fEcale =6
rower_opt	0	floet	0.000098		too tid latero	deg_Duc[1] piChData-datas Da
TOwet_poe	0	110HL	0.000000		in Ki col	deg_Doc[1] to 19pex2
Wrpen of	0	Tion	0x000003		inv Kn cc=0	deg_Dec[1]Inces =1
withor has	0	IOR	0.000000			And Decimination School 211
1.000	3	float	0x000254		M7PT-1	feg Dec[0] to Type=2
caose		10.00	0.000040	_	MPP_mode=2	deg_Dac[0] fScale +6
inv.DeU	0	float	LINE AND ADDRESS OF ADDRESS OF ADDRESS		speed_step=10	Reg_Duc[1] piChData-diane Teb
inv.DeU inv.M	0	float	0x000290			
inv.DeU inv.M_inv.	0	floet	0x00C29A			deg_Dw[1].mType=2
inv.DeU inv.M inv.M_ref inv.la	0	flost flost flost	0x00C29A 0x00C29A 0x00C24E		fs_sc=500	deg_Duc[1] scType=2 deg_Duc[1] f2cele =40
inv Dell inv M inv M inv Ja	0	floet floet =	0x00C29A 0x00C29A 0x00C24E		\$c_sc=500	deg_Duc[1]scType=2 deg_Duc[1]fDode==40
cione inv DeU inv M inv M_wf inv Ia	0	floet floet =	0x00C29A 0x00C24E		fs_processo fs_processon	deg_Dec[1]st:Type=2 deg_Dec[1]sticule =40
cios inv.DeU inv.M inv.M_mf inv.ls	0	floet floet floet	0x00C29A 0x00C24E		fr_sc=50 flag_searcles=1 flag_seard=1	keg_Des(1) oz Type-D deg_Des(1) £5ode →40
cose inv.DeU inv.M inv.M_mf inv.ls	0	floet floet floet =	0x00C29A 0x00C24E	x	fs.ce-500 fag.macdem-1 flag.amd-4 M997-4	Seg_Doc(1) at Syster2 Seg_Doc(1) Stock =40

圖六十八: EZDSP 介面檢測

圖六十九: Rectifier Mode 測試相位

測試 Rectifier mode 時,我們使用三相的 AC Source 來做 AC 輸入電源,同時使用 電阻為直流負載,測試環境如圖七十所示,由 Ahmed 博士和 Thomas 先生配合測試, 測試過程中系統穩定,測試結果正常且可輸出直流功率至電阻負載上。

圖七十: Rectifier Mode 測試環境

Generator mode

測試 Generator mode 時,我們使用電動機帶動發電機來做 AC 輸入,同時使用電阻 為直流負載,發電機照片如圖七十一所示,測試環境如圖七十二所示,測試結果正 常且可輸出直流功率至電阻負載上,有關 Generator mode 或 Rectifier mode 可有 三種控制方式,電流控制、轉速控制和電壓控制,其中電流和電壓控制分別以三相 電流和直流電壓回授來控制,轉速控制則利用發電機轉速來回授,發電機端有裝置 Encoder 並將轉速信號送至系統,同時在程式也針對同步發電機設計了無感測的速度 控制,永磁同步發電機轉速可利用三相電壓的頻率來推算,進而達到轉速控制的目 的,測試過程中系統穩定,測試結果正常且可輸出直流功率至電阻負載上,圖七十 三跟圖七十四為不同功率的測試波形,紅色為電流波形,黃色為發電機電壓輸出波 形。

圖七十一: 發電機與電動機照片

第 39 頁

圖七十二: Generator mode 測試環境

圖七十三: Generator mode 測試結果(電流 2.1A)

圖七十四: Generator mode 測試結果(電流 3.7A)

在測試 DSP28335時,實驗室使用 DSP 開發軟體介面來做控制和檢測,可很容易作 Debug 和修改控制參數,測試時程式 Download 在 DSP 的 RAM 裡,可作多次重複寫入但斷電後 DSP 程式資料會清除,核研所目前實驗室所使用 DSP 燒錄介面為 XDS510,因此在 FEEC 同時學習了如何使用 CCS5 和 XDS510 來 Download 程式在 DSP 裡,新增 Communication Target File,將內部設定為 XDS510後,執行 Debug Mode 就能將程式 Download 在 DSP 的 RAM 裡,若要將程式 Download 在 DSP 的 Flash裡,則需重新修改和覆蓋 Project 裡 的設定檔如圖七十五,設定檔案資料已測試完成可正常燒錄。

圖七十五: XDS510 與 CCS5 設定

(八) 其它相關研究與介紹

圖七十六為維吉尼亞理工大學未來能源電子中心照片,實驗室裝置多組太陽能板實驗,如圖七十七所示,其實驗內容為實際紀錄不同的電力轉換器架構,比較其發電量和發電效率,以實際發電數據作為設計電力轉換器的參考,包含串聯後中央集中式的太陽 能電力轉換器架構,整合多組 Micro-Converter 再經由中央集中式太陽能電力轉換器架 構,多組 Micro-Inverter 太陽能電力轉換器架構等,並加入遮蔽效應與低電壓發電條件等因素試驗,可作為實際應用上很好設計參考資料。圖七十八為 FEEC 太陽能高爾夫球車展示,FEEC 實驗室利用具 MPPT 的功能 DC-DC 電力轉換器,整合至太陽能系統充電高爾夫球車,為一個再生能源實際應用範例且有很好的示範效果。圖七十九為該中心所開發高效率太陽能換流器,目前測試結果最高效率可達到 99%,其利用 ZVS 的架構並整合高效率 ZVS 所使用的諧振電感電路,目前設計應用於太陽能及中型電力轉換器上,可搭配多組太陽能板與 MPPT 功能的 Micro-Converter,增加太陽能發電效率,最後圖八十為與賴日生教授合影。

圖七十六:維吉尼亞理工大學未來能源電子中心

圖七十七: FEEC 太陽能板測試區域

圖七十八:太陽能高爾夫球車

圖七十九: 高效率太陽能換流器

圖八十: 與賴日生教授合影

四、建議事項

全球暖化及能源短缺問題日漸嚴重,節能減碳變得刻不容緩,而太陽能和風能發電 屬於具經濟效益之再生能源但發展還不足夠成熟,國內值得持續投入發展,特別在再生 能源高滲置率的目標下,微型電網系統的電力電子技術,孤島運轉與市電併聯的模式切 換,保護與協調與系統的分析等相關議題的研究與科技突破,將影響再生能源是否順利 倂入市電應用,進而影響再生能源的發展針對再生能源滲透率的問題,國內外也因應積 極開發微型電網系統,本所研發計畫也與國際接軌,目前正規劃執行再生能源分散式電 力微型電網供電系統之建置,建議本所持續發展再生能源電力轉換器以提升國內綠能技 術。

此次赴美國維吉尼亞理工大學未來能源中心研習計畫,可學習高效率電力電子技術,亦可收集包括再生能源未來趨勢、市場情況、設計技術等相關之最新資料,並可對國際上重要之研究、學術單位之領域做進一步瞭解,透過實際在實驗室製作和測試,可得到國際知名實驗室開發經驗,對於未來在所內開發電力轉換器和相關電力電子系統皆有很大的助益,亦可透過實驗室裡和其他國家學者的交流中得到國際上最新之技術發展現況和發展經驗,因此建議應持續執行國外研究實習計畫,培育國內人才和增加國際交流經驗,提升國內再生能源應用的研發能量。