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ABSTRACT

In this paper, we propose to employ the wavelet de-noising (WD)
techniques in temporal-domain feature sequences for enhancing
the noise robustness in order to improve the accuracy of noisy
speech recognition. In the proposed method, the temporal domain
feature sequence is first processed by some specific statistic
normalization scheme, such as mean and variance normalization
(MVN) and cepstral gain normalization (CGN), and then dealt
with the wavelet de-noising algorithm. With this process, we find
that the wavelet de-noising procedure can effectively reduce the
middle and high modulation frequency distortion remaining in the
statistics-normalized speech features. On the Aurora-2 digit
database and task, experimental results show that the above
process can significantly improve the accuracy of speech
recognition under noise environments. The pairing of WD and
CMVN/CGN provides about 20% relative error reduction
associated with the MFCC baseline, outperforms the individual

CMVN/CGN, and makes the overall recognition rate beyond 90%.

Categories and Subject Descriptors
1.2.7 [Artificial Intelligence]: Natural Language Processing —
Speech recognition and synthesis.

General Terms
Languages, Human Factors, Experimentation

Keywords

wavelet transform, speech recognition, noise robustness

1. INTRODUCTION

The current automatic speech recognition systems perform well
when tested on data similar to those used for training. However,
the lack of robustness of recognition systems seems to be a
serious obstacle in noisy environments to practical speech
recognition. As a result, a lot of methods have been proposed to
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improve the robustness of speech recognition systems, and one
category of them is to compensate speech features to make them
less distorted by noise. The Mel-Frequency Cepstral Coefficients
(MFCCs) are a popular speech feature type due to their low
correlation and their ability to arrive at a compact and
computationally efficient representation of a speech signal.
However, MFCCs are not very noise-robust, and thus most
approaches of this category are designed for MFCCs in order to
improve the noise robustness while retain their inherent merits.
One direction of this category of methods is to normalize the
statistics of MFCC temporal streams in both training and testing
conditions. These feature statistics normalization techniques
include cepstral mean subtraction (CMS) [1], mean and variance
normalization (MVN) [2], cepstral gain normalization (CGN) [3]
and histogram equalization (HEQ) [4]. In these feature statistics
normalization methods, the MFCCs in the temporal sequence are
often viewed as the samples of a random variable, and thus the
required statistical information of this random variable is
estimated directly via these samples.

Conventional signal analysis primarily relies on the technique
of Fourier transform. However, wavelet transform gets more
popular primarily due to some of its particular properties that
Fourier transform lacks. The main difference is that wavelet
transform considers both the time and frequency aspects of a
signal while the standard Fourier transform takes cares of the
frequency parts only. The short-time Fourier transform (STFT) is
somewhat similar to the wavelet transform since it is also time-
and frequency-localized, but it has the issues with the
frequency/time resolution trade-off. In contrast, wavelet transform
often gives a better signal representation in multi-resolution
analysis with balanced resolution at any time and frequency [5].

Many de-noising algorithms [6,7] have been developed through
wavelet transform, and present very good results in alleviating
noise. However, our preliminary experimental results reveal that
the performance of the wavelet denoising (WD) algorithms in
dealing with noisy speech signals is sensitive to parameter
settings. One possible explanation is, when performing these WD
algorithms to reduce the middle/high-frequency noise components,
the speech components in the same frequency ranges are impaired
and/or weakened at the same time.

In this paper, we present a novel application for the WD
algorithms. They are performed on the temporal domain of speech
features rather than the time domain of speech signals. We use the
WD algorithms to remove or reduce the middle/high "modulation
frequency" distortions of speech features. Our experimental



results indicate that such a use of the WD algorithms effectively
improves the noise-robustness of speech features and brings
significant accuracy promotion. Compared to the conventional
application in the time domain, using WD algorithms in the
temporal domain does not distort the speech portions very much
because the primary speech information for recognition is located
in the low-modulation frequency region (about below 15 Hz) [8].
This is a probable reason of the success for WD algorithms in
processing temporal feature streams. Furthermore, when applying
in the temporal domain, the performance of the WD algorithms is
relatively insensitive to the values of tuning parameters, implying
that these WD algorithms are robust, and there is no need to set
the parameters in WD meticulously in order to obtain the nearly
optimal performance.

The remainder of the paper is organized as follows: Section 2

gives brief discussions of DWT and wavelet denoising algorithms.

The novel WD method operating in temporal feature stream is
presented in Section 3. Section 4 contains experimental results
and discussions about the presented WD. Finally, in Section 5 we
give conclusions and future works.

2. DWT AND WAVELET DENOISING
Relative to discrete Fourier transform (DFT), DWT can show the
additional information of a signal in the spectrum, such as the
properties in a short-time range. The number of DWT-related
signal analysis technology is also increasing, For example, a lot of
research about wavelet threshold de-noising has been proposed
[6,7]. In the following section, we briefly review the discrete
wavelet transform (DWT) and the concept of the wavelet
threshold de-noising method.

2.1 Discrete wavelet transform (DWT)
Mathematically, the DWT of a signal f[n] is the outcome of

passing f[n] through a series of filters. The resulting signals
First, the
signal f[n] is passed through two filters (called analysis filters)

represent different frequency components of f[n] .

with impulse responses g[n] and h[n] in parallel to obtain two

signals. The two filters are low-pass and high-pass, respectively,
and are related to each other by

gln] = (=1)"g[N =1—n], ©)

where N is the filter length, and eq. (1) shows g[n] and h[n] are
a quadrature mirror filter. Since half the frequencies of the signal
f[n] have now been removed in the output signals of two filters,

we can discard half the points according to Nyquist’s rule. The
filter outputs are then down-sampled by 2:

Foulnl = flklg[2n — k], @)
and

Fopln] = flkJp[2n — k]. @3)

Compared with the original signal f[n], the two sub-band signals

fouln] and . [n] are halved in time resolution but doubled in
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frequency resolution. Besides, f, [n] and f, [n] are called the

approximation and detail parts of f[n], respectively.
The standard form of an L-level DWT of f[n] is to perform the

one-level DWT as shown in Figure 1 on the approximate (low-
frequency) part obtained from the (L-1)-level DWT of f[n],
where L > 1. In the multi-level DWT, the decomposition (low-
pass and high-pass filtering together with down-sampling) is
repeated to further increase the frequency resolution. The
resulting sub-band signals reveal a different time-frequency
localization.

flow[n]
bj high[n]

Figure 1. a one-level discrete wavelet transform (DWT)

fn

On the contrary, we can reconstruct the original signal from
summing up the up-sampling sub-band signals through the
reconstruction high-pass and low-pass filters. The process is
called the inverse discrete wavelet transform (IDWT). The one-
level IDWT, which is the inverse process of the DWT shown in

Figurel, is depicted in Figure 2. The two sub-band signals flow[n}

and fm [n] are first up-sampled by 2 and then passed through the

low-pass and high-pass synthesis filters. Note that in IDWT the
two synthesis filters are with impulse responses g[—n| and
h[—n], respectively, which are related to the analysis filters with

equal magnitude and reversed phase in frequency response. It is
easy to obtain the L-level IDWT by extending the one-level
gl-n]

IDWT structure.
Frowlr] —( : >
O %ﬁ fn]
i high[n] hl-n]
Figure 2. a one-level inverse discrete wavelet transform

(IDWT)

2.2 Wavelet threshold de-noising

Among many DWT-based methods in handling noise, the
algorithm of "wavelet threshold de-noising™ (WD) is widely used
due to its high effective performance in reducing noise and its
various parameters which can be tuned to cope with different
noise conditions. The basic idea of WD is to use the de-
correlation characteristic of the output signals from the DWT,
which helps to separate clean signals and noise. DWT enables the
signal energy to be concentrated at some larger wavelet
coefficients while makes the noise energy distribute throughout
the wavelet domain. As a result, the signal amplitude of the
wavelet coefficients are greater than the noise amplitude, and the
thresholding method is adopted to retain the signal coefficient and
to attenuate.

The WD algorithm presented in [7] can be summarized as follows:



Let z[n] represent a clean signal with a finite length L and y[n]
stand for the signal corrupted by additive white Gaussian noise
d[n] with a variance 0. We have

yln] = aln] + dln]. “)
Performing DWT on y[n], we have
y[n] = z,[n]+d,[n], ©)

where y,[n], z,[n] and d,[n] represent the (" sub-band DWT
coefficients of y[n], z[n] and d[n], respectively.

Then, based on the wavelet threshold de-noising algorithm in [ref],
the estimated clean signal of x,[n] in wavelet domain, denoted as

7,[n], has two expressions as follows according to different
threholding strategies:
® hard-thresholding:

i y,[n] if |y,[n] >0
x[[n] = Th(y[[n]’@ = ‘ ([()} elslw[h(j!“e ’ ©
and
® soft-thresholding:
& ,[n] = T (y,[n],0)
(7

elsewhere

_ ksgn(|y([n}|><|y([n]| —0) if [y,[n] > 0,
0

where 6 is a threshold. That is, if the coefficient magnitude is
less than the specified threshold vale, it is identified as noise and
we specify the new coefficient to be zero. On the other hand, if
the coefficient magnitude is greater than or equal to the threshold
6 , then it is identified as a signal coefficient and the new
coefficient is set to be the original coefficient as eq. (6) or the
original coefficient minus the threshold as eq. (7).

For the threshold 6 , several selection rules are suggested in [7]:

® the "rigrsure” rule: It is based on Stein's unbiased risk
estimation (SURE) [9]. The risk for a particular threshold value
0 is estimated. The # that minimizes the risk is then the used
threshold.

® the "sqtwolog” rule: It uses a fixed-form threshold that yield
the minimax performance multiplied by a small factor

proportional to log(L, ) , where L, is the length of y,[n].

® the "heursure” rule: It stands for heuristic SURE and is a
mixture of the above two rules. If the signal-to-noise ratio
(SNR) is low within this sub-band, it uses a fixed threshold
(following the "sgtwolog" rule), otherwise the threshold from
the "rigrsure™ is used.

The notations "rigrsure”, "sqtwolog" and "heursure" are from the

naming of the argument for the MATLAB function "thselect"

[10].
All the above threshold selection rules are related to the noise

variance. In [10], three alternatives to determine the noise
variance are provided:

® "one": the noise is assumed to follow a standard Gaussian
distribution, and thus the variance is set to one.
® "sIn": A common value, which is the estimated noise variance
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of the first sub-band signal y,[n] , is used for every sub-band.

® "mIn": The noise variance for each sub-band is estimated and
then applied to the associated sub-band.

Again, here the three notations "one", "sIn" and "mIn" are from

the naming of the argument for the MATLAB function "wden"

[10].

3. WAVELET THRESHOLD DENOISING
FOR NORMALIZED SPEECH FEATURES

Here, we present a novel application of wavelet de-noising
techniques, which perform in temporal-domain feature sequences
to enhance the noise robustness. In the proposed scheme, the
original MFCC features are first compensated by either of two
normalization methods, mean and variance normalization (MVN)
[2] and cepstral gain normalization (CGN) [3], and then processed
by wavelet de-noising (WD). The pairing of MVN/CGN and WD
helps to further enhance the noise robustness compared with the
individual component method. In the following sub-sections, we
describe the ideas and detailed structures of the presented novel
scheme, followed by some preliminary performance
demonstrations.

3.1 Basic ideas

In most wavelet de-noising (WD) algorithms, it is assumed that
the noise interference primarily concentrates in the relatively high
frequency components of signals. Based on this assumption, these
algorithms deal with the detail parts (high frequency portions) and
leave the approximation parts (low frequency portions)
unchanged. However, when speech signals are first updated by
either of these WD algorithms and then undergo the training and
testing processes for speech recognition, the various parameters
(for example, the level of DWT, the selecting threshold, and the
hard/soft thresholding strategy) in the WD algorithm usually
require a careful and heuristic tuning in order to achieve better
recognition accuracy. In other words, the effect of WD in
improving recognition performance is quite sensitive to the used
parameters. This is very probably due to two reasons:

1. The noise and/or interference existing in the speech utterance is
not always high-pass in spectrum, which somewhat contradicts
the assumption of many WD algorithms.

2. Some important speech information with median/high
frequencies is eliminated or undermined by WD algorithms if the
parameters in WD are not well defined. Roughly speaking, the
lower bound of the sampling rate for speech signals in recognition
is around 8 kHz, implying the speech information helpful in
recognition is within the range [0, 4 kHz]. Inappropriately dealing
with the high frequency components, which contain a wealth of
recognition information, may damage the speech signal and result
in low recognition accuracy.

In contrast to the time-domain speech signals, the temporal-
domain speech feature streams reveal a significant band-limited
characteristic. A lot of research has confirmed that a temporal
feature stream corresponding to a clean speech utterance
possesses most of its energy and useful information for
recognition in low modulation frequency. More precise speaking,
[8] has shown that most of the useful linguistic information is in
the modulation frequency components between 1 Hz and 16 Hz,
with the dominant component at around 4 Hz. From this
viewpoint, the WD algorithms are appropriate to process the



temporal speech stream in order to alleviate the high modulation
frequency distortion without damaging the speech contents that
are mainly located in low modulation frequencies.

The feature normalization techniques like MVN and CGN can
enhance the noise robustness and bring higher recognition
accuracy relative to the baseline MFCC features. However, some
of these algorithms can be further improved by inspecting the
possible inferior effects they cause or the residual distortion they
care less. For example, [11] shows that MVN often results in a
relatively “flat” modulation spectrum, which can be adjusted with
an ARMA filter to emphasize the low (modulation) frequency
portion as in the proposed algorithm. The technique of TSN
enhances MVN by designing an utterance-based temporal filter.

Figures 3(a), (b) and (c) shows the averaged power spectral
density (PSD) curves for the unprocessed, MVN- and CGN-
processed MFCC c1 streams for a set of 1001 utterances at three
signal-to-noise ratios (SNRs) in The Aurora-2 database [12].
Noise results in significant PSD distortion in the original MFCC
stream, as shown in Figure 3(a). However, Figures 3(b) and 3(c)
reveal that both MVN and CGN reduce the PSD mismatch
especially at low modulation frequencies (roughly below 5 Hz),
while the distortion at higher frequency components still remains.
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Figure 3: the averaged PSD curves of feature streams at three
SNRs, clean, 10 dB and 0 dB, corresponding to the MFCC cl
features (a) unchanged (b) processed by MVN (c) processed
by CGN

Inspired by the above observations, in this thesis we propose to
conduct the WD algorithm on the MVN- or CGN-processed
temporal feature streams with the hope to improve the noise
robustness further. It is expected that WD helps to reduce the high
modulation frequency distortions left behind by MVN/CGN to
further alleviate the mismatch caused by noise, and thereby to
promote the recognition accuracy. We also hope that, in the
proposed scheme the WD algorithms performing in the temporal
domain of speech features do not require meticulous parameter
settings to present good results.
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3.2 Proposed method

We consider the mel-scaled filter-bank cepstral coefficients
(MFCC) for speech recognition. Let z™'[n] be the m™ cepstral

coefficient of the n™”

M feature streams:

{a;“”)[n];o <n< Nfl}7

frame of an utterance. As a result, we have

0<m<M-1

where M is the number of cepstral coefficients within a frame and
N is the number of frames in the utterance. For the sake of
compact notation, we omit the superscript “(m)” in z'"’[n] in the
discussions hereafter, unless otherwise mentioned.

First, the original feature stream {z[n]} of each utterance in both
the training and testing sets is processed by either MVN [2] and
CGN [3] to produce new streams, denoted as Z[n]. Next, we
operate the wavelet denoising algorithm on the stream {Z[n]} :
Step I: Split the stream {Z[n]|} by DWT.

The stream {Z[n]} s into L sub-streams

{z,[n];1 <€ < L} by performing an (L —1) -level discrete

decomposed

wavelet transform (DWT). Given that the frame rate of Z[n]| is
F in Hz, i[n] is thus within the modulation spectral band

[O,F;/Q Hz] , and the band range of the (" sub-stream

{Z,[n]} can be approximately represented as

F
[0, (=], ifo=1
2,2 ®
2172 F‘s 2]71 —F; ) .
[2L71 ?)’2L71 (?)], leZQ,g,..,L

Step 11: perform the thresholding operation on the sub-stream
{z,[n]}
For the sub-stream {Z,[n]} to be updated, the resulting new sub-

steam is either soft thresholding:

:i“/[n] = Ts(jz[n]ﬁ)

_ |son@ )z n] - 0). if [z, [n]] >0, ©
0, if |7,[n] <

or hard thresholding:

o BEOREA0 Y

where 6 is the threshold, and T, in eq. (9) and Ty in eq. (10)
correspond to the soft- thresholding and hard-thresholding
strategy, respectively. According to Section II, the threshold 6
has three selections.

Step I11: Use IDWT to obtain the final new stream

The final new feature stream is obtained by performing an (L-1)-
level inverse DWT (IDWT) on the set of L sub-streams, including



the new sub-streams {,[n]} from Step Il and the other unaltered
sub-streams.

3.3 Preliminary performance analysis

We give an initial evaluation on the proposed method that
performs WD on MVN/CGN-processed features in terms of the
effect of reducing the PSD distortion as in Figures 4(a)(b). The
parameter settings for the WD algorithm here is as follows:

1. 2-level discrete wavelet transform
2. Asoft threholding strategy
3. The "heursure" (heuristic Stein's unbiased risk) threshold
selection rule.
4.  The "mIn" (multi-rescaling with level-dependent estimation)
mode of noise variance estimation
Comparing Figures 4(a)(b) with Figures 3(b)(c), the PSD
mismatch roughly above 10 Hz for MVN/CGN-processed cl
streams is apparently lowered by WD, partially supporting our
statement that WD helps to deal with the residual distortion left
behind by MVN/CGN. However, Figures 4(a)(b) show that in the
range around the frequency of 25 Hz, the PSD mismatch gets
relatively large, indicating WD may not deal with the distortions
dwelled in the “border regions” of the sub-bands very well.
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Figure 4. the PSD curves of feature streams at three SNRs,
clean, 10 dB and 0 dB, corresponding to the MFCCs (a)
processed by MVN and then WD (b) processed by CGN and
then WD

4. EXPERIMENTAL
DISCUSSIONS

Our recognition experiments use the AURORA 2.0 continuous-
digit string database, which was published by European
Telecommunication Standard Institute (ETSI) [12]. The contents
of each string contain 11 digits: zero, one, two, three, four, five,
six, seven, eight, nine and oh, and all the strings are uttered by
American adult males and females. For evaluating the impact of
noise on speech, additive noise and channel effects are used to
corrupt the clean utterances. Eight types of additive noise are used,
which are recorded in the environments of subway, babble, car,
exhibition, restaurant, street, airport and train station, respectively.
The noise is added to each clean speech signal at seven different
signal-to-noise ratio (SNR) levels: clean, 20 dB, 15 dB, 10 dB, 5
dB, 0 dB and -5 dB. As for the channel distortion, either of the
two impulse responses, G712 and MIRS, is convolved with each
clean speech signal.

RESULTS AND

For the baseline experiments for the "“clean-condition training
task" defined in Aurora 2 database, each utterance in the clean
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training and noisy testing sets is converted to a sequence of 39-
dimensional feature vectors, each consisting of 13 MFCC (c1-c12,
c0) and their first- and second-order derivatives. We operate
either MVVN or CGN first, and then the presented WD on these
baseline features. With the features in the training set, we perform
acoustic model training with the Hidden Markov Model Tool kit
(HTK) [13]. The resulting acoustic models include 11 digit
models (zero, one, two, three, four, five, six, seven, eight, nine
and oh) and a silence model. Each digit model contains 16 states
and 20 Gaussian mixtures per state.

The settings for the WD algorithm are as follows:

1. A 3-level discrete wavelet transform (DWT) is applied on
the feature stream, resulting four octave sub-band streams
with the ranges approximately [0, 6.25 Hz], [6.25 Hz, 12.5
Hz], [12.5 Hz, 25 Hz] and [25 Hz, 50 Hz].

The two higher sub-band streams (above 12.5 Hz) are
processed by thresholding, while the two lower sub-band
streams (below 12.5 Hz) are kept unchanged.

The wavelet function type is Daubechies 2 (db2).

The soft thresholding function with a heuristic SURE
threshold value is selected.

The experimental results shown in this section are the outcome of

the above parameter settings. We will vary these parameters and

present the corresponding results in section V.

Tables 1 give the recognition accuracy rates for WD performing
on the MVN/CGN-processed MFCC features, respectively. For
comparison, the achieved accuracy rates for MVN and CGN,
together with some other well-known methods, HEQ [4], MVA
[11] and TSN [14], are listed in this table. From this table, we
have some findings below:

1. Compared with the MFCC baseline, all the methods listed here
improve the recognition accuracy by more than 13%,
corresponding to a high relative error rate reduction of around
50%.

2.Compared with MVN alone, the pairing of WD and MVN gives
better recognition accuracy rates for all the three Sets. Similar
to the case of MVN, integrating WD and CGN achieves higher
recognition performance than CGN alone. The overall averaged
recognition accuracy is around 90%.

3. The three methods, HEQ, MVA and TSN, provide MVN with
further accuracy promotion. TSN behaves the best, followed by
MVA and then HEQ. The presented WD for MVN features
performs better than HEQ and MVA and worse than TSN.

4. The WD for CGN features gives the optimal recognition
accuracy among all the methods shown here. It outperforms
TSN by 0.61% in averaged recognition accuracy. In summary,
the presented WD for MVN and CGN features has similar
effectiveness as the popular methods, HEQ, MVA and TSN.

Therefore, these results confirm the success of performing WD on
MVN/CGN-processed features and support our proposal that WD
helps alleviate the median and high (modulation) frequency
distortions left behind by MVN and CGN.



SetA | SetB | SetC Avg RR
MFCC baseline | 71.89 | 68.24 | 77.57 | 7157 -
MVN 85.05 | 85.62 | 85.70 | 85.41 | 48.68
WD with MVN | 88.29 | 89.07 | 88.62 | 88.67 | 60.15
HEQ 86.91 | 88.32 | 87.50 | 87.59 | 56.36
MVA 88.12 | 88.81 | 88.50 | 88.47 | 59.46
TSN 89.42 | 90.03 | 89.03 | 89.59 | 63.37
CGN 87.64 | 88,55 | 87.73 | 88.02 | 57.87
WD with CGN | 89.81 | 90.75 | 89.89 | 90.20 | 65.54

Table 1. The recognition accuracy rates (%) achieved by
different methods. RR (%) stands for the relative error rate
reduction.

5. CONCLUSIONS AND FUTURE WORKS
In this paper, we propose to apply the wavelet threshold denoising
(WD) algorithm on the MVN and CGN features in order to
improve noise robustness. The resulting recognition accuracy
rates are significantly promoted relative to those achieved by
MVN and CGN features. In future works, we will investigate if
the presented approach can benefit the recognition in a large
vocabulary task. Besides, we will perform WD on the feature
streams processed by other normalization methods, such as
higher-order cepstral moment normalization (HOCMN) [15] and
cepstral shape normalization (CSN) [16], to see if the noise
robustness can be further enhanced.
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