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Abstract

High efficiency GaN-based light-emitting diodes (LEDs) are used in a large range
of potential applications such as full-color displays, traffic signals, automobiles,
solid-state lighting, backlights of liquid-crystal displays, and so on. High
luminescence efficiency is needed in LEDs devices used for these applications.
However, it is well known that a high threading dislocation density (typically 10°-10"
cm °) is inherent in the GaN epilayer on lattice-mismatched substrates consisting of
sapphire and silicon carbide [1]. High dislocation density would affect the device
characteristics including device lifetime, electron mobility, and the quantum
efficiency of radiative recombination.

Recently, various growth techniques, such as epitaxial lateral overgrowth (ELOG),
pendeo-epitaxy and facet-controlled epitaxial lateral overgrowth, have been proposed
to reduce the threading dislocation density in GaN epilayer to the range of
10°-10’cm™. Furthermore, because of its single-growth process with no interruption,
patterned sapphire substrate (PSS) technique is another promising method to achieve
the high quality GaN epilayers. Nevertheless, the PSS technique requires a long time
to merge the epilayer grown on etched and non-etched sapphire substrate, and then
reaches a smooth film surface. According to the past research [2], the InGaN/GaN
film with a high quality can be obtained by metal organic chemical vapor deposition
(MOCVD) on the cone-shape PSS. For the growth on cone-shape PSS, the epilayer is

merely grown on the flat basal of sapphire in the first stage. In addition, there exists



no preferential orientation for the epilayer growth on cone areas. This indicates the
less growth time for epilayer with a smooth film surface on cone-shape PSS can be
obtained than that on a conventional PSS.

In this study, the cone-shape PSSs have been fabricated for the growth of InGaN
LED structures. Moreover, the modified top-tip shapes in the PSSs were formed by
the wet chemical etching with various treatment times. The GaN growth modes, film
quality and LED performance were investigated for growth on a series of PSSs.

The cone-shape PSSs were fabricated on (0001) sapphires by using an inductively
coupled plasma reactive ion etching (ICP-RIE) system using the reactive Cl, gas. The
diameter, interval and height of each cone-shape pattern were 2.4 um, 0.5 um and 1.5
um, respectively. After the ICP-RIE process, the fabricated cone-shape PSSs were
etched with a mixture of H,SO4:H3PO4 (3:1) solution at 250 °C for 3-10 min to form
the various top-tip shapes. The LED structures consisted of a undoped GaN, a n-type
GaN:Si, an InGaN/GaN multiple quantum well (MQW) active region and a p-type
GaN:Mg layer were grown on these PSSs in sequence by MOCVD. For the device
process, a mesa pattern of LED sample was defined with the size of 24 x 45 mil.%.

Fig. 1 shows the scanning electron microscope (SEM) images of cone-shape PSSs
with various wet etching times of 3, 5, 7 and 10 min, respectively. It was found that
the top-tip shape was transformed from smooth to angular with increasing the wet
etching time. Moreover, the bottom size of each cone-shape was enlarged and the
interval was reduced as the wet etching time was increased, which leaded to the
decrease in c-plane ratio of sapphire.

Fig. 2 demonstrates the light output power as a function of injection current for the
LEDs grown on cone-shape PSSs with and without wet etching, respectively. It
revealed that the light output of LED device was improved as the PSS was treated
with wet etching, which resulted from the improvement in epilayer quality due to the
reduction in c-plane ratio of sapphire. However, as the etching time was more than 3
min, the light output was decreased slightly. This could be attributed to the epilayer
growth not only on the c-plane area but also on the angular cone region in the initial
stage as the wet etching time was increased. It caused the higher dislocation density in

epilayer and the deterioration in device performance.
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Fig. 1 SEM images of PSSs with various wet etching times of (a) 3 min, (b) Smin, (¢) 7 min and (d) 10

min.

700
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Fig. 2 Light output power as a function of injection current for the LEDs grown on cone-shape PSSs

with and without wet etching.
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Abstract

Ga-doped ZnO (GZO) thin films with high thermal stability and high carrier

substrates with Ga doping concentration of 10*° ¢cm™ using metal-organic chemical

is 5.5 x 10" ohm-cm.

Keywords: Ga-doped ZnO, MOCVD, resistivity

mobility are essential to develop transparent conductive electrodes (TCEs). In this
study, the carrier concentration and the electrical resistivity of GZO thin films are

related to the Ga flow rates. GZO thin films have been grown on c-plane sapphire

vapor deposition technique. Crystalline structures of as-grown and post-annealed
samples are studied by x-ray diffraction technique. Their transparency is also tracked

by n & k analyzer. Under optimized growth parameters, the lowest resistivity of GZO
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Introduction

Transparent conductive oxides (TCOs) attract considerable attention due to their
extensive applications in flat panel displays, light-emitting diodes, solar cells, touch
panels, and photodiodes[1,2]. Among the various TCOs, tin-doped indium oxide (ITO)
thin films have been widely used in display applications because of their low
resistivity (10™ Q-cm) and high transparency (88 %) in the visible region [3]. But,
thermal stability of ITO is poor for optoelectronic devices[4]. In addition, indium is
an expensive element. Therefore, many studies are focused to find suitable
substitute(s) for ITO. Recently, various TCOs materials such as ZnO, SnO,, and TiO,
have been introduced as replacements for ITO. ZnO thin films are one of the
candidates for a replacement with ITO, for their low costs and easy fabrications.

ZnO thin films show high potential as TCOs especially when they are doped with
group III elements such as Al, In, Ga [5-8]. Among these metal dopants, Ga is found
to be more attractive for its covalent bond length of Ga-O (0.192 nm) which is slightly
smaller than that of Zn-O (0.197 nm). Therefore, even high Ga doping concentration
does not make considerable deformation in ZnO lattice structure. Furthermore, Ga has
lower cost than In and has higher oxidation resistance than Al, which makes it as a
preferred dopant for ZnO thin films in TCO applications. Ga doped ZnO (GZO) are
reported as n-type thin films [9-10]. GZO can be deposited by various methods such
as sputtering, thermal evaporation, pulsed laser, sol-gel, spray-pyrolysis, and chemical
vapor deposition [11-17]. In this work we present GZO thin films grown by
metal-organic chemical vapor deposition (MOCVD) technique, which is very
important in mass production and also multilayer technology. GZO thin films with
different Ga-doping concentrations are deposited on (0001) sapphire substrates. Effect
of post-annealing on the structural, electrical, and optical properties of GZO thin films

are investigated.
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Experimental procedure

Thin films are grown on (0001) sapphire substrates using a modified Emcore
D-180 MOCVD system. Diethylzinc (DEZn), purified oxygen (99.999%) and
triethylgallium (TEGa) were used as Zn precursor, oxidizer, and Ga precursor,
respectively. Purified Ar (99.999%) is used as carrier gas, passing through the DEZn
and TEGa bubblers to deliver the DEZn and TEGa vapors to the reactor. Two sets of
deposition are completed. In first set, the flow rates of DEZn and oxygen were fixed
at 100 and 160 sccm, respectively. TEGa flow rate was tuned from 5 to 20 sccm at
350 °C for 15 minutes. In second set, the flow rates of DEZn, oxygen, and TEGa were
fixed at 100, 160, and 10 sccm, respectively. Depositions are completed at 350 °C at
different times for 10, 12, and 15 minutes.

Some of the as-grown thin films of two sets are undergone a rapid post-annealing
at 550 °C for 2 minutes in N, environment. Crystalline quality of thin films are
measured using a high resolution x-ray diffraction (HR-XRD) system (PANanalytical,
X’Pert Pro MRD) with a Cu Ka line (A = 1.541874) as the radiation source, and Ge
(220) as the monochromator. An n & k analyzer is employed to measure the optical
transmittance and thickness of samples. Resistivity, and impurity concentration of
samples are measured by of Hall measuring system and electronic mobility.

Results and discussion

Figure 1 (a) displays typical XRD patterns of as-grown thin films grown for 15
minutes at different Ga precursor flow rates. XRD peak for the sample grown under
Ga precursor flow rate of 5 sccm, shows the diffraction peak corresponding to (002)
and (101) ZnO, and indicating no significant Ga incorporation. However, increasing
the Ga precursor flow rate to 10, 15, and 20 sccm, decreases the (002) direction of

crystallinity and attributed to ZnO.
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XRD peaks related to GZO thin films grown under a fixed Ga precursor flow rate (10
sccm) for 10, 12, and 15 minutes are displayed in Figure 1(b). All samples show
almost the same structures including (002) and (101) ZnO.

The XRD patterns related to GZO samples in Figure 1(a) and (b) after post-annealing
at 550 °C in N, environment for 2 minutes are displayed in Figure 1(c) and (d). It is

revealed that annealing has no effects on the crystalline structures of all of the

as-grown
samples
1.0x90" Zn (100} Ga(10
- (@) zno oz zn (100)0 (160y| eme'| (B) 200 o02) o'('c(co?' o
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Figure 1. XRD patterns of GZO thin films grown at (a) different Ga precursor flow
rates, (b) different growth time, (c¢) and (d) XRD patterns of GZO thin films in (a) and

(b) after post-annealing under N, flow for 2 minutes.

Figure 2 (a-d) respectively show the transmittance spectra in the range of 200 to

1000 nm for GZO thin films in Figure 1 (a-d). All GZO thin films show the average
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transmittance above the 90%. Such high transmittivity is very important in

optoelectronic devices.
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Figure 2. Optical transmission spectra of GZO thin films grown at (a) different Ga precursor
flow rates, (b) different growth times. (c) and (d) Optical transmission spectra of GZO thin
films in (a) and (b) after post-annealing under N, flow for 2 minutes.

Figure 3 (a) displays resistivities of post-annealed GZO thin films grown under
different Ga precursor flow rates. Higher Ga precursor flow rates result to greater
resistivities (~ 7.25 x 10™* ohm-cm for 20 sccm flow rate). It could be due to the high
Ga precursor flow rate not contributing to the Ga concentration, but resulting in the
ZnO lattice deformation. Figure 3 (b) shows resistivities of post-annealed GZO thin
films grown at different times. Post-annealed sample grown for 12 minutes shows the
highest resistivity (~ 7 x 10™* ohm-cm) and that grown for 15 minutes reveals the

lowest resistivity (~ 5.5 x 10 ohm-cm). As the GZO thin films grown at longer time,
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the thickness will increase. It will contribute to more Ga dopant concentration after

the post-annealed GZO for thicker GZO thin films.
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Figure 3. The resistivity of post-annealed GZO thin films under different (a) Ga flux rate and

(b) deposition times.

Conclusion

GZO thin films are grown by an MOCVD technique under different deposition
conditions. Then, some of the samples are annealed for 2 minutes under N,
environment. X-ray patterns does not reveal any corporation of Ga in the GZO
structures. Moreover, x-ray measurement does not show any change in the
crystallinities GZO thin films after post-annealing. All the as-grown and post
annealed samples show a relatively high transmittivity (over 90 %), which is
important in optoelectronic technology. In terms of resistivity, post-annealed samples
with higher initial Ga flow rate show higher resistivities, but overall resistivity is still
quite low (~ 5.5 to 7.3) x 10™ ohm-cm.
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