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三、 受訓班次名稱(中英文)： 
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七、 受訓重要內容： 

本次受訓主要在海軍工程研究院進修電子戰系統工程碩

士，主要修習相關雷達微波課程為主，受訓期間並取得電子戰
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工程證書，課程內容涵蓋天線傳導(EC3600)、電磁波傳導

(EC3630)及電子戰網路(EC3700)，因本人對於此次受訓課程有

極大興趣，故在空閒時間另加選修電機工程碩士，原主修電子

戰系統工程碩士主在微波應用，而輔修電機工程碩士主在理論

探討，藉由理論探討及應用，更能深入了解細部原理架構。 

微波傳遞之基本應用為無線傳輸，可運用於手機充電、微

型無人載具(Micro Air Vehicle)電力傳輸及太陽能衛星供電 

(Solar Power Satellite)等，因目前能量轉換效率不甚理想，

僅能提供近距離電力傳輸，故本人論文即著重於無線電力傳輸

效率研究，論文題目為無人飛行載具無線電力傳輸設計及發展 

(Design and Development of Wireless Power Transmission 

for Unmanned Air Vehicles)，論文原文將檢附於附件，無線

電力傳輸主要是藉由整流天線將微波能量轉換成直流電源，當

中效率決定於主要元件整流天線，故海軍研究院於 1999 年至

2011 年間陸續開發整流天線模組，並積極提升電力轉換效率。 

論文內容主在優化整流天線能量轉換效率及硬體驗證，利

用 Agilent Advanced Design System (ADS)作電路優化使電路

達成阻抗匹配，相關電路及微帶線參數結果如圖一。 



3 
 

 

圖一、整流天線電路 

硬體及天線設計主要用 Computer Simulation Technology 

Microwave Studio (CST)軟體，該軟體可設計微波電路及模擬

天線電磁波行進，透過軟體模擬可找出最佳化硬體輸出，硬體

架構如圖二。 

 

圖二、全波整流天線硬體 

比較軟體模擬及硬體測試結果發現結果並不相符，由硬體
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測試結果發現轉換效率較軟體模擬低而操作頻率亦從10 GHz降

到 8.5 GHz，探究原因應為計算轉換效率時均使用理想狀態，

而實際場景有許多損耗須考慮，以至於獲得較低之轉換效率；

另外天線阻抗亦是主要原因之一，不同頻率會有不同天線阻抗，

且 ADS 軟體無法考慮天線阻抗變化，所以在不同頻率時會造成

電路轉換效率產生巨大變化；其次為偶極天線與整流器匹配，

即便單獨最佳化天線與整流器，當整合兩個零件時，會造成 S

參數在頻率上的移動，如此一來整體轉換效率亦會跟著變動。 

八、 受訓心得： 

承蒙長官協助得以在海軍研究院進修電子戰工程碩士，本

季畢業生共計有 410 員，其中 9 員為博士生，其餘為碩士生，

當中包含 47 員國際學生；因身處異國，所以在此次進修中遭遇

不少困難，其中有學業上壓力、語言上隔閡等等，即便如此，

來自各國的國際學生卻能互相期勉幫忙，雖然過程是辛苦的，

但最終結果卻讓我所學更多。 

九、 本班次適用性(是否切合本軍或單位需求)： 

本次受訓主要內容著重於電子戰，其中範圍涵蓋電子電路

設計及雷達電磁波傳遞等運用，正可適用於國軍電子戰系統測

試評估；另藉由本班次受訓期間，因與國際軍官交流，並可了
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解電子戰在未來趨勢。 

十、 本班次受訓時間是否適宜： 

海軍研究院碩士班正常受訓時間為期兩年三個月(九學季)，

其中包含兩年主要課程及三個月預備課程，預備課程為學員用

以銜接碩士班專業課程及適應當地生活，故建議爾後參訓人員

能有九學季課程。 

十一、 爾後赴該校受訓人員應注意事項： 

該校附近生活水平較美國平均生活水準高，如依賴一般生

活補助費實不足供給生活所需，故建議受訓人員先行做好財務

規劃。 
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ABSTRACT 

This thesis is an exploration of microwave wireless power transmission (WPT) for micro-

air vehicles (MAVs). WPT, converting radio frequency (rf) power into usable direct 

current (dc) power, can be implemented with a rectifying antenna, or rectenna. The 

emphasis of this thesis is on the simulation of rectenna efficiency and measurement of 

experimental hardware. 

 In this thesis, power reflection in the rectifier matching circuit was investigated by 

a series of simulations using Agilent Advanced Design System (ADS). Tuning elements 

were added and adjusted in order to optimize the efficiency. A maximum efficiency of 

57% was obtained at 10 gigahertz (GHz) with 200 milliwatt (mW) input to the rectenna. 

A full-wave rectenna was built and hardware experiments were conducted to measure the 

efficiency of the WPT and characterize the behavior of the circuit. The design is 

optimized for an input power of 200 mW but, because of hardware limitations, only low-

input power levels (about 1 mW) could be tested. A comparison of measurement and 

simulation results is given, and possible reasons for the differences are discussed. 
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EXECUTIVE SUMMARY 

Wireless power transmission (WPT) refers to energy transmission from one point to 

another without interconnecting wires. WPT can be used in a wide range of applications. 

One of these applications is propulsion for a micro-air vehicle (MAV), which, according 

to the Defense Advanced Research Project Agency (DARPA), is a fully functional 

unmanned aerial vehicle (UAV) no larger than 15 centimeters (cm) in length, width and 

height. The sustenance of flight mainly depends on the fuel capacity that an aircraft or air 

vehicle can carry. To conduct short range, long duration missions more efficiently, WPT 

applications were investigated several years ago. The concepts and technological history 

of WPT are presented in this thesis. The basic idea is to transfer radio frequency (rf) 

energy into direct current (dc) power. A rectifier plus antenna, known as a rectenna, is the 

device used for this function. Several rectenna studies were conducted in the past few 

years at the Naval Postgraduate School (NPS). The most recent studies have concentrated 

on a full-wave rectifier design, and a full-wave rectenna model was chosen because of its 

better output energy response than a half-wave rectifier design. 

In this thesis, the proposed rectenna designed by a previous NPS student was re-

examined. This model is designed for a fundamental frequency of 10 gigahertz (GHz) 

and incorporates a full-wave rectifier using HSMS 8101 Schottky diodes. In simulations, 

it can achieve an efficiency of 66%. The original simulation is based on ideal 

transmission lines without any loss. Some of these imperfections need to be addressed, 

such as power reflection and mismatch within the rectenna circuit. 

Several Agilent Advanced Design System (ADS) simulations were conducted to 

examine the behavior of power reflection and to optimize the existing circuit. In order to 

analyze power reflection, a three-port circulator, which allows a signal to only be 

transmitted in one direction, was added in the simulation circuit as a diagnostic tool. An 

equivalent full-wave rectenna circuit with an unbalanced single-port model was 

developed to connect with the circulator for exploring power reflection within the circuit. 



 xvi 

  Using diode data available from the manufacturer, we optimized a full-wave 

rectenna for input power around 200 mW at 10 GHz with a 50 ohm load. In order to 

optimize the circuit, transmission line parameters were swept to find the maximum output 

power. In addition, all ideal transmission lines were converted to microstrip transmission 

lines using the LineCalc Tool for constructing the rectenna hardware. ADS simulations 

were conducted in both time and frequency domains. Both simulations indicate that about 

20% of the incident power is reflected, which gives a return loss of 7 decibels (dB). The 

maximum efficiency was 54% when the input power was 0.2 W, and the estimated return 

loss was about 7 dB. To verify that the maximum output power occurred at 10 GHz, an 

efficiency response was conducted at different frequencies. At 10 GHz, the maximum 

output power of 0.103 W is obtained when the input power is 0.18 W, resulting in an 

efficiency of 57%. Further investigation demonstrated that, as the input power falls below 

200 mW, the peak of the efficiency curve shifts lower in frequency. 

To validate the simulation results, hardware was built based on Computer 

Simulation Technology (CST) Microswave Studio software. The final dipole antenna 

length was selected as 25 millimeters (mm) in order to obtain a good impedance match. A 

free space measurement was performed in the Microwave laboratory. Due to hardware 

limitations, the rectenna could only be tested with 1 W input to the transmit horn antenna. 

Consequently, the low input power to the rectenna did not allow measurement at the peak 

of the efficiency curve. An efficiency plot versus frequency was given for comparison 

with the simulated plot. The curves have similar shape, however, the maximum 

efficiency has shifted. For low power, both the measurement and simulations based on 

the measurement set up achieve their highest efficiency at a frequency lower than 10 GHz. 

Efficiencies of 55 to 66 percent were predicted for various circuit designs. 

However, with microstrip lines, the maximum output power can be achieved when the 

frequency is 10 GHz with input power of 0.18 W and a conversion efficiency of 57%. 

The measured efficiency curve, while similar in shape, shifted lower in frequency 

because of the low input power. There are several possible reasons for the frequency shift. 

First, the ADS simulation assumes a constant source impedance. Actually, the antenna 

impedance changes with frequency. Any mismatch between the frequency bands of the 
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dipole and rectifier would not show up in the current simulation model. Secondly, the 

diode impedance is also assumed to the constant but is a function of frequency and input 

power level. Finally, an ideal free space link was assumed in calculating the received 

power for the measurement. 

In order to get an accurate measurement of efficiency, higher input power is 

needed, but this cannot be obtained using a free space link with the existing amplifier. 

Among the recommendations is that a full-wave rectenna array and a high directivity 

transmit antenna be used to increase the received power. Also, a test fixture with direct 

power input to the rectifier circuit, that bypasses the dipole and avoids free space loss, 

could be used. 
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I. INTRODUCTION  

A. WIRELESS POWER TRANSMISSION 

Wireless power transmission (WPT) refers to energy transmission from one point 

to another without interconnecting wires. There are many applications for WPT, such as 

wireless power charging for mobile phones, wireless power distribution systems in 

buildings [1] and wireless charging for battery electric vehicles (BEVs) [2]. The range for 

these applications varies widely [3] but can be divided into three main regions: short 

distance, intermediate distance and long distance.  

The principle of WPT is to convert prime direct current (dc) power to radio 

frequency (rf) and then transmit the power by electromagnetic (EM) wave propagation. A 

block diagram of energy transfer is shown in Figure 1. At the receiver, there is a 

rectifying antenna, known as rectenna, which has the ability to convert EM waves back to 

direct current [4].  

 

Figure 1. Wireless power transmission diagram (After [5]). 

 

Propulsion of a micro aerial vehicle (MAV) which, according to the Defense 

Advanced Research Project Agency (DARPA), is a fully functional unmanned aerial 

vehicle (UAV) no larger than 15 centimeters (cm) in length, width and height [6], is also 

an important concept within the military. With microwave power, a MAV would be an 
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ideal way to solve the problems related to limited fuel capacity. This use of WPT 

provides the potential capability of a high payload fraction and allows MAVs to achieve 

their functions, such as communications and surveillance, for a long period of time 

without interruption [7]. A MAV powered by a ship’s radar is illustrated in Figure 2. 

 

Figure 2. MAV powered by a ship’s radar. 

 

For the MAV application, it is desirable to allocate most of the system functions 

to the transmit side and make the receive side as simple and lightweight as possible. 

MAV applications can fall into either the near-field or far-field regions depending on the 

frequency, antenna size, and MAV operating range. The transmit side (base station) must 

efficiently radiate high power in the direction of the MAV. An electrically large antenna 

has the advantages of a narrow beam that can be pointed at the MAV. The antenna gain 

increases with its electrical size /D , where D is the aperture diameter and  is the 

wavelength. 

The full gain is realized in the far-field of the antenna. The conditions defining the 

far-field are illustrated in Figure 3 and given by: 

 ,R   (1.a) 
 ,R D  (1.b) 
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.
DR


  (1.c) 

If R  does not satisfy these conditions, then the gain is less than the maximum. 
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Figure 3. Illustration of the near-field and far-field regions. 

 

Far-field power transmission generally operates in the long distance mode and can 

reach distances up to several decades of kilometers. The Friis equation is used in the far- 

field and shows that the energy transference is proportional to the inverse square of the 

distance. Hence, more power is required to transmit a long distance as compared to a 

short distance. Therefore, it is important to maximize the efficiency of the rectenna when 

transmitting over long distances. 

In this thesis, a full-wave rectenna model based on the research and design by Liu 

[8] was built and tested. Various experiments and simulations were conducted to 

investigate the performance of the rectenna. Further improvements in the rectenna design 

are proposed. 

B. OBJECTIVE 

A full-wave rectifier circuit designed by Liu [8] claimed an output efficiency of 

approximately 65%, which can produce sufficient power so that a prototype MAV 

designed by Tsolis [6] can hover in the air. The purpose of this thesis is to test the 

rectenna hardware based on Liu’s design, evaluate the performance of the rectenna circuit, 

and make changes for optimization of the rectenna system. A simulation of the complete 

system, including the antennas and propagation channel, is desired so that all loss sources 

are considered in the efficiency. 
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C. SCOPE AND ORGANIZATION 

This thesis is divided into six chapters as follows: 

The introduction and definition of WPT and MAVs are given in Chapter I, and 

the objective, scope and organization of the thesis are also presented. 

The early history and recent developments on WPT up to the present time are 

given in Chapter II. References related to applications and the progress of WPT, 

including thesis projects conducted at Naval Postgraduate School (NPS), are also covered 

in this chapter.  

The fundamental analysis of the full-wave rectenna is given in Chapter III. It 

simulates and examines the efficiency based on the circuit designed by Liu using 

Advanced Design System (ADS) 2011 software from Agilent Technology.  

Circuit simulations for both impedance matched and mismatched circuits using 

transient and harmonic balance solvers are simulated in Chapter IV. Transmission line 

optimization is investigated and simulation results are compared with the theoretical 

results. 

The experimental testing is examined in Chapter V. It focuses on the rectenna 

hardware testing and compares the measurement results to the simulation results in the 

previous chapter. 

The findings of this research and experiments are summarized in Chapter VI. 

Conclusions and recommendations for the future work are also presented. 
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II. BACKGROUND 

A. EARLY RESEARCH ON WPT 

Power transmission by radio waves can be traced back to Heinrich Hertz [9] and 

Nikola Tesla [10–12]. In 1899, Tesla was the first to carry out experiments on power 

transmission, building a coil connected to a 200-foot (ft) mast with a 3-ft diameter copper 

ball at its top. Tesla fed 300 kilowatts (kW) into the coil, and the signal radiated out at a 

resonant frequency of 150 kilohertz (kHz). Unfortunately, there was no record showing 

how much energy Tesla received. 

Later, another experiment was conducted by H. V. Noble in the Westinghouse 

Laboratory [13]. This experiment was set up with identical transmitting and receiving 

antennas, which were both half-wave dipoles at frequency of 100-megahertz (MHz), 

separated by a distance of about 25 ft. The outcome was that several hundred watts (W) 

of power were transferred between the two dipoles. 

The Raytheon Company proposed the Raytheon Airborne Microwave Platform 

(RAMP) concept in 1959 [13, 14]. The goal was to show that it was feasible to fly a 

microwave-powered platform at 50,000 ft. The first demonstration of a microwave-

powered helicopter (shown in Figure 4) was performed at the Raytheon Company. It was 

built under a contract with the Rome Air Development Center [7]. The experiment had 

two notable achievements. One was that helicopter flew up to ten hours by capturing the 

energy from the microwave beam and using it for propulsion. Secondly, the helicopter 

could automatically position itself by utilizing the microwave beam as the position 

reference. The rectenna used in this experiment is shown in Figure 5. It consisted of 4480 

IN82G point of contact diodes and had a maximum output power of 270 W. 

After demonstrating the first microwave-powered helicopter with point-contact 

diodes, Hewlett-Packard Associates suggested using silicon Schottky-barrier diodes 

(Type 2900), which have better performance than the point-contact diodes. Tests showed 
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that Schottky-barrier diodes are much more efficient and have the advantage of smaller 

size [13]. From that time on, the Schottky diode became a critical component within the 

rectifier circuit. 

 

Figure 4. Experiment for microwave-powered helicopter (From [7]). 

 

 

Figure 5. First rectenna made for the microwave-powered helicopter (From [13]). 
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B. RECENT AND EXISTING DEVELOPMENT ON WPT 

As WPT technology matured in the late 20th century, a means of exploiting solar 

energy was proposed by Dr. Peter Glaser [15]. Base-load electrical power would be 

provided by using the photovoltaic cell principle and converting the sun’s energy 

collected at a satellite into microwave power. The microwave power is then beamed to 

Earth, where it is converted back into ordinary electrical power [16]. The Space Solar 

Power System (SSPS), shown in Figure 6, consists of a Solar Power Satellite (SPS) and a 

ground power facility. Within the SSPS, the solar cells are used to collect the solar 

energy in space and must be directed toward the sun in order to get the maximum power 

input. With respect to the microwave power transmission process, the antenna must be 

directed toward the Earth, and the ground rectifying antenna would collect the microwave 

beam and convert it to electricity. 

 

Figure 6. Configuration diagram of SSPS (From [17]). 

 

More research was conducted by the National Aeronautics and Space 

Administration (NASA) by sponsoring a study of the SPS through its Lewis Research 
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Center in the 1970s [18]. Under this SPS study, a demonstration experiment of WPT for 

SPS application was conducted in 1975, using a 7.3 meter (m) high by 3.5 m wide matrix 

array, which was separated by a distance 1.54 kilometers (km) at an elevation angle of 7 

degrees from a 26 m parabolic diameter antenna. The outcome showed that 30 kW was 

obtained at a receiver when transmitting 450 kW continuous wave (CW) power at 2.388 

gigahertz (GHz) [19].  

Although NASA had confirmed the feasibility of an SPS, it was concluded that 

the concept was not economical based on the technology of the time [20]. More recently, 

a “Fresh Look” study of the concept was performed by NASA in 1995 [21], which 

checked innovative concepts that differed from previously examined concepts and 

technologies in order to reduce the cost. Several economic analyses were conducted, 

based on market goals and system tradeoffs, relying on existing data. Finally, in 2009, 

Pacific Gas and Electric (PG&E) signed a contract to buy power from an SSPS startup 

company, Solaren Corp., that would begin operating in 2016 [22]. 

Japan has pursued further investigations on SPS and related technologies [23]. 

Two major SPS models are depicted in Figure 7. One of the SPS designs was produced 

by the Japan Aerospace Exploration Agency (JAXA), and the other is a tethered-SPS [24] 

designed jointly by the Japanese Ministry of Economy, Trade and Industry (METI) and 

the Japanese Institute for Unmanned Space Experiment Free Flyer (USEF). 

 

Figure 7. Recent SPS designs in Japan (a) JAXA-SPS (b) USEF-SPS (From [23]). 
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These aforementioned projects are just a few of the many that were conducted up 

to now, but most of the concepts use microwave WPT, rather than laser, due to the fact 

that microwaves produce a higher efficiency at both the transmitter and receiver sides and 

a lower atmospheric attenuation. 

C. PREVIOUS WORK ON RECTENNAS 

W. C. Brown [13] was the first person to introduce the term rectenna (rectifying 

antenna) and developed the first rectenna in 1963. It was built and tested by R. H. George 

at Purdue University and had an efficiency of 50% at an output power of 4 W and an 

efficiency of 40% at an output power of 7 W. It operated at frequency of two to three 

GHz. In the following years, Brown reported a 90% conversion efficiency rectenna using 

platinum gallium arsenide (PtGaAs) Schottky diodes with an input power of 8 W [25] 

and 85% conversion efficiency with thin-film rectenna arrays at 2.45 GHz [26], which 

was subsequently verified [27]. 

In order to achieve a higher output power with a rectenna array, research into 

connecting rectennas in series or parallel configuration was conducted in 1979 using both 

a closed-form analytical circuit model and computer simulation model [28]. Shinohara 

and Matsumoto [29] showed that the sum of the dc output power with an antenna array in 

parallel connection is larger than for a serial connection. 

In 1992, Yoo and Chang [30] presented the efficiency of gallium arsenide (GaAs) 

Schottky diodes (Model DMK6606) in a closed-form equation, which was used for the 

high frequency rectenna analysis, neglecting the higher order harmonics. The conversion 

efficiency achieved was 39% and 60% at frequency 35 GHz and 10 GHz, respectively. 

At 35 GHz, a high-efficiency rectenna array was designed consisting of 1000 

dipole elements using a silicon Schottky diode quad bridge. The efficiency exceeded 80% 

at 5.87 GHz [31]. McSpadden  continued the work and reported an 82% efficiency 

rectenna using silicon Schottky barrier mixer diodes at 5.8 GHz, at an input power of 50 

milliwatts (mW) in 1998 [32]. 

 Within the concept of a dual polarized patch rectenna introduced by McSpadden 

and Chang [33], Suh and Chang [34] designed a dual frequency printed dipole rectenna, 
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operating simultaneously at 2.45 and 5.8 GHz. For operating in dual bands, a GaAs 

Schottky barrier diode has been employed in order to achieve the optimum input 

impedance and load impedance. With such an approach, efficiencies of 84.4% and 82.7% 

were achieved at 2.45 and 5.8 GHz, respectively. 

Since system requirements limit antenna size and weight, fractal antennas were 

investigated by Werner and Ganguly [35] due to their unique properties and compact size. 

This topic was further investigated by Mohammed [36] in 2010, using the Sierpinski 

carpet edge-fed microstrip-patch fractal antenna. The result was that the size of the 

antenna was reduced 27.68% at 2.45 GHz without affecting performance measures such 

as return loss and radiation pattern. 

D. NPS PROJECT 

Students at NPS have been studying WPT for MAV propulsion since 1999. Vitale 

[37] designed a rectifier system to power a remote MAV at frequencies of 1.0 GHz and 

1.3 GHz using a semi-omni-directional antenna with less than 2 W of transmitted power. 

He demonstrated that it is possible to power a remote vehicle through WPT but achieved 

a conversion efficiency of only 33% by using commercial-off-the-shelf (COTS) hardware.  

Tsolis [6] extended Vitale’s work by using a Schottky barrier diode (HSMS 8101) 

due to its high switching capability. A rectenna array consisting of circular patch 

antennas was tested, with 8.2% conversion efficiency for total circuit. The low efficiency 

was due to a mismatch between the antenna frequency and filters employed in the circuit. 

Tan [38] did more research on the rectenna array, proposing a round patch 

antenna instead of a circular patch antenna introduced by Tsolis and a sixth-order pre-

rectification Butterworth filter. The final size of the rectenna designed by Tan was 

reduced by 15% of the previous design. Tan also re-evaluated the use of Schottky diodes 

and projected an efficiency of 60%. 

Toh [39] built a 4 x 4 rectenna array where the efficiency of each single rectenna 

element varied between 26% and 37%. However, the total efficiency did not come out as 

expected, and the output power was insufficient for the MAV motor to hover for an input 

power of 23 decibels per milliwatt (dBm) transmitted by a nearby horn antenna.  
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Liu [8] modeled two different rectenna designs using Agilent ADS software: a 

half-wave rectenna and a full-wave rectenna. A full-wave rectenna without a low-pass 

filter was chosen because of the low weight and had a simulated conversion efficiency of 

66%. He also used a dipole antenna instead of circular patch antenna because the dipole 

antenna is much lighter. Liu recommended that further analysis on antenna array be done 

and a hardware prototype built to verify the efficiency. 

E.  SUMMARY 

In all of the NPS efforts, the efficiencies achieved were low compared to values 

predicted by simulation. As will be seen in later chapters, the optimum circuit design 

depends on the diode impedance match and motor resistance. Both of these are known 

only approximately, and furthermore, they are a function of power level. 

In the next chapter the basic requirements of the rectenna are presented. 
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III. RECTENNA SYSTEM DESIGN 

A. BASIC RECTENNA STRUCTURE 

The rectenna consists of several sub-systems. Typically, it can be separated into 

four main components: antenna, pre-rectification filter, rectifier and post-rectification 

filter. A block diagram of a basic configuration of rectenna diagram is shown in Figure 8. 

A brief description of each block follows. 

 

Figure 8. Generic rectenna system configuration (After [39]). 

1. Antenna 

The antenna is used to collect rf power and transfer the energy to the pre-

rectification filter. There are several kinds of antennas that can be used, such as a dipole, 

dish, horn, etc. The main factors in the antenna design are its gain pattern at the operating 

frequency, size and weight of the antenna, and its return loss. 

2. Pre-rectification Filter 

The pre-rectification filter allows certain frequencies of the incoming rf signal to 

pass through the filter and ensure that the incoming signal is within the desired operating 

band. It also prevents the re-radiation of higher-order harmonics produced by the non-

linear I-V characteristics of the diode. 

3. Rectifier 

The rectifier is perhaps the most important component within the rectenna, 

converting incoming rf power to dc. It usually consists of a diode with a high switching 

speed and high-power handling characteristics. Diode I-V characteristics, operating 
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frequency impedance, forward bias voltage, breakdown voltage, and saturation current 

also need to be taken into consideration while designing the rectifier. 

4. Post-rectification Filter 

The post-rectification filter performs a similar function to the pre-rectification 

filter, allowing the desired frequency signal to the output and preventing the unwanted 

frequencies (harmonics) from appearing in the output voltage. 

B. PREVIOUS DESIGN AND SIMULATION 

Students at NPS have simulated several types of rectennas, such as a circular 

patch rectenna, square patch rectenna, hybrid rectenna, half-wave rectenna and full-wave 

rectenna [8, 38, 39]. Generally, the operating frequency is at 10 GHz. According to the 

diode characteristic measurement in Table 1, the Schottky diode (HSMS8101) has a 

maximum output power at this frequency [39]. Based on this frequency, Liu [8] 

suggested using a full-wave rectenna and simulated a best conversion efficiency of 66%.  

 

Table 1. Measured data for the HSMS8101 diode characteristic (From [39]). 

Frequency 
 

Current (mA) DC Voltage (V) Power (mW) 
9.00 -2.36 -2.01 4.74 
9.10 -2.13 -2.51 5.35 
9.20 -2.78 -1.70 4.73 
9.30 -3.16 -1.38 4.36 
9.40 -3.38 -1.14 3.85 
9.50 -4.65 -1.12 5.21 
9.60 -8.72 -1.15 10.03 
9.70 -13.02 -1.92 25.00 
9.80 -13.85 -2.31 31.99 
9.90 -11.92 -2.85 33.97 

10.00 -11.40 -3.61 41.15 
10.10 -9.81 -3.91 38.36 
10.20 -8.31 -3.83 31.83 
10.30 -7.31 -3.62 26.46 
10.40 -3.81 -2.62 9.98 
10.50 -2.21 -1.54 3.40 
10.60 -1.51 -1.10 1.66 
10.70 -0.81 -0.68 0.55 
10.80 -0.61 -0.38 0.23 
10.90 -0.44 -0.41 0.18 
11.00 -0.36 -0.40 0.14 
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1. Rectifier 

The characteristics of the diode, such as recovery time, forward resistance, reverse 

resistance and barrier capacitance, affect the efficiency of the rectenna. Due to its low 

capacitance, low conversion loss, and fast switching speed, Tsolis [6] decided to use 

Agilent HSMS 8101 Sckottky Barrider diode as the main component for rectification. 

2. Full-wave Dipole Antenna 

In order to reduce the overall weight of the rectenna, a dipole was chosen over 

other antenna types. Liu calculated the efficiency of the full-wave, half-wave and hybrid 

rectennas. Results indicated that the full-wave rectenna shown in Figure 9 can achieve a 

better efficiency than the other two types. The full-wave rectenna consists of two diodes 

and, thus, can get a higher average output dc voltage than the half-wave rectenna. The 

full-wave rectenna has the advantage of using every half-cycle of the input voltage 

instead of every other half-cycle. From Figure 9, we can easily see that the full-wave 

rectifier has a better output energy response than the half-wave rectifier. 

 

Figure 9. Full-wave rectifier output response for a sinusoidal input. 
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3. Rectification Filter 

Liu [8] performed three different simulations: (1) a low-pass filter (LPF) before 

the Sckottkky diode, (2) an LPF after the diode and (3) without a filter. From Figure 10, it 

can be seen that both the efficiency plot of the full-wave rectenna with post-LPF and no-

LPF have similar curves, which are higher than the pre-LPF design. The efficiency of the 

full-wave rectenna without LPF can achieve 66% at an input power of 200 mW (23 dBm).  

 

Figure 10. Full-wave rectenna efficiency plot with different LPF positions (From [8]). 

 

Therefore, Liu concluded that full-wave rectenna with either post-LPF or no LPF 

can have a better performance compared to pre-LPF rectenna. In order to get the 

impedance match of the whole circuit and reduce the weight, Liu added microstrip lines 

into the full-wave rectenna circuit with no LPF. The final design is shown in Figure 11. 
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Figure 11. Full-wave rectenna circuit designed by Liu (From [8]). 

 

To verify Liu’s design, an efficiency test was simulated using ADS 2011 for both 

ideal transmission lines and microstrip transmission lines. The efficiency plots are shown 

in Figure 12 and Figure 13.  

 

Figure 12. Full-wave rectenna efficiency using ideal transmission lines. 
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Figure 13. Full-wave rectenna efficiency using microstrip transmission lines. 

 

The parameters used for the microstrip substrate are shown in Table 2. With the 

ideal transmission line circuit, we get a full-wave rectenna efficiency of 64% as indicated 

in Figure 12; with the microstrip transmission line circuit, we get an efficiency of 66% as 

in Figure 13. The two results are very similar to what Liu claimed in his thesis, which is 

66%. 

Table 2. Parameters using in microstrip substrate simulation. 

Substrate thickness (H) 508 μm 

Dielectric constant ( r ) 1.96 

Relative permeability (  ) 1 

Conductor conductivity 1050 (Siemens/m) 

Cover height 1036 μm 

Conductor thickness 17 μm 

Dielectric loss tangent 0.0012 
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C. SUMMARY 

When designing the rectenna, we need to take several factors, such as weight, 

power supply, impedance match, etc., into consideration. An important part of the design 

is the matching unit, which minimizes power reflection. In this chapter, a full-wave 

rectenna was analyzed, and the operation was simulated using ADS 2011. A 

multiparameter sweep was used to optimize the efficiency, which achieved a maximum 

value of 66%. 

In the next chapter, power reflection and efficiency are simulated, and a rectenna 

simulation using ADS is presented for comparison. 



 20 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 21 

IV. SIMULATION 

In this chapter, several rectenna simulations are investigated in both time and 

frequency domains using Agilent ADS software for electronic circuits, power and 

systems research. Transmission line optimization and efficiency response at different 

frequencies are also computed in the ADS simulations. 

A. BACKGROUND 

Agilent ADS is an electronic circuit simulation software application that can 

model circuits in both the time and frequency domains. In the time domain, both voltage 

and current vary with time at each point throughout the circuit. On the other hand, the 

frequency domain obtains voltage, currents and power as a function of frequency over a 

prescribed bandwidth. Users can select from a complete range of components in libraries 

and construct any desired circuit or system. Users can sweep parameters by simply 

assigning a variable to different quantities, such as input power, frequency, time and so 

on. These sweep plans can provide a complete picture of circuit performance in non-ideal 

cases because ADS includes all higher order effects such as reflections, losses, and 

intermodulation. 

B. SIMULATION 

To begin with, several simple circuits are simulated to examine the ADS outputs 

and compare several approaches to modeling the rectifier circuits. We compare results for 

the transient simulation (time domain) and the harmonic distortion analysis (frequency 

domain). 

1. Balanced vs. Unbalanced Source 

Liu’s simulation [8] used a balanced source that accurately represents the dipole 

antenna as a voltage source. The voltage source’s positive and negative terminals each 

drive a branch of the full-wave rectifier (Figure 11). The voltage source in Figure 14 

represents an unbalanced feeding method. The positive terminal feeds a power splitter 

whose outputs feed a rectifier branch. This model represents the case when the antenna 
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output might be a coaxial cable. The efficiency shown in Figure 15 is essentially the same 

as that shown in Figure 13. Therefore, the two feed models give similar results, as 

expected. The maximum efficiency is at a slightly different input power (shifted to 0.15 

W). 

 

Figure 14. Unbalanced source port rectenna circuit. 

 

Figure 15. Efficiency plot for unbalanced source rectenna. 
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In the following sections, both time and frequency domains are simulated both 

when the impedance is matched and when it is mismatched to examine the power 

reflections in the circuit. Probes are placed at positions throughout the circuit to see the 

reflected power at various points. Circulators are inserted to isolate flow in certain 

directions for comparison with the probes. 

2. Transient Simulations 

A transient simulation is performed entirely in the time domain and is unable to 

explain frequency-dependent behavior. Power, voltage and current measurements are 

instantaneous values. All measurements can be analyzed at different times; however, 

peak values are chosen in order to simplify the calculation. 

A voltage source defines an alternating current (ac) sinusoidal waveform 

generator and is chosen for the time source simulation. Voltage can be expressed as an 

exponentially damped sine wave as follows: 

    Delay DampingPhase
( ) Amplitude sin 2 Frequency Delay

360
t

dcV t V t e     
           

(4.1) 

where dcV  is the initial voltage offset, Amplitude  is the amplitude of the sinusoidal wave, 

Frequency  is the frequency of the sinusoidal wave, Delay  is time delay, Damping  is 

the damping factor, and Phase  is the phase value of the sine wave. To simplify the input 

sinusoidal signal, the initial voltage offset, time delay, damping factor and phase are all 

set to zero. With an amplitude of 10 V and a frequency of 10 GHz, 

  10( ) 10sin 2 10 .V t t   (4.2) 

For transient simulations, an observation start time of 10 nanoseconds (ns) is 

selected to avoid transients. An impedance matched circuit with 50 ohm loads is shown 

in Figure 16. The simulation verifies that there are no reflections when the impedances 

are matched. By changing one of the loads to 100 ohms, power reflection can be 

calculated and compared to simulation results. The mismatched circuit is shown in Figure 

17.  
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Figure 16. Transient simulation for impedance matched circuit. 

 

Figure 17. Transient simulation for impedance mismatched circuit. 
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The simulated power at different points for both impedance matched and 

mismatched circuits are shown in Figure 18 and Figure 19. Probe_1 is the incident input 

power, Probe_2 is the power reflected back to the source, Probe_3 is the power 

transmitted to the power splitter, and Probe_4 and Probe_5 are the powers transmitted to 

the two loads. 

In Figure 18, the curves for Probe_4 and Probe_5, overlap, as do the curves for 

Probe_1 and Probe_3, and the amplitude is half of the input power. As expected, there is 

no power reflection with an impedance matched circuit. However, referring to Figure 19, 

it is evident that powers after the splitter are not equal. This is due to the fact that 

mismatches cause some power to be reflected back to the source. 

 

Figure 18. Simulated power for the matched circuit. 
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Figure 19. Simulated power for the mismatched circuit. 

 

From Figure 18 and Figure 19, it can be seen that at time 10.025 ns, the peak 

values appear. The values are recorded in Table 3 for comparison with calculated results. 

 

Table 3. Peak power results for different loads. 

Probe 
Power measured in 
matched circuit (W) 

Power measured in 
mismatched circuit (W) 

Probe_1 2 2 

Probe_2 0 0.05556 

Probe_3 2 1.94444 

Probe_4 1 0.88889 

Probe_5 1 1 
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Based on [40], the reflection coefficient at a load can be calculated as 

 0

0

L

L

Z Z
Z Z


 


 (4.3) 

where LZ  is load impedance, and 0Z  is line’s characteristic impedance. Thus, the 

reflection coefficient at Terminal 3 for the mismatched circuit equals 1/3. The transmitted 

power can be calculated since it is equal to the average incident power, diminished by a 

multiplicative factor of 
2  as shown in Figure 20. Since 

 
2r i

av avP P   (4.4) 

the transmited power is given by 

  2
1 .t i r i

av av av avP P P P      (4.5) 

Thus, the reflected power is 0.11111 W, while the incident power is 1 W. So the net 

power through Probe_4 is the same value as in Table 3: 0.88889 W. 

 

Figure 20. Power reflection at a terminated transmission line. 

 Since a power splitter can be regarded as a resistive power divider, its scattering 

matrix is [41]: 

  
0 1 1

1
1 0 1 .

2
1 1 0

S
 
 
 
 
  
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Thus, 12S  equals to 1/2, which shows that the reflected power going back to the input 

port is half of the reflected power. A reflected power flow diagram is presented in Figure 

21. The power back to Probe_2 is half of the reflected power in Probe_4: 0.05556 W. 

Probe_3’s power can be calculated by subtracting 0.05556 W from the input power. The 

simulated results all correspond to the theoretical values. 

 

Figure 21. Power flow diagram for the power splitter. 

3. Harmonic Balance Simulation 

Harmonic balance (HB) is a frequency domain analysis for simulating distortion 

in nonlinear circuits. The simulation requires at least one fundamental frequency. In this 

case, 10 GHz is the fundamental frequency, with five orders (harmonics) used in the ADS 

simulation. The advantage of using the HB simulation over conventional transient 

analysis is that HB can calculate the steady-state spectral content of voltages or currents 

in the circuit. Furthermore, power distribution over a range of frequencies can be seen in 

the simulation results. 

Unlike the time source, the frequency source is specified by power, frequency and 

impedance. Power is simply set at the fundamental frequency, and the internal impedance 

is set to 50 ohms in order to match the circuit. The frequency source output waveform is a 

cosine; thus, the initial phase is set to minus 90 degrees in order to get a same signal as 

the transient simulation. The simulation circuits with frequency sources for the different 

impedance loads are shown in Figure 22 and 23. 
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Figure 22. Harmonic balance simulation for the impedance matched circuit. 

 

 

Figure 23. Harmonic balance simulation for the impedance mismatched circuit. 
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The simulated power spectra are presented in Figure 24 and Figure 25. Due to the 

large axis range in Figure 24, several of the stems are not visible, so the values are 

recorded in Table 4. From Table 4, it can be seen that power levels for both Probe_4 and 

Probe_5, and similarly for Probe_1 and Probe_3, have the same amplitude, but the levels 

are not the same in Figure 25. This corresponds to the transient simulation, showing that 

there are some power reflections in the mismatched circuit. 

The difference between the time and frequency simulations is that the power we 

get for HB is an average value, not instantaneous. Therefore, the power results for the 

transient simulation are twice those for the harmonic balance simulation. 

 

Figure 24. Simulated power spectra at five probe locations for the matched circuit. 
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Figure 25. Simulated power spectra at five probe locations for the mismatched circuit. 

 

HB simulated results for matched and mismatched circuits are listed in Table 4. 

 

Table 4. Harmonic balance results for different load circuits at 10 GHz. 

Probe Power measured in 
matched circuit (dBm) 

Power measured in 
mismatched circuit (dBm) 

P_hb1 30  30 

P_hb2 0 14.437 

P_hb3 30 29.878 

P_hb4 26.99 26.478 

P_hb5 26.99 26.99 
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4. Summary 

For the matched circuit, both transient and harmonic balance simulation results 

using the time and frequency sources show that power going back to the circulator is 

negligible compared to the input power. Thus, it can be concluded that there is no power 

reflection when the circuit is perfectly matched. When connecting different impedances, 

such as a 100 ohm load at one terminal, the average power reflected toward the source is 

0.05556 W divided by two, or 14.437 dBm. The simulated results in ADS verify that the 

power reflected corresponds to the theoretical results based on the different loads. 

C. SYSTEM SIMULATION 

Before a comprehensive rectenna system is simulated in ADS, several design 

parameters are investigated to see their impact on overall performance. One is an 

optimization of the transmission lines before and after the diodes (Figure 26). By 

sweeping the length, we observe its effect on the maximum output power and select the 

best length for the transmission lines. System simulations in both the time and frequency 

domains are conducted and compared with theoretical results. 

1. Transmission Line Optimization 

 To find the best electrical length for ideal transmission lines, a fixed input power 

is transmitted and the output power is observed. For a full-wave rectenna, the top 

transmission lines (TL1 and TL3) and lower transmission lines (TL2 and TL4) are 

symmetric. So the electrical length parameters for TL1 and TL2 are changed at the same 

time as shown in Figure 26. They are varied first, and the others remain constant. Then, 

because TL3 and TL4 are symmetric, those two transmission lines are changed at the 

same time.  

 The simulated results are presented in Figure 27 to Figure 29. Probe_1 is the input 

power and Probe_2 is the output power. To achieve the maximum efficiency, maximum 

output power is chosen based on fixed input power. Therefore, the optimized electrical 

lengths are selected based on the maximum output power, illustrated in Figure 27 to 

Figure 29. These lines are modeled as ideal lossless transmission lines. 
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Figure 26. Transmission lines in the post-rectification part of the circuit. 

 

 

Figure 27. Output power when sweeping electrical length for TL1 and TL2. 

Probe_1 

Probe_2 
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Figure 28. Efficiency when sweeping electrical length for TL3 and TL4. 

 

 

Figure 29. Output power when sweeping electrical length for TL5. 
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As the hardware is to be tested using Rogers RT/Duroid 5880LZ high-frequency 

laminate, all the parameters according to [42], such as loss tangent, dielectric constant, 

and copper cladding are used in ADS as a microstrip material database. For a realistic 

condition, all ideal transmission lines need to be converted to microstrip transmission 

lines, so that the simulation can include effects such as losses. 

ADS provides a LineCalc tool that can convert parameters between ideal 

transmission lines and microstrip transmission lines given the microstrip substrate data. 

Transmission line conversion is achieved as shown in Figure 30 by directly importing 

microstrip substrate information to LineCalc through the schematic window. 

 

Figure 30. Transmission line calculator in ADS. 

 

To get the optimized value, fine tuning was done for all transmission lines. With 

the given microstrip material parameters and electrical parameters, the LineCalc tool can 

calculate physical widths and lengths. The corresponding ideal transmission lines and 

microstrip transmission lines are listed in Table 5. 
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Table 5. Parameters for ideal and microstrip transmission lines. 

 Ideal Microstrip 

Transmission 
line 

Impedance 
(Ohm) 

Electrical length 
(deg) 

Physical width 
( m ) 

Physical length 
( m ) 

TL1 50 85 1664.22 5404.95 

TL2 50 85 1664.22 5404.95 

TL3 50 125 1664.22 7948.46 

TL4 50 125 1664.22 7948.46 

TL5 50 95 1664.22 6040.83 

 

2. Transient Simulation 

When replacing all ideal transmission lines with microstrip lines, the simulation 

configuration of the rectifier circuit is shown in Figure 31. 

 

Figure 31. Full-wave rectenna configuration with microstrip lines for the transient 
simulation. 
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It can be seen that the output power at Terminal 3, shown in Figure 32, is 

converted to dc power. Probe_1 is the incident input power, Probe_2 is the power 

reflected back to the source, Probe_3 is the power transmitted towards the rectifier, and 

Probe_4 is the output power. The average value of the output power is about 0.11 W, 

while the input power is 0.2 W. 

 

Figure 32. Output power for the full-wave rectenna circuit, transient simulation. 

 

The efficiency plot is illustrated in Figure 33, indicating that the maximum 

efficiency is 54% when the input power is 0.2 W. For the same input power, the 

maximum efficiency is about 10% lower than Liu claimed in his thesis. This indicates 

that not all power is transmitted to load. There is some power loss within the circuit due 

to microstrip losses and multiple reflections. 
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Figure 33. Efficiency plot for optimized full-wave rectenna. 

 

To analyze power reflection within the circuit, the input power is fixed at 0.2 W, 

where the efficiency is maximum. The average power is calculated at different nodes, and 

the results are listed in Table 6. With the given incident power of 0.202 W and reflected 

power of 0.043 W, the reflection coefficient can be obtained from Equation (4.4). 

Therefore, the reflection coefficient of the rectenna circuit is 0.4614. Since the reflection 

coefficient is known, the full-wave rectenna impedance can be derived by applying 

Equation (4.3), which gives 18.4 ohms. For measuring how well the circuit is matched to 

the load, the return loss (RL) can be found for comparison. A good matched circuit will 

result in high return loss. Based on reference [41], the return loss is expressed as 

 10( ) 20logRL dB     (4.6) 

where   is reflection coefficient. The computed return loss is 6.719 dB. 
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Table 6. Average power at different circuit nodes in the transient simulation. 

Probe Average power (W) 

Probe_1 0.202 

Probe_2 0.043 

Probe_3 0.164 

Probe_4 0.110 

 

3. Harmonic Balance Simulation 

 In order to see the power distribution at different frequencies, a harmonic balance 

simulation was conducted as shown in Figure 34. 

 

Figure 34. Optimized full-wave rectenna simulation configuration in HB. 
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 Power levels before and after the rectifier circuit are presented in Figure 35. 

P_hb1 are the input power harmonics, and P_hb6 are the output power harmonics. It can 

be seen from Figure 35 that most of power is transferred to dc at the output. At the output, 

it is evident that harmonics at frequency of 10, 30 and 50 GHz are eliminated by the 

rectifier. There are two harmonics at frequencies of 20 and 40 GHz. Compared with dc, 

two harmonics can be ignored since they are over 40 dB smaller than the dc signal. 

 

Figure 35. Simulated power spectrum plots. 

 

By summing up power at each frequency, the average power at different nodes 

was calculated and listed in Table 7. Probe_1 is the incident input power, Probe_2 is the 

power reflected back to the source, Probe_3 is the power transmitted towards the rectifier, 

and Probe_6 is the output power. 
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Table 7. Average power at different nodes in HB simulation. 

Probe Average power (W) 

Probe_1 0.202 

Probe_2 0.041 

Probe_3 0.161 

Probe_6 0.109 

 

With the known incident and reflected power, a reflection coefficient can be 

obtained as 0.4505 using Equation (4.4). From the reflection coefficient, the rectenna 

circuit impedance is calculated to be 18.9 ohms using Equation (4.3). The return loss can 

also be estimated using Equation (4.6) to obtain 6.956 dB. 

4. Efficiency vs. Frequency 

 Up to this point, all HB simulations are based on a frequency of 10 GHz. There 

are different output responses for different frequencies. Thus, efficiency plots at different 

frequencies were simulated and shown in Figure 36, verifying whether we obtain the 

maximum output power at a frequency of 10 GHz. Efficiency plots from 8 GHz to 10.5 

GHz are presented, illustrating that as frequency is decreased, the optimum point shifts 

lower. It can also be seen that maximum output power is 0.103 W when the frequency is 

10 GHz at an input power of 0.18 W, yielding an efficiency of 57%. The maximum 

efficiency is 66% when the frequency is 8.5 GHz at an input power of 0.1 W, delivering 

an output power of 0.066 W. 
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Figure 36. Efficiency plots versus input power for different frequencies. 
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D. FREE SPACE LINK SIMULATION 

In preparation for measurements, the next step is to include the free space power 

transmission through the atmosphere (Figure 1) using the Friis transmission formula [43]. 

The total power at the receiving antenna is found by summing up the incident power 

density over the area of the receiving antenna. The incident power can be converted into 

available power at the output of the antenna based on several factors, such as antenna 

type, pointing direction, polarization and so on. The gain of the transmitting antenna can 

be calculated using 

 
2

4
t etG A


  (4.7) 

where etA  is the effective area of the transmitting antenna. For a transmitting antenna that 

is not isotropic but has a gain tG  and with a maximum power density in the direction of 

the receiving antenna, the power density at distance R  is 
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With this power density, the available power at the receiving antenna can be calculated 

from 
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where erA  is the effective aperture of the receiving dipole antenna. By applying Equation 

(4.7), we have the effective aperture of the receiving antenna in terms of antenna gain and 

wavelength. Therefore, the available power at the receiving antenna output is 
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The overall power efficiency is defined as the total dc power measured at the 

output of the rectifier circuit ( dcP ) over the time-average input rf power, which is the 

available power at the output of the receiving antenna ( rP ): 

 .dc

r

P
P

   (4.11) 
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For comparison with measured data in the next chapter, we calculate the received 

power using the laboratory hardware parameters. For wireless power propagation, the 

transmitting horn antenna gain is 16.7 dB, the receiving full-wave dipole antenna gain is 

6.255 dB, the distance between two antennas is 1 m, and the wavelength is 0.03 m. In 

order to achieve maximum output power, the input received power should be 0.18 W 

according to the simulation parameters (Figure 37). 

 

Figure 37. Simulation parameters for antennas. 

Therefore, a transmitted power of 160 W is required at a range of 1 m. The 

available laboratory equipment can only provide 1 W into the transmitting antenna. 

Assuming an ideal transmission link, we estimate the received power at different 

frequencies using Equation (4.10), listed in Table 8. 

Table 8. Simulated received power at different frequencies, 1 W transmitted power. 

Frequency(GHz) Received power (W) Frequency(GHz) Received power (W) 
8 1.7610-3 9.3 1.3010-3 

8.1 1.7210-3 9.4 1.2710-3 
8.2 1.6710-3 9.5 1.2510-3 
8.3 1.6310-3 9.6 1.2210-3 
8.4 1.6010-3 9.7 1.2010-3 
8.5 1.5610-3 9.8 1.1710-3 
8.6 1.5210-3 9.9 1.1510-3 
8.7 1.4910-3 10.0 1.1310-3 
8.8 1.4510-3 10.1 1.1010-3 
8.9 1.4210-3 10.2 1.0810-3 
9.0 1.3910-3 10.3 1.0610-3 
9.1 1.3610-3 10.4 1.0410-3 
9.2 1.3310-3 10.5 1.0210-3 
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 Using the received power in Table 8 as the input power to the rectifier circuit, we 

can calculate an estimate of the output dc power and efficiency using Equation (4.11). An 

efficiency plot versus frequency for a 50 ohm load is shown in Figure 38. It is evident 

that lower frequencies can achieve higher efficiencies with low input power than higher 

frequencies. This fact is evident in the plots in Figure 36. The optimized point is no 

longer at 10 GHz, but shifted to 8.2 GHz. 

 

Figure 38. Simulated efficiency curve for different frequencies with 50 ohm load. 

 

E. SUMMARY 

In this chapter, the behavior of reflected power and its effect on the full-wave 

rectenna was investigated in both time and frequency domains. Two simulated results 

from transient and harmonic balance simulations were very close. With the calculated 

rectenna circuit impedance of 18 ohm, it is evident that the circuit is not matched with a 

50 ohm load, which is the value at which the transmission lines are tuned to optimum. 
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The maximum efficiency is 54%, which is about 10% lower than Liu claimed with the 

same input power [8]. This is due to power reflection in the circuit. 

The maximum efficiency point and maximum output power were also discussed 

in this chapter. Maximum efficiency is 66% at a frequency of 8.5 GHz with an input 

power of 0.1 W, giving a 0.066 W output dc power. The maximum output power can be 

obtained as 0.103 W at a frequency of 10 GHz with an input power 0.18 W, giving an 

efficiency of 57%. It was demonstrated that for low input power levels, the efficiency 

peak moves to lower frequencies. 

Hardware experiments and comparison with simulation results are discussed in 

the next chapter. 
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V. HARDWARE TESTING 

In this chapter, the design, fabrication and testing of the rectenna is described. The 

fabricated hardware was tested in the NPS Microwave Laboratory. 

A. ANTENNA ELEMENT 

A full-wave dipole rectenna was designed using Computer Simulation 

Technology (CST) Microwave Studio (MWS) software. CST can be used for the design 

of microwave circuits and antennas. The rectenna element is a dipole. The design was 

explained by Liu [8]. The dipole and feed lines can be seen in Figure 39. 

 

Figure 39. Dipole antenna model in CST MWS. 

 

 For the purpose of measuring S-parameters, the feed line is attached to a 50 ohm 

microstrip line. The S-parameter plot is illustrated in Figure 40. From Figure 40, it is 

obvious that the minimum S11 value is at 9.1 GHz. This means the optimized frequency 

for the antenna is shifted to 9.1 GHz due to the feed lines and the small ground plane. 
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Figure 40. Full-wave dipole antenna frequency response (length 30 mm). 

 

Since the desired frequency of operation is 10 GHz, the length and height are 

tuned. The dipole length was adjusted for the best performance, and it is found to occur at 

a length of 25 mm at 10 GHz, as shown in Figure 41. The S11 value is about -21.2 dB. 

Therefore, dipole length is selected as 25 mm. 

 

Figure 41. Dipole antenna frequency response (length 25 mm). 
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B. RECTIFIER STRUCTURE 

1. Dielectric Materials  

Based on a Rogers Corporation datasheet [42], the dielectric material used in the 

rectifier (Rogers RT/Duroid 5880LZ high-frequency laminate) has specifications listed in 

Table 9. 

Table 9. Dielectric materials for Rogers RT/Duroid 5880LZ (After [42]). 

Dielectric Constant ( r ) 1.96 0.04 

Dissipation Factor ( tan ) Typ: 0.0019 (10 GHz/ 23 °C) 
Max: 0.0027 

Standard Thickness ( h ) 0.020” (0.508 mm)  001 

Standard Copper Cladding 1/2 oz (17 μm) 

 

2. Layout 

 The rectifier circuit is based on the ADS model shown in Figure 31. The HSMS 

8101 Sckottky diode was soldered onto the printed circuit board. The material used for 

ground plane is 0.5 ounce copper, and the cutout area for the dipole antenna at the center 

is 5.25 mm by 2.6 mm, as shown in Figure 42. There are three shorting pins with 

diameter of 0.5 mm connecting the microstrip line to ground. 

 

Figure 42. Ground plane layout in CST model. 
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The front side of the circuit is shown in Figure 43. The impedance matching unit 

was bent in order to have a compact design and minimize the weight. The assembled 

rectenna hardware is shown in Figure 44. The weight of the rectenna, including 

foundation support used to fix the dipole antenna onto the printed circuit board, is 

approximately 5 grams, and the area of the rectenna is 35 mm by 35 mm. 

 

Figure 43. Microstrip panel layout in CST. 

 

 

Figure 44. Assembled full-wave rectenna hardware shown a with U.S. coin (quarter). 
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C. MEASURED PERFORMANCE OF THE RECTENNA 

A block diagram of the test configuration is shown in Figure 45. It is basically a 

free space link. An HP 8341B synthesized sweeper signal generator produces a high 

frequency sinusoidal signal. This output signal was amplified to 1 W using an Agilent 

83020A microwave system amplifier. A horn antenna of area 91.3 mm by 73.9 mm was 

used for the transmitting antenna with transmitting gain of 16.7 dB. The rectenna 

hardware was placed at a distance of 1 m in front of the horn antenna. In order to observe 

the frequency response for comparison with simulated results, frequencies from 8 GHz to 

10.5 GHz were tested. On the rectenna side, the load was selected as 51 ohms and 

connected with rectenna circuit for measuring the dc voltage and current through a 

voltmeter and ammeter. A photo of the hardware test configuration is shown in Figure 46. 

 

Figure 45. Rectenna hardware testing diagram. 

 

 

Figure 46. Hardware test setup in the microwave laboratory. 
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 The voltage and current across the 51-ohm load were measured and are listed in 

Table 10. It can be seen that maximum occurs at the frequency of 8.7 GHz. Therefore, the 

maximum output power can be calculated simply by multiplication of the voltage and 

current shown in Table 10. 

Table 10. Measured voltage and current across 51-ohm load. 

Frequency (GHz) Voltage (mV) Current (mA) Output dc power (W) 

8 120.00 2.00 2.40010-4 

8.1 131.90 2.25 2.96810-4 

8.2 146.45 2.54 3.72010-4 

8.3 162.30 2.84 4.60910-4 

8.4 172.43 2.97 5.12110-4 

8.5 180.90 3.16 5.71610-4 

8.6 185.63 3.21 5.95910-4 

8.7 191.24 3.29 6.29210-4 

8.8 173.35 3.03 5.25310-4 

8.9 162.38 2.88 4.67710-4 

9.0 149.44 2.64 3.94510-4 

9.1 146.36 2.56 3.74710-4 

9.2 123.24 2.16 2.66210-4 

9.3 117.80 2.08 2.45010-4 

9.4 102.21 1.81 1.85010-4 

9.5 94.90 1.71 1.62310-4 

9.6 70.62 1.26 8.89810-5 

9.7 69.55 1.24 8.62410-5 

9.8 50.85 0.87 4.42410-5 

9.9 52.17 0.92 4.80010-5 

10.0 29.94 0.56 1.67710-5 

10.1 43.11 0.75 3.23310-5 

10.2 26.64 0.47 1.25210-5 

10.3 31.12 0.56 1.74310-5 

10.4 28.83 0.51 1.47010-5 

10.5 24.54 0.43 1.05510-5 
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From the measured output dc power, an efficiency can be calculated using 

Equation (4.11). The measured efficiency curve is shown in Figure 47. The peak point is 

at 8.7 GHz instead of 10 GHz as expected for the low transmitted power of 1 W. 

 

Figure 47. Measured efficiency curve for different frequencies with 51 ohm load. 

 

D. DISCUSSION AND SUMMARY 

Based on experimental results, it can be seen that the rectenna has an optimized 

efficiency when the frequency is 8.7 GHz. It is capable of producing voltages from 25 

mV to 191 mV and currents from 0.43 mA to 3.29 mA using the full-wave rectenna and a 

transmitted power of 1 W. Note that the power limitation of the lab equipment does not 

allow measurements near the peak of the efficiency curve in Figure 33. 

Comparing the efficiency curves in Figure 47 and Figure 37, we see that the 

measured efficiency is larger than the simulated efficiency in the frequency range of 8.5 

GHz to 9 GHz and is smaller than the simulated efficiency when the frequency is above 

9.5 GHz. However, the shape and structure of the two curves are very close. The received 

power is calculated based on the Friis transmission equation, Equation (4.10), and an 
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ideal microwave link is assumed. At a frequency of 10 GHz, the measured efficiency is 

about 1.5%, whereas the simulated result is 7.5% for the same input received power. The 

simulated efficiency is five times greater than the measured efficiency. Thus, there is a 

loss factor of about five at 10 GHz between measurement and simulation. 

There are several possible reasons for the difference between the measured and 

simulated results. 

First, an ideal free space link was assumed in the calculation of efficiency for the 

measurement. However, for the short range, the rectenna is barely in the transmitting 

antenna’s far-field, so peak transmitting antenna gain may not be realized. Also, there are 

mismatch losses at various points in the link. 

Second, the variation in antenna impedance with frequency is not included in the 

ADS simulations. It can be seen from Figure 41 that the antenna mismatch changes 

rapidly with frequency, and this is likely the reason for the steep drop in the measured 

efficiency between 8–8.5 GHz in Figure 47. 

Finally, there may be a mismatch in the frequency bandwidths of the dipole and 

rectifier circuit. The two parts of the rectenna were optimized for operation at 10 GHz 

using MWS and ADS. An accurate simulation of the combined circuit could not be done 

in either tool. It is known that, in some cases, a discrete port in MWS gives scattering 

parameters that are shifted in frequency [44]. If this occurred, then the overall efficiency 

curve would be shifted. 

In the next chapter, the simulation and test results are summarized. Some 

conclusions and recommendations for future work are presented.  
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VI. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY 

The performance of a full-wave rectenna design proposed by Liu [8] was 

simulated and measured, and power reflection and circuit optimization were discussed to 

make necessary modification for the circuit. Several simulations using ADS and CST 

were conducted to characterize the behavior of the full-wave rectenna system and 

optimize the efficiency for 200 mW input power at 10 GHz with a 50 ohm load at the 

output. 

A technique employed in the study was to add a circulator to isolate power 

reflection in the circuit. Also, a new method of feeding the rectifier with an unbalanced 

source was investigated to replace the original design. Originally, the voltage source’s 

positive and negative terminals each drove a branch of the full-wave rectifier. The 

efficiency plot using unbalanced source was evaluated and simulated and found to give 

similar results as the original bipolar feed. The new feed approach can be applied to the 

design of new test fixture that directly excites the rectifier. Power reflection tests were 

run by connecting matched and mismatched impedances to the outputs of the circuits. 

The results were verified with theoretical values in both the time and frequency 

simulations. 

Another set of simulations addressed the tuning of electrical parameters of the 

transmission lines before and after the diodes. While sweeping the electrical lengths, the 

output power was observed so that the best electrical length with maximum output power 

could be identified. The ideal transmission lines in the simulation were converted to more 

realistic microstrip transmission lines using the LineCalc Tool that use the actual 

microstrip dimensions and substrate parameters.  

The final optimized circuit was modeled in both transient and harmonic balance 

simulations. The maximum efficiency is 54% when the input power is 0.2 W, and the 

estimated return loss is about 7 dB. To verify that the maximum output power occurred at 

10 GHz, an efficiency response was conducted at different frequencies shown in Figure 
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36. At 10 GHz, the maximum output power of 0.103 W is obtained when the input power 

is 0.18 W, resulting in an efficiency of 57%. Further investigation demonstrated that, as 

the input power falls below 200 mW, the peak of the efficiency curve shifts lower in 

frequency. 

Based on the ADS rectifier design and the CST dipole design, a prototype 

rectenna element was fabricated and tested using a free space link. The final length of the 

dipole was 25 mm. Due to limitations of the laboratory hardware, the transmitted power 

was 1 W at the horn antenna. Thus, the low received power at the rectenna means that it 

was operating on the low part of the efficiency curve. Because of the low input power, 

the peak efficiency shifted to 8.5 GHz, which was also observed in the simulation results. 

B. CONCLUSION 

Using diode data available from the manufacturer, we optimized a full-wave 

rectenna for input power around 200 mW at 10 GHz with a 50 ohm load. Efficiencies of 

55 to 66 percent were predicted for various circuit designs. However, with microstrip 

lines, the maximum output power can be achieved when the frequency is 10 GHz with 

input power of 0.18 W and has a conversion efficiency of 57%. The measured efficiency 

curve, while similar in shape, was shifted lower in frequency because of the low input 

power. In order to get an accurate measurement of efficiency, higher input power is 

needed, but this cannot be obtained using a free space link with the existing amplifier. 

Therefore, a direct power input to the rectifier circuit that bypasses the dipole must be 

used. 

C. RECOMMENDATIONS 

The results of this thesis show the correspondence between measurement and 

simulation. However, the input power is too small to operate at the peak of the efficiency 

curve. The reason this power level (200 mW) was chosen is because two prototypes of 

MAV with different motors could possibly be powered by this output if several rectennas 

are combined. 

Some recommendations are listed next. 
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1. High Power Efficiency Test 

The current simulation is based on a balanced source that accurately represents 

the dipole antenna. Simulations in Chapter IV showed that a single unbalanced source 

gives the same result as a balanced source. The hardware can be built with a coaxial input, 

unbalanced source feeding the two branches of microstrip line with a power splitter. By 

feeding a power source into the circuit without a dipole antenna, the free space loss is not 

suffered and higher power is fed directly to the rectifier. 

2. Reducing Printed Circuit Board Board Size and Weight 

The microstrip line for the current design covers only 80% of the printed circuit 

board (PCB) surface area. The dipoles could be packed more densely and the circuit area 

reduced to lighten its weight. 

3. Designing Full-Wave Rectenna Array 

The current rectenna maximum output power of 0.103 W is not large enough to 

power most current MAV models. To increase received power, an array can be designed 

for increasing the power output with a fixed transmitted power. 

4. High Directivity Antenna 

 The gain for the current transmitter horn antenna is 16.7 dB. Higher received 

power can be achieved if we can use a narrowbeam antenna. Then, most transmitted 

power will be directed to the receiver dipole antenna. However, the range must be 

adjusted so that far-field conditions are satisfied. If not, the full transmit antenna gain 

may not be realized. 
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