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摘   要 

 

  本次出國前往參加於首爾所舉辦的第八屆國際智能資訊處理會議，其會議舉辦主要目

的為網羅世界各國鑽研此領域的學者交換其所得之知識與經驗，並分享和交流新型技術。

此會議舉辦的時間為 102 年 4 月 1 日至 4 月 3 日為期三天，所探討的主題涵蓋資訊管

理與應用、智慧系統之理論與應用、機器學習、圖像辨識、電腦視覺應用與自然語音和

語言處理等多重領域，而我所研究的主題偏重於語音處理，投稿至此會議的論文為提出

使用知名小波轉換法(wavelet transform)降低辨識環境因雜訊干擾所造成的不匹配情形，

進而提升語音辨識系統的精確率。本大會以資訊處理為主軸方向，安排 1 個主題演講與

26 個場次分別就不同主題以口頭報告的方式呈現全球各卓越研究者最近之相關研究成

果，同時陳列資訊處理領域具代表性的研究成果，除了提供研究人員相互交流的平臺，

也給予了未來方法走向。經由參加此會議，了解各國頂尖學術研究與技術人員的資訊處

理趨勢，對於未來研究題材的選取頗具參考之價值，同時也提升自我國際觀與外語能

力。 
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一、 目的 

  『科技始終來自於人性』造就了世界日新月異的發展與開發，其中資訊處理的開發也

不斷地蓬勃發展，到現今相關研究學者仍努力研發新型態技術。此領域囊括影像、電腦

視覺、類神經網路、模糊系統、圖像辨識、自然語音和語言處理與資訊處理與應用等多

元主題，而此國際會議提供一個訊息交流的場所，對於資訊處理相關課題的基本層面與

進階發展為主要開發方向，達到經驗分享及相互交流之目的並致力開發嶄新技術；同時，

此會議的使命也在於透過此平臺定期所討論的議題挑戰不同層面的研究。藉由參加此類

型會議，不但能與世界各國創新研究接軌，也可吸收其研究經驗與交換彼此心得，經由

發表論文提升國際能見度，對於未來研究的延伸或期刊的投稿有其莫大的幫助。， 
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二、 參與會議之過程 

  『第八屆國際智能資訊處理研討會』在 2013 年 4 月 1 日至 4 月 3 日於南韓首爾舉行，

由混合資訊創新研究所(AICIT)所主辦。其主要任務為提供傳遞最新資訊之媒介，透過各

國不同領域的學者相互知識與創新思維的交流，進階來開發新型應用技術，其會議安排

二場主題演講與 26 個場次的主題報告，內容豐富並且多元，本人很榮幸能參與此會議

並發表其論文。 

  本會議因屬國際型會議，參與人員從世界各國前來，舉辦地點位於奧林匹克花園酒店。

會議第一天下午舉行開幕式並隨後進行主題演講，由學者 Dongsoo HAN 主講

「Crowdsourcing Radio Map Construction for Wi-Fi Positioning Systems」，其主題有關於利

用 Wi-Fi 定位系統(WPS)架構於室內的定位系統；談到定位，不外乎目前最知名的全球

衛星定位系統(GPS)，應用層面廣泛，相對本身也有其缺點，容易受到地形與建築物之

影響，如在室內使用，受到多重路徑或是訊號干擾的效應，所接收到之信號衰減相當嚴

重。其報告內容主要針對上述現象提出有效率演算法，降低偵測所導致的誤判問題，提

高定位的正確性，並且整合兩者系統達到無障礙系統的理念。目前語音辨識課題也相對

應遇到類似的問題，如何在不同語言差異或實際環境影響之下提升辨識效能，這也是現

今最嚴峻的課題之一。 

  在 Keynote Speech 演講後，接續為 4 個場次共為 34 個主題報告，其涵蓋範圍包含晶

片設計、自動控制等，其中印象較深刻為使用獨立成份分析(ICA)理論應用在膚色偵測上，

論文題目為「ICA based Skin Pigmentation Detection」。ICA 演算法發展近數十年頭，應用

於訊號處理、影像處理與語音處理方面上都有極佳的效果，而此篇論文運用此方式辨別

膚色的像素數值，進而分門別類偵測各個膚色的種類，對於醫學上具有相當的應用價

值。 

  第二天早上安排 20 個場次共 51 個主題報告，而本人論文排定於第二場次第三位，

論文內容(詳見於第三節)是針對生活環境因雜訊干擾造成不匹配導致辨識系統效能下

降的主題研究：現今自動語音辨識系統(ASR)在無雜訊的環境下，能得到相當高的辨識 
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圖 1. 2013 國際智能資訊處理會議報到櫃臺 

     
圖 2. 於 ICIIP 2013 口頭報告會場發表論文之過程 

結果；但實際環境中往往有許多的干擾因子，使得此系統效能下降得非常嚴重。因此，

探究語音之學者發展出一連串的強健性方法，進一步改善辨識系統的效能，同時也能達

到不受外在干擾因素的影響。過程中，主持人也提問如何有效提升語音辨識系統的效能：

這是一個極為嚴峻的課題，同時也是現今語音學者所要達到的目標。語音訊號除了外在

的雜訊干擾外，同時也因各國語言上的腔調或是說話的速度有所影響，如何去補償這些

所帶來的效應，從古至今已提出許多強健性演算法與模型調適法，雖然目前聲學模型在

乾淨的環境下已可到相當高的辨識結果，一旦受到雜訊干擾或是其餘因素就會造成系統

效能的下降，因此要達到此目標還有許多困難需克服。 

  接著，下一位輪到泰國的學者發表「Automatic Retrieval of Particular Oncology 

Documents from PubMed by Semantic-based Text Clustering」有關於提高醫學檢索資料庫

的準確性。檢索意即從大量的資料中精確搜尋使用者所需的資訊，因此快速且易於使用 
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        圖 3. 各國研究人員成果張貼處      圖 4. 口頭報告會場參與會議之人員 

的工具成為發展主軸，作者提出方法經由測試結果可達到 92%準確率。 

  會後，在註冊櫃臺附近擺設不同領域研究成果(如圖 3)，休息之餘觀察各國先進研究

人員目前所探討相關主題，從中也發現同一主題融合不同領域的內容形成創新的思維。

此種研究整合方式是目前我所欠缺的研究能力其中之一，領域本身並無確切分界線且也

無獨立的特性，需拋開自我的成見，多吸收不同領域之知識，累積一定的數量，同時不

斷勇於嘗試，縱使實驗結果異於期望，也不代表是錯誤；相對地，而是要懂得嘗試錯誤，

這是我此行最大的收穫。 

  短暫的休息後，參與關於 VoIP 的議題，其題目為「A Detection Method of Subliminal 

Channel based on VoIP Communication」。VoIP 全名為 Voice over Internet Protocol 是一種

透過網際網路進行電話通訊的技術，應用上包含 Skype 與 Viber 通訊軟體等，最近許多

資訊隱藏也同時用於及時(real time)通訊技術上，此篇論文主要探討透過一演算法將隱

藏後的訊息提高正確解讀的比率，結果顯示正確可提升 50%並且達到即時處理的效果。 

  下午的場次偏重於商業管理的議題，雖然跟本人研究並無太大的相關性，但也可了解

此領域的最新趨勢。第三天安排為會議主持人討論，因並無擔任此職務，故沒有參加此

活動，所以會議三天告一段落。 
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三、 發表論文之內容 

  本人提出小波消噪法(wavelet de-noising)用於語音特徵序列上，來提升其強健性，進

一步改善語音辨識系統的效能。方法流程上，先分別對每一維語音特徵時間序列做統計

值正規化處理，如平均值與變異數正規化法(mean and variance normalization, MVN)或增

益正規化法(cepstral gain normalization, CGN)，緊接著運用小波消噪法做後續處理。在國

際通用的語料庫(Aurora-2)實驗結果上得出，上述方法可顯著提升雜訊環境下語音辨識

精確度約 20%的相對改善率。以下就動機、方法與實驗結果分述如下： 

1. 動機 

    現今語音辨識系統裡，常因環境的各種干擾因素，如雜訊與通道干擾等，使其接收

到的語音產生嚴重失真，進而明顯降低其辨識能力，因此，許多相關學者致力於發展改

善上述問題之強健性語音辨識技術。這些方法中，有一大類是著重於對於語音特徵其時

間序列統計值的正規化處理，如平均值與變異數正規化法或增益正規化法等。另外，離

散小波轉換(discrete wavelet transform, DWT)是近年來在數位信號處理領域上的新型技

術，相對於傳統的離散傅立葉轉換(discrete Fourier transform, DFT)而言，DWT 可以呈現

訊號在頻譜以外的資訊，例如時頻域變化特性。許多基於 DWT 的訊號分析或處理技術

也日益增多，例如各類的小波消噪(wavelet de-noising)技術。 

   在一般的小波消噪演算法中，假設是雜訊干擾集中在訊號的中高頻成分，因此只對

於中高頻率區域做消噪處理，但當我們初步將小波消噪演算法使用於時域上的語音訊號

時，發現其對語音辨識的提升度並不如預期理想，此原因在於，語音訊號受雜訊干擾的

情形未必符合小波消噪之前提假設，亦即雜訊未必主要對時域上的語音之中的高頻成分

產生干擾。 

   根據以上的觀察，在本論文中，我們提出了一個語音強健性的方法，主要步驟是將

小波消噪法作用於經統計正規化後的語音特徵時間序列上，發現此時小波消噪法即可帶

來明顯的語音辨識率提升。 
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2. 方法流程 

主要流程架構如圖 5 所示： 

 

圖 5. 小波消噪法流程 

   對語音特徵序列{ }x né ùê úë û 執行 1L - 階的離散小波轉換，得到L段由低頻（近似成分）

到高頻（細節成分）的子訊號，在此，以{ }1
x né ùê úë û 、{ }2

x né ùê úë û ,…, { }L
x né ùê úë û 表示之。保留最

低頻的子訊號{ }1
x né ùê úë û 不動，而更新其他子訊號，更新的方式主要分為兩種： 

a. 硬式門檻(hard thresholding)決策法： 

             ( )  if ,
,

0      elsewhereh

y n y n
x n T y n

r
r

ì é ù é ùï ³ï ê ú ê úï ë û ë ûé ù é ù= = íê ú ê úë û ë û ïïïî

 

 

                    (1) 

若x né ùê úë û

其強度在某個門檻值r以上，則視其為較不受干擾的訊號點而保留原值，反之，

則將其值設為 0。 

b. 軟式門檻(soft thresholding)決策法： 

       ( ) ( )( )sgn  if ,
,

0                             elsewhereh

y n y n y n
x n T y n

r r
r

ìï é ù é ù é ù- ³ï ê ú ê ú ê úï ë û ë û ë ûé ù é ù= = íê ú ê úë û ë û ïïïî

  

 



             (2) 

若x né ùê úë û

其強度在某個門檻值r以上，則將其強度扣除此門檻值，反之，則將其值設為 0。 

最後，將將最低頻的原始子訊號 { }1
x né ùê úë û 結合其他更新後較高子頻帶 { }2

x né ùê úë û ,…, 

{ }L
x né ùê úë û ，使用 1L - 階反離散小波轉換(inverse DWT)，得到新語音特徵序列{ }x né ùê úë û 。 
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3. 實驗結果 

所採用語音資料庫為歐洲電信標準協會(European Telecommunication Standard 

Institute, ETSI)所發行之語料庫 AURORA 2.0，其測試語料包含三個集合，Sets A 與 B 為加

成性雜訊環境，Set C 則同時包含加成性雜訊與摺積性雜訊。原始語音特徵為 39 維（13

維 MFCC 加上其一階與二階差分值）。聲學模型為隱藏式馬可夫模型(hidden Markov 

models, HMM)，以 HTK 軟體訓練而得。 

表 1 所提出的方法與特徵正規化結合所得之辨識率 

Method Set A Set B Set C Avg RR 
MFCC 71.89 68.24 77.57 71.57 — 
MVN 85.05 85.62 85.70 85.41 48.68 

WD with MVN 88.29 89.07 88.62 88.67 60.15 
HEQ 86.91 88.32 87.50 87.59 56.36 
MVA 88.12 88.81 88.50 88.47 59.46 
TSN 89.42 90.03 89.03 89.59 63.37 
CGN 87.64 88.55 87.73 88.02 57.87 

WD with CGN 89.81 90.75 89.89 90.20 65.54 

從表 1 可知當小波消噪法（WD）與 MVN 或 CGN 結合時，相對於單一正規化法而言，

前述之三種子頻帶組合之消噪處理，幾乎都可使辨識率更佳，對 MVN 而言，WD 帶來

的進步率最高 3.32%，而對 CGN 而言，WD 帶來的進步率最高為 2.18%。我們同時可看

出，WD 的加入可使整體辨識率超過 90%，相對於原始 MFCC 而言，有高達約 19%的進

步。另外，從功率頻譜密度(PSD)的角度上觀察 

 

                    (a)                                   (b) 
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                  (c)                                     (d) 

圖 6. 經由(a)MVN (b)CGN (c)WD with MVN (d)WD with CGN 處理所得之功率頻譜密度圖 

圖 6(a)、圖 6(b)顯示 MVN 與 CGN 處理之特徵序列做小波門檻消噪法後的調變頻譜強度

圖，將這兩圖與圖 6(c)、圖 6(d)相較，可看出中高頻以上的失真可明顯被降低，代表雜

訊效應進一步被消弭。 
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四、 心得 

  由於南韓是第一次前往的國家，之前透過報章雜誌或是電視傳播有些許印象，但參與

會議後，經過短期的語言與文化交流，也有了新的認識與感受。很榮幸能從眾多投稿文

件中脫穎而出，進一步發表目前的研究成果，過程裡吸收到不同領域研究員的先進知識

與經驗，從而開拓自我的研究觀與國際觀，此行對我而言給予了對於研究不同的見解與

認知。 

  在會議兩天中，觀察不同國家最近的研究成果，每個主題所提出創新的思考方式，增

添日後我所要研究的方法走向，之前思考模式都只是前往單一方向，未往整體發展為主

軸；因先用俯觀的方式找尋所要探討的主題，延伸出的思維也不會容易被侷限住，相對

於方法也就會多樣化，較不易陷入思想泥沼裡。 

  在英文口頭發表過程裡，深刻體會到外語能力對於國際會議的重要性，無論是應答或

是基本對話。雖之前已參加過幾次，但掌握度並不熟練且也不流暢；這部分無法一蹴可

幾，需持之以恆每天練習。每次參加此類型會議回來，都對於自我的語文能力深刻反省，

期許自己有朝一日能達成目標。 

  綜合以上所述，此韓國會議行，在發表過程或是探討研究成果上收穫良多，期望自己

把握每次出國發表的機會，因為不論在國際觀或是語文能力都有顯著的提升，同時也可

以反觀自我的研究方向，是否具備宏觀與微觀。最後，希望國家機關能摒除學術城鄉的

差距鼓勵支持研究生多積極參與研討會，不僅可提升國際競爭力也可增加自我的研究價

值。 
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五、 建議 

  對於這次參與國際會議之經驗，有以下建議提供參考： 

1. 多增加補助出國經費的管道。 

就目前的出國經費的補助，以博士班而言分別可向教育部與國科會申請。這兩者如

申請審核未通過，等同於是博士生需自費前往，對於此種情況而言，出國發表論文

對報告者來說無非是一種負擔，機票加旅館住宿費用亞洲國家動輒 2 萬左右，歐美

國家更是需要 4 萬以上。如可增加申請管道，可鼓勵研究生出國參與國際會議，增

加國際觀與自我的英文能力，無非可提升研究者之自我成長能力。 

 

2. 視情況增加補助的額度 

以申請經驗來說，通常補助的額度為機票的部分費用，但有時的情況是旅館費用都

可能花上萬塊錢，譬如歐美國家。如能依照情況補助機票加旅館的部分費用，這對

於研究生而言是一種莫大的幫助。 
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ABSTRACT 
In this paper, we propose to employ the wavelet de-noising (WD) 
techniques in temporal-domain feature sequences for enhancing 
the noise robustness in order to improve the accuracy of noisy 
speech recognition. In the proposed method, the temporal domain 
feature sequence is first processed by some specific statistic 
normalization scheme, such as mean and variance normalization 
(MVN) and cepstral gain normalization (CGN), and then dealt 
with the wavelet de-noising algorithm. With this process, we find 
that the wavelet de-noising procedure can effectively reduce the 
middle and high modulation frequency distortion remaining in the 
statistics-normalized speech features. On the Aurora-2 digit 
database and task, experimental results show that the above 
process can significantly improve the accuracy of speech 
recognition under noise environments. The pairing of WD and 
CMVN/CGN provides about 20% relative error reduction 
associated with the MFCC baseline, outperforms the individual 
CMVN/CGN, and makes the overall recognition rate beyond 90%. 

Categories and Subject Descriptors 
I.2.7 [Artificial Intelligence]: Natural Language Processing –
Speech recognition and synthesis.  

General Terms 
Languages, Human Factors, Experimentation 

Keywords 
wavelet transform, speech recognition, noise robustness 

1. INTRODUCTION 
The current automatic speech recognition systems perform well 
when tested on data similar to those used for training. However, 
the lack of robustness of recognition systems seems to be a 
serious obstacle in noisy environments to practical speech 
recognition. As a result, a lot of methods have been proposed to 

improve the robustness of speech recognition systems, and one 
category of them is to compensate speech features to make them 
less distorted by noise. The Mel-Frequency Cepstral Coefficients 
(MFCCs) are a popular speech feature type due to their low 
correlation and their ability to arrive at a compact and 
computationally efficient representation of a speech signal. 
However, MFCCs are not very noise-robust, and thus most 
approaches of this category are designed for MFCCs in order to 
improve the noise robustness while retain their inherent merits. 
One direction of this category of methods is to normalize the 
statistics of MFCC temporal streams in both training and testing 
conditions. These feature statistics normalization techniques 
include cepstral mean subtraction (CMS) [1], mean and variance 
normalization (MVN) [2], cepstral gain normalization (CGN) [3] 
and histogram equalization (HEQ) [4]. In these feature statistics 
normalization methods, the MFCCs in the temporal sequence are 
often viewed as the samples of a random variable, and thus the 
required statistical information of this random variable is 
estimated directly via these samples. 

Conventional signal analysis primarily relies on the technique 
of Fourier transform. However, wavelet transform gets more 
popular primarily due to some of its particular properties that 
Fourier transform lacks. The main difference is that wavelet 
transform considers both the time and frequency aspects of a 
signal while the standard Fourier transform takes cares of the 
frequency parts only. The short-time Fourier transform (STFT) is 
somewhat similar to the wavelet transform since it is also time- 
and frequency-localized, but it has the issues with the 
frequency/time resolution trade-off. In contrast, wavelet transform 
often gives a better signal representation in multi-resolution 
analysis with balanced resolution at any time and frequency [5]. 

Many de-noising algorithms [6,7] have been developed through 
wavelet transform, and present very good results in alleviating 
noise. However, our preliminary experimental results reveal that 
the performance of the wavelet denoising (WD) algorithms in 
dealing with noisy speech signals is sensitive to parameter 
settings. One possible explanation is, when performing these WD 
algorithms to reduce the middle/high-frequency noise components, 
the speech components in the same frequency ranges are impaired 
and/or weakened at the same time.  

In this paper, we present a novel application for the WD 
algorithms. They are performed on the temporal domain of speech 
features rather than the time domain of speech signals. We use the 
WD algorithms to remove or reduce the middle/high "modulation 
frequency" distortions of speech features. Our experimental 
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results indicate that such a use of the WD algorithms effectively 
improves the noise-robustness of speech features and brings 
significant accuracy promotion. Compared to the conventional 
application in the time domain, using WD algorithms in the 
temporal domain does not distort the speech portions very much 
because the primary speech information for recognition is located 
in the low-modulation frequency region (about below 15 Hz) [8]. 
This is a probable reason of the success for WD algorithms in 
processing temporal feature streams. Furthermore, when applying 
in the temporal domain, the performance of the WD algorithms is 
relatively insensitive to the values of tuning parameters, implying 
that these WD algorithms are robust, and there is no need to set 
the parameters in WD meticulously in order to obtain the nearly 
optimal performance. 
The remainder of the paper is organized as follows: Section 2 
gives brief discussions of DWT and wavelet denoising algorithms. 
The novel WD method operating in temporal feature stream is 
presented in Section 3. Section 4 contains experimental results 
and discussions about the presented WD. Finally, in Section 5 we 
give conclusions and future works. 

2. DWT AND WAVELET DENOISING 
Relative to discrete Fourier transform (DFT), DWT can show the 
additional information of a signal in the spectrum, such as the 
properties in a short-time range. The number of DWT-related 
signal analysis technology is also increasing, For example, a lot of 
research about wavelet threshold de-noising has been proposed 
[6,7]. In the following section, we briefly review the discrete 
wavelet transform (DWT) and the concept of the wavelet 
threshold de-noising method. 

 

2.1 Discrete wavelet transform (DWT) 
Mathematically, the DWT of a signal [ ]f n  is the outcome of 

passing [ ]f n  through a series of filters. The resulting signals 

represent different frequency components of [ ]f n . First, the 

signal [ ]f n  is passed through two filters (called analysis filters) 

with impulse responses [ ]g n  and [ ]h n  in parallel to obtain two 

signals. The two filters are low-pass and high-pass, respectively, 
and are related to each other by 

[ ] ( 1) [ 1 ]ng n g N n= - - - ,                           (1) 

where N is the filter length, and eq. (1) shows [ ]g n  and [ ]h n  are 

a quadrature mirror filter. Since half the frequencies of the signal 
[ ]f n  have now been removed in the output signals of two filters, 

we can discard half the points according to Nyquist’s rule. The 
filter outputs are then down-sampled by 2: 

[ ] [ ] [2 ]
low

k

f n f k g n k= -å ,                                (2) 

and 

[ ] [ ] [2 ]
high

k

f n f k h n k= -å .                                (3) 

Compared with the original signal [ ]f n , the two sub-band signals 

[ ]
low
f n  and [ ]

high
f n  are halved in time resolution but doubled in 

frequency resolution. Besides, [ ]
low
f n  and [ ]

high
f n  are called the 

approximation and detail parts of [ ]f n , respectively.  

The standard form of an L-level DWT of [ ]f n  is to perform the 

one-level DWT as shown in Figure 1 on the approximate (low-
frequency) part obtained from the (L-1)-level DWT of [ ]f n , 

where 1L > . In the multi-level DWT, the decomposition (low-
pass and high-pass filtering together with down-sampling) is 
repeated to further increase the frequency resolution. The 
resulting sub-band signals reveal a different time-frequency 
localization.  

f [n]
g[n]

h[n]

22

22

flow[n]

fhigh[n]
 

Figure 1. a one-level discrete wavelet transform (DWT) 
 

On the contrary, we can reconstruct the original signal from 
summing up the up-sampling sub-band signals through the 
reconstruction high-pass and low-pass filters. The process is 
called the inverse discrete wavelet transform (IDWT). The one-
level IDWT, which is the inverse process of the DWT shown in 

Figure1, is depicted in Figure 2. The two sub-band signals [ ]
low
f n  

and [ ]
high
f n  are first up-sampled by 2 and then passed through the 

low-pass and high-pass synthesis filters. Note that in IDWT the 
two synthesis filters are with impulse responses [ ]g n-  and 

[ ]h n- , respectively, which are related to the analysis filters with 

equal magnitude and reversed phase in frequency response. It is 
easy to obtain the L-level IDWT by extending the one-level 
IDWT structure. 
 

g[-n]

h[-n]

22

f [n]
22

flow[n]

fhigh[n]
 

Figure 2. a one-level inverse discrete wavelet transform 
(IDWT) 

 

2.2  Wavelet threshold de-noising 
 

Among many DWT-based methods in handling noise, the 
algorithm of "wavelet threshold de-noising" (WD) is widely used 
due to its high effective performance in reducing noise and its 
various parameters which can be tuned to cope with different 
noise conditions. The basic idea of WD is to use the de-
correlation characteristic of the output signals from the DWT, 
which helps to separate clean signals and noise. DWT enables the 
signal energy to be concentrated at some larger wavelet 
coefficients while makes the noise energy distribute throughout 
the wavelet domain. As a result, the signal amplitude of the 
wavelet coefficients are greater than the noise amplitude, and the 
thresholding method is adopted to retain the signal coefficient and 
to attenuate. 

The WD algorithm presented in [7] can be summarized as follows: 
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Let [ ]x n  represent a clean signal with a finite length L and [ ]y n  

stand for the signal corrupted by additive white Gaussian noise 

[ ]d n  with a variance 2s . We have             

[ ] [ ] [ ]y n x n d n= + .                                         (4) 

Performing DWT on [ ]y n , we have  

[ ] [ ] [ ]y n x n d n= +   ,                                     (5) 

where [ ]y n , [ ]x n  and [ ]d n  represent the th  sub-band DWT 

coefficients of [ ]y n , [ ]x n  and  [ ]d n , respectively. 

Then, based on the wavelet threshold de-noising algorithm in [ref], 

the estimated clean signal of [ ]x n  in wavelet domain, denoted as 

[ ]x n , has two expressions as follows according to different 

threholding strategies: 

 hard-thresholding: 

 
[ ]   if [ ]

[ ] ( [ ], )
0   elsewhereh

y n y n
x n T y n

q
q

ìï ³ïï= = íïïïî

 
  ,                 (6) 

and                        

 soft-thresholding: 

[ ] ( [ ], )

sgn( [ ])( [ ] )   if [ ]

0                             elsewhere

s
x n T y n

y n y n y n

q

q q

=
ìï - ³ïï= íïïïî

 

  



,                (7) 

where q  is a threshold. That is, if the coefficient magnitude is 
less than the specified threshold vale, it is identified as noise and 
we specify the new coefficient to be zero. On the other hand, if 
the coefficient magnitude is greater than or equal to the threshold 
q , then it is identified as a signal coefficient and the new 
coefficient is set to be the original coefficient as eq. (6) or the 
original coefficient minus the threshold as eq. (7).  

For the threshold q , several selection rules are suggested in [7]: 

  the "rigrsure" rule: It is based on Stein's unbiased risk 
estimation (SURE) [9]. The risk for a particular threshold value 
q  is estimated.  The q  that minimizes the risk is then the used 
threshold. 
 the "sqtwolog" rule: It uses a fixed-form threshold that yield 

the minimax performance multiplied by a small factor 

proportional to log( )L , where L  is the length of [ ]y n . 

 the "heursure" rule: It stands for heuristic SURE and is a 
mixture of the above two rules. If the signal-to-noise ratio 
(SNR) is low within this sub-band, it uses a fixed threshold 
(following the "sqtwolog" rule), otherwise the threshold from 
the "rigrsure" is used. 

The notations "rigrsure", "sqtwolog" and "heursure" are from the 
naming of the argument for the MATLAB function "thselect" 
[10].  

All the above threshold selection rules are related to the noise 
variance. In [10], three alternatives to determine the noise 
variance are provided: 

 "one": the noise is assumed to follow a standard Gaussian 
distribution, and thus the variance is set to one. 

 "sln": A common value, which is the estimated noise variance 

of the first sub-band signal 
1
[ ]y n , is used for every sub-band. 

 "mln": The noise variance for each sub-band is estimated and 
then applied to the associated sub-band. 

Again, here the three notations "one", "sln" and "mln" are from 
the naming of the argument for the MATLAB function "wden" 
[10].   

3. WAVELET THRESHOLD DENOISING 
FOR NORMALIZED SPEECH FEATURES 
Here, we present a novel application of wavelet de-noising 
techniques, which perform in temporal-domain feature sequences 
to enhance the noise robustness. In the proposed scheme, the 
original MFCC features are first compensated by either of two 
normalization methods, mean and variance normalization (MVN) 
[2] and cepstral gain normalization (CGN) [3], and then processed 
by  wavelet de-noising (WD). The pairing of MVN/CGN and WD 
helps to further enhance the noise robustness compared with the 
individual component method. In the following sub-sections, we 
describe the ideas and detailed structures of the presented novel 
scheme, followed by some preliminary performance 
demonstrations. 

 

3.1 Basic ideas 
In most wavelet de-noising (WD) algorithms, it is assumed that 
the noise interference primarily concentrates in the relatively high 
frequency components of signals. Based on this assumption, these 
algorithms deal with the detail parts (high frequency portions) and 
leave the approximation parts (low frequency portions) 
unchanged. However, when speech signals are first updated by 
either of these WD algorithms and then undergo the training and 
testing processes for speech recognition, the various parameters 
(for example, the level of DWT, the selecting threshold, and the 
hard/soft thresholding strategy) in the WD algorithm usually 
require a careful and heuristic tuning in order to achieve better 
recognition accuracy. In other words, the effect of WD in 
improving recognition performance is quite sensitive to the used 
parameters. This is very probably due to two reasons: 

1. The noise and/or interference existing in the speech utterance is 
not always high-pass in spectrum, which somewhat contradicts 
the assumption of many WD algorithms.  

2. Some important speech information with median/high 
frequencies is eliminated or undermined by WD algorithms if the 
parameters in WD are not well defined. Roughly speaking, the 
lower bound of the sampling rate for speech signals in recognition 
is around 8 kHz, implying the speech information helpful in 
recognition is within the range [0, 4 kHz]. Inappropriately dealing 
with the high frequency components, which contain a wealth of 
recognition information, may damage the speech signal and result 
in low recognition accuracy. 

In contrast to the time-domain speech signals, the temporal-
domain speech feature streams reveal a significant band-limited 
characteristic. A lot of research has confirmed that a temporal 
feature stream corresponding to a clean speech utterance 
possesses most of its energy and useful information for 
recognition in low modulation frequency. More precise speaking, 
[8] has shown that most of the useful linguistic information is in 
the modulation frequency components between 1 Hz and 16 Hz, 
with the dominant component at around 4 Hz. From this 
viewpoint, the WD algorithms are appropriate to process the 
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temporal speech stream in order to alleviate the high modulation 
frequency distortion without damaging the speech contents that 
are mainly located in low modulation frequencies. 

The feature normalization techniques like MVN and CGN can 
enhance the noise robustness and bring higher recognition 
accuracy relative to the baseline MFCC features. However, some 
of these algorithms can be further improved by inspecting the 
possible inferior effects they cause or the residual distortion they 
care less. For example, [11] shows that MVN often results in a 
relatively “flat” modulation spectrum, which can be adjusted with 
an ARMA filter to emphasize the low (modulation) frequency 
portion as in the proposed algorithm. The technique of TSN 
enhances MVN by designing an utterance-based temporal filter.  

Figures 3(a), (b) and (c) shows the averaged power spectral 
density (PSD) curves for the unprocessed, MVN- and CGN-
processed MFCC c1 streams for a set of 1001 utterances at three 
signal-to-noise ratios (SNRs) in The Aurora-2 database [12]. 
Noise results in significant PSD distortion in the original MFCC 
stream, as shown in Figure 3(a). However, Figures 3(b) and 3(c) 
reveal that both MVN and CGN reduce the PSD mismatch 
especially at low modulation frequencies (roughly below 5 Hz), 
while the distortion at higher frequency components still remains.  

 
(a) 

 
  (b)                                             (c) 

Figure 3: the averaged PSD curves of feature streams at three 
SNRs, clean, 10 dB and 0 dB, corresponding to the MFCC c1 
features (a) unchanged (b) processed by MVN (c) processed 
by CGN 

 

Inspired by the above observations, in this thesis we propose to 
conduct the WD algorithm on the MVN- or CGN-processed 
temporal feature streams with the hope to improve the noise 
robustness further. It is expected that WD helps to reduce the high 
modulation frequency distortions left behind by MVN/CGN to 
further alleviate the mismatch caused by noise, and thereby to 
promote the recognition accuracy. We also hope that, in the 
proposed scheme the WD algorithms performing in the temporal 
domain of speech features do not require meticulous parameter 
settings to present good results. 

3.2 Proposed method 
We consider the mel-scaled filter-bank cepstral coefficients 

(MFCC) for speech recognition. Let ( )[ ]mx n  be the thm cepstral 

coefficient of the thn frame of an utterance. As a result, we have 
M feature streams: 

{ }( )[ ];0 1 ,       0 1mx n n N m M£ £ - £ £ -  

where M is the number of cepstral coefficients within a frame and 
N is the number of frames in the utterance. For the sake of 

compact notation, we omit the superscript “(m)” in ( )[ ]mx n  in the 

discussions hereafter, unless otherwise mentioned. 

First, the original feature stream { [ ]}x n  of each utterance in both 

the training and testing sets is processed by either MVN [2] and 
CGN [3] to produce new streams, denoted as [ ]x n . Next, we 

operate the wavelet denoising algorithm on the stream { [ ]}x n : 

Step I:  Split the stream { [ ]}x n  by DWT. 

The stream { [ ]}x n  is decomposed into L sub-streams 

{ [ ];1 }x n L£ £   by performing an ( 1)L- -level discrete 

wavelet transform (DWT). Given that the frame rate of [ ]x n  is 

s
F  in Hz, [ ]x n  is thus within the modulation spectral band 

[0, 2  Hz]
s
F , and the band range of the th  sub-stream 

{ [ ]}x n can be approximately represented as 

1

2 1

1 1

1
[0, ( )],           if 1

22
2 2

[ ( ), ( )],  if 2, 3,..,
2 22 2

s
L

l l
s s

L L

F

F F
L

-

- -

- -

ìïï =ïïïíïï =ïïïî




 .                           (8) 

Step II: perform the thresholding operation on the sub-stream 

{ [ ]}x n  

 For the sub-stream { [ ]}x n  to be updated, the resulting new sub-

steam is either soft thresholding: 

ˆ [ ] ( [ ], )

( [ ])( [ ] ),  if [ ]

0,                          if [ ]

s
x n T x n

sgn x n x n x n

x n

q

q q

q

=
ìï - ³ïï= íï <ïïî

 

  





  


,                       (9) 

or hard thresholding: 

 
[ ],  if [ ]

ˆ [ ] ( [ ], )
0,      if [ ]h

x n x n
x n T x n

x n

q
q

q

ìï ³ïï= = íï <ïïî

 
 



 



,                (10) 

where q  is the threshold, and Ts in eq. (9) and Th in eq. (10) 
correspond to the soft- thresholding and hard-thresholding 
strategy, respectively. According to Section II, the threshold q  
has three selections. 

Step III:  Use IDWT to obtain the final new stream 

The final new feature stream is obtained by performing an (L-1)-
level inverse DWT (IDWT) on the set of L sub-streams, including 
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the new sub-streams ˆ{ [ ]}x n  from Step II and the other unaltered 

sub-streams. 

3.3 Preliminary performance analysis 
We give an initial evaluation on the proposed method that 
performs WD on MVN/CGN-processed features in terms of the 
effect of reducing the PSD distortion as in Figures 4(a)(b). The 
parameter settings for the WD algorithm here is as follows: 

1. 2-level discrete wavelet transform  
2. A soft threholding strategy 
3. The "heursure" (heuristic Stein's unbiased risk) threshold 

selection rule. 
4. The "mln" (multi-rescaling with level-dependent estimation) 

mode of noise variance estimation 
Comparing Figures 4(a)(b) with Figures 3(b)(c), the PSD 
mismatch roughly above 10 Hz for MVN/CGN-processed c1 
streams is apparently lowered by WD, partially supporting our 
statement that WD helps to deal with the residual distortion left 
behind by MVN/CGN. However, Figures 4(a)(b) show that in the 
range around the frequency of 25 Hz, the PSD mismatch gets 
relatively large, indicating WD may not deal with the distortions 
dwelled in the “border regions” of the sub-bands very well. 

 

   
               (a)                                                           (b) 

Figure 4. the PSD curves of feature streams at three SNRs, 
clean, 10 dB and 0 dB, corresponding to the MFCCs (a) 
processed by MVN and then WD (b) processed by CGN and 
then WD 

 

4. EXPERIMENTAL RESULTS AND 
DISCUSSIONS 
Our recognition experiments use the AURORA 2.0 continuous-
digit string database, which was published by European 
Telecommunication Standard Institute (ETSI) [12]. The contents 
of each string contain 11 digits: zero, one, two, three, four, five, 
six, seven, eight, nine and oh, and all the strings are uttered by 
American adult males and females. For evaluating the impact of 
noise on speech, additive noise and channel effects are used to 
corrupt the clean utterances. Eight types of additive noise are used, 
which are recorded in the environments of subway, babble, car, 
exhibition, restaurant, street, airport and train station, respectively. 
The noise is added to each clean speech signal at seven different 
signal-to-noise ratio (SNR) levels: clean, 20 dB, 15 dB, 10 dB, 5 
dB, 0 dB and -5 dB. As for the channel distortion, either of the 
two impulse responses, G712 and MIRS, is convolved with each 
clean speech signal. 

For the baseline experiments for the "clean-condition training 
task" defined in Aurora 2 database, each utterance in the clean 

training and noisy testing sets is converted to a sequence of 39-
dimensional feature vectors, each consisting of 13 MFCC (c1-c12, 
c0) and their first- and second-order derivatives. We operate 
either MVN or CGN first, and then the presented WD on these 
baseline features. With the features in the training set, we perform 
acoustic model training with the Hidden Markov Model Tool kit 
(HTK) [13]. The resulting acoustic models include 11 digit 
models (zero, one, two, three, four, five, six, seven, eight, nine 
and oh) and a silence model. Each digit model contains 16 states 
and 20 Gaussian mixtures per state. 

The settings for the WD algorithm are as follows: 

1. A 3-level discrete wavelet transform (DWT) is applied on 
the feature stream, resulting four octave sub-band streams 
with the ranges approximately [0, 6.25 Hz], [6.25 Hz, 12.5 
Hz], [12.5 Hz, 25 Hz] and [25 Hz, 50 Hz]. 

2. The two higher sub-band streams (above 12.5 Hz) are 
processed by thresholding, while the two lower sub-band 
streams (below 12.5 Hz) are kept unchanged. 

3. The wavelet function type is Daubechies 2 (db2). 
4. The soft thresholding function with a heuristic SURE 

threshold value is selected. 
The experimental results shown in this section are the outcome of 
the above parameter settings. We will vary these parameters and 
present the corresponding results in section V. 

Tables 1 give the recognition accuracy rates for WD performing 
on the MVN/CGN-processed MFCC features, respectively. For 
comparison, the achieved accuracy rates for MVN and CGN, 
together with some other well-known methods, HEQ [4], MVA 
[11] and TSN [14], are listed in this table. From this table, we 
have some findings below: 

1.  Compared with the MFCC baseline, all the methods listed here 
improve the recognition accuracy by more than 13%, 
corresponding to a high relative error rate reduction of around 
50%. 

2. Compared with MVN alone, the pairing of WD and MVN gives 
better recognition accuracy rates for all the three Sets. Similar 
to the case of MVN, integrating WD and CGN achieves higher 
recognition performance than CGN alone. The overall averaged 
recognition accuracy is around 90%.  

3.  The three methods, HEQ, MVA and TSN, provide MVN with 
further accuracy promotion. TSN behaves the best, followed by 
MVA and then HEQ. The presented WD for MVN features 
performs better than HEQ and MVA and worse than TSN. 

4.  The WD for CGN features gives the optimal recognition 
accuracy among all the methods shown here. It outperforms 
TSN by 0.61% in averaged recognition accuracy. In summary,  
the presented WD for MVN and CGN features has similar 
effectiveness as the popular methods, HEQ, MVA and TSN. 

 
Therefore, these results confirm the success of performing WD on 
MVN/CGN-processed features and support our proposal that WD 
helps alleviate the median and high (modulation) frequency 
distortions left behind by MVN and CGN.  
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 Set A Set B Set C Avg RR 

MFCC baseline 71.89 68.24 77.57 71.57 - 

MVN 85.05 85.62 85.70 85.41 48.68

WD with MVN 88.29 89.07 88.62 88.67 60.15

HEQ 86.91 88.32 87.50 87.59 56.36

MVA 88.12 88.81 88.50 88.47 59.46

TSN 89.42 90.03 89.03 89.59 63.37

CGN 87.64 88.55 87.73 88.02 57.87

WD with CGN 89.81 90.75 89.89 90.20 65.54

Table 1. The recognition accuracy rates (%) achieved by 
different methods. RR (%) stands for the relative error rate 
reduction. 

5. CONCLUSIONS AND FUTURE WORKS 
In this paper, we propose to apply the wavelet threshold denoising 
(WD) algorithm on the MVN and CGN features in order to 
improve noise robustness. The resulting recognition accuracy 
rates are significantly promoted relative to those achieved by 
MVN and CGN features. In future works, we will investigate if 
the presented approach can benefit the recognition in a large 
vocabulary task. Besides, we will perform WD on the feature 
streams processed by other normalization methods, such as 
higher-order cepstral moment normalization (HOCMN) [15] and 
cepstral shape normalization (CSN) [16], to see if the noise 
robustness can be further enhanced. 
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