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Abstract  Global warming has had profound impacts on 

climate and weather of all scales. In coping with such 

changes, proactive adaptation measures are being sought 

after. However, planning for adaptation measures 

requires improved knowledge and quantitative analysis 

of the uncertainties in climate change. In this study we 

firstly assessed the effects of climate change on storm 

rainfall characteristics in Taiwan using the MRI high 

resolution outputs. Quantitative analysis on changes in 

storm characteristics of various storm types was also 

conducted. A stochastic storm rainfall simulation model 

(SSRSM) which takes into account the physical storm 

characteristic was developed. The SSRSM is composed 

of three major components – (1) storm occurrence 

simulation, (2) (duration, event-total depth) joint 

simulation, and (3) hyetograph simulation. By setting 

storm characteristics representative of the projective 

period, the SSRSM can generate outputs of huge 

number of simulation runs. Each run yields one annual 

sequence of hourly rainfalls. From the SSRSM outputs, 

annual maximum rainfall series of various design 

durations were extracted and design storm depths of 

various return periods and durations were obtained 

through frequency analysis. The SSRSM model has 

been successfully applied to several regions in Taiwan 

and details of its application are demonstrated in this 

paper. 

 

Keywords  Climate change, design storm, stochastic 

simulation, downscaling, uncertainties. 

 

Ke-Sheng Cheng () 

Professor 

Department of Bioenvironmental Systems Engineering, 

National Taiwan University 

Email: rslab@ntu.edu.tw, Tel: +886-2-33663465, Fax: 

+886-23635854 

 

Yii-Chen Wu 

Postdoctoral Associate 

Department of Bioenvironmental Systems Engineering, 

National Taiwan University 

Email: d95622004@ntu.edu.tw 

 

Yuan-Fong Su and Jun-Jih Liou 

National Science and Technology Center for Disaster 

Reduction, Taipei, Taiwan, ROC 

 

Introduction 

Many studies related to climate change focus on 

assessing the climate change effect on earth surface 

processes in global, continental or regional scale in 

space and annual, seasonal or monthly scale in time. 

Climate change effects in local and daily (or hourly) 

scales, such as the effects on characteristics of rainfall 

events have received much less attention, possibly due 

to less and incomplete observed data. However, for 

practical planning and engineering design, it is 

necessary to deal with local (spatial) and event 

(temporal) scales. Moreover, properties of storm events 

(for example, duration, total depth, peak rainfall rate, 

etc.) exhibit high degree of variations which are random 

in nature, and can be characterized as random variables 

(Koutsoyiannis and Mamassis 2001; Restrepo-Posada 

and Eagleson 1982). Some of these variables are 

mutually dependent and have different probability 

distributions. As a result, it is generally difficult to 

derive their joint distribution. The complexity of such 

multivariate variations makes it very difficult to assess 

the effect of changes in certain variables through 

multivariate conditional density. An alternative to 

alleviate such difficulties is by adopting the stochastic 

simulation approach (Rulli and Rosso 2002; Cameron et 

al. 2000). Thus, the objective of this study is to develop 

a continuous storm rainfall simulation model which is 

capable of characterizing the random nature of storm 

rainfalls and, through stochastic simulation under certain 

climate change scenarios, can be used for assessment of 

the impact of climate change on design storm depth. 

 

Methodology of stochastic storm rainfall simulation 

A continuous storm rainfall process can be decomposed 

into a series of storm events. These storm events are 

considered independent and the time intervals between 

the occurrences of two consecutive events are random in 

nature. Each storm event can then be further 

characterized by three major factors – the event-total 

depth, duration, and time distribution of the total depth. 

All these factors involve high degree of randomness. In 

light of such complicity, a stochastic storm rainfall 

simulation model (SSRSM) is desired to tackle the 

aforementioned random characteristics of storm rainfall 

process. 

 

Discrete storm occurrences simulation 

The annual counts of storms and their time of 

occurrences are random in nature and can be 

characterized by two independent random variables. For 

rare events such as typhoons, their annual counts can be 

modeled by a Poisson distribution and the time span 
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between two consecutive typhoons follows an 

exponential distribution.  

 

Bivariate simulation of the total depth and duration 

Generally speaking, the total depth and duration of 

storm events are correlated. Storms of longer duration 

tend to produce larger amount of total rainfall depth. 

Therefore, joint distribution of total depth and duration 

must be considered in simulation of storm duration and 

total depth. Depending on storm types (for examples, 

typhoons, convective storms, and Mei-Yu in early 

spring), the joint distribution of event-total rainfall and 

duration can take different forms. In our study, we have 

found that a bivariate gamma distribution can be used to 

characterize the (total-depth~duration) joint distribution 

of typhoon events.  

Suppose that random variables X and Y form a bivariate 

gamma distribution, there exists a corresponding pair of 

random variables U and V which form a bivariate 

standard normal distribution. Cheng et al. (2011) proved 

that the correlation of X and Y (
XY ) and the correlation 

coefficient of U and V (
UV ) has the following single-

value relationship: 
  32 62933 UVYXUVYXUVYXYXYXYXXY CCBBCCACCAAA    
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The values a random variable can assume can be 

represented as a function of its frequency factor K: 

XX KX    (2) 

In addition, the frequency factor of a gamma distribution 

can be expressed by the following equation: 
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 (3) 

Cheng et al. (2011) developed a frequency-factor based 

approach of bivariate gamma simulation. Given 
XY , 

the approach firstly find the corresponding
UV , and then 

a random sample of the bivariate standard normal 

distribution can be generated. Finally, a random sample 

of the bivariate gamma distribution is obtained using 

Equations (2) and (3).  

 

Disaggregation of event-total depth 

Incremental rainfall (e.g. hourly rainfall) varies within 

the duration of a storm event, and thus total rainfall 

depth of individual storm events must be disaggregated 

over storm durations. Based on the simple scaling 

property of incremental rainfall, Cheng et al. (2001) 

developed a dimensionless hyetograph model. The 

model disaggregates total depth of a storm event into a 

fixed number of incremental rainfall depths. Since storm 

duration varies with events, the time increment of 

incremental rainfall also varies with events. However, 

the corresponding scaled dimensionless incremental 

rainfalls (i.e., incremental rainfall percentages) of 

different storm events are identically distributed.  

Let {Y(i), i=1,…,n} be the scaled dimensionless 

incremental rainfalls of a storm event. We consider the 

time variation of Y(i) as a nonstationary truncated 

gamma-Markov process. The expected value i, 

standard deviation i  and truncated threshold yc(i), and 

the lag-one correlation (i) of Y(i) and Y(i-1) all can be 

estimated from observed rainfalls. The Markov property 

provides a convenient way of simulating the gamma-

Markov process through sequential bivariate gamma 

simulation. Thus, disaggregation of the event-total depth 

can be achieved by the following procedures: 

(1) Generating y(1) by simulation of a gamma density 

with given mean and standard deviation. 

(2) Generating subsequent y(i), i=2,…,n by bivariate 

truncated gamma simulation. 

(3) The scaled dimensionless incremental rainfalls are 

then multiplied by the event-total depth to yield 

incremental rainfall depths.  

 

Scenarios setting for SSRSM under climate change 

Using outputs from GCM models for the baseline period 

(1980-1999) and projection period (2020-2039) at grids 

near several rainfall stations in Taiwan, changes in mean 

values of storm characteristics such as duration, event-

total depth and number of storm events were determined 

for individual rainfall stations. Table 1 lists storm 

characteristics of the baseline period at the Taipei 

station. Table 2 shows changes in storm characteristics 

at Taipei station Taiwan under climate change (A1B 

scenario). 

 

 
 

 
 

Using the frequency-factor based bivariate simulation 

technique and the disaggregation procedures described 

earlier, we simulated 500 runs of stochastic storm 

rainfall simulation under the scenario setting shown in 

Table 2. The simulations were conducted considering 
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occurrences of different storm types in different seasons. 

Each run yields an annual sequence of hourly rainfalls. 

Two examples of annual sequence of hourly rainfalls are 

shown in Figure 1.  

 

 
Figure 1. Two simulated annual sequences of hourly 

rainfalls. 

 

Frequency analysis of simulated rainfalls 

From the simulated hourly rainfall data, annual 

maximum rainfalls of selected design durations were 

extracted. The annual maximum rainfalls are considered 

having Pearson type III distributions and design storm 

depths of 10, 20, 50, 100 and 200-year return periods 

were calculated. Tables 3 and 4 list the design storm 

depths of the baseline and projection periods at Taipei 

station. 

 

Table 3. Design storm depths (in mm) at Taipei station. 

(Baseline period) 

Duration 

(hours) 

Return period (years) 

10 20 50 100 200 

24 296.0  357.2  437.8  498.7  559.5  

48 347.9  410.0  489.8  549.1  607.6  

72 374.2  425.5  488.0  532.5  575.3  

 

Table 4. Design storm depths (in mm) at Taipei station. 

(Projection period) 

Duration 

(hours) 

Return period (years) 

10 20 50 100 200 

24 307.8  374.5  462.4  528.6  594.5  

48 356.4  421.4  503.5  563.2  621.0  

72 381.1  433.2  494.6  536.6  575.5  

 

Assessing the effect of climate change on design 

storm depth 

From the results of frequency analysis, it can be found 

that even though the event-total depths and annual 

counts of typhoons are likely to reduce in the projection 

period, rainfall depths of 24-hour design duration will 

increase by approximately 4% to 6% for return periods 

ranging from 10 to 200 years. Such increases can be 

attributed to shorter durations of major storms under 

climate change. It also suggests that the area will 

experience storms with higher rainfall intensities in the 

projection period.  

 

Conclusions 

A few concluding remarks from the preliminary results 

are drawn below: 

(1) The stochastic storm rainfall simulation model 

provides a means for assessing the impact of climate 

change on design storm depths. 

(2) Under the given scenario setting, design storm 

depths of 24 to 72 hours durations and 10 to 200 return 

periods are likely to increase in the projection period. 

Such increases can be attributed to shorter durations of 

major storms under climate change. It also suggests that 

the area will experience storms with higher rainfall 

intensities in the projection period.  
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Abstract In Taiwan, groundwater becomes important in 

dry periods or areas lack of water storage facility due to 

its low cost, steady water supply and good water quality. 

However improper groundwater development brings 

about serious decreases in groundwater levels and land 

subsidence so that causes disasters, such as seawater 

intrusion or soil salination, accompanied with 

environmental and economical losses. It is critical to 

develop strategies for water resources conservation in 

mountainous areas. This study aims to investigate the 

interactive mechanisms of groundwater recharge at the 

mountainous areas of the Jhuoshuei River basin in 

Central Taiwan through analyzing and modeling the 

groundwater level variations. Several issues are 

discussed in this study, which includes the correlation 

between groundwater level variation and rainfall as well 

as streamflow, the identification of groundwater 

recharge patterns, and effective rainfall thresholds for 

estimating groundwater level variations. The results 

indicate: 1) the daily variation of groundwater level is 

closely correlated with river flow and one-day 

antecedent rainfall based on correlation analyses; 2) 

effective rainfall thresholds can be identified 

successfully;3)groundwater level variations can be 

classified into four types for monitoring wells; and 4) 

the daily variations of groundwater level can be well 

estimated by constructed artificial neural networks. 

 

Keywords Rainfall, Streamflow, Groundwater Level, 

Artificial Neural Network (ANN), Thiessen polygons 

method. 
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Introduction 

In the last decades, water demand has increased 

drastically due to the rapid development in economy and 

industry in Taiwan. Because of the uneven spatial and 

temporal distribution of rainfall and insufficient water 

storage facilities, groundwater has become an important 

water source for agricultural, industrial and domestic 

water users during drought periods and/or at the areas 

short of water storage facilities through considering 

several features of groundwater such as low-cost, stable 

water temperature, constant water quantity, good water 

quality and easy accessibility. However, due to 

inappropriate industrial and/or environmental 

development, groundwater levels drop seriously at some 

coastal areas in Taiwan, and the subsidence 

phenomenon, seawater intrusion, soil salinization and 

seawater intrusion results in disasters that cause a dual 

loss in environment and economy. Groundwater level 

variations can be affected by various factors such as 

human extraction or injection, earth tides, atmospheric 

pressure changes, temperature and rainfall. Groundwater 

level variations observed by groundwater level 

monitoring wells are rather comprehensive, which 

includes the variation trend of natural dissipation of 

groundwater levels, the causes of water level variations 

induced by atmospheric pressures, earth tides, rainfall 

and earthquake, and other factors (Bredehoeft 1967; 

Jacob 1940; Matsumoto 1992; Rojstaczer 1988; Van der 

Kamp and Gale 1983). Cheng et al. (2003) applied the 

time series to analyzing the relationship between rainfall 

and groundwater level and showed that rainfall can be 

regarded as a leading indicator of groundwater level. 

The finding of Chen et al. (2005) indicated that the time 

lag between rainfall and groundwater level variation 

might occur. Chen (2006) found that groundwater level 

is affected by rainfall with different response time, 

where the rapid response time may be within a few 

hours while the slow response time may take few days, 

and different initial soil water contents also make certain 

impacts on lag time. 

Artificial neural networks (ANNs) are a learning 

and computing technology that mimics biological neural 

systems, where the network constructs a neural system 

with receipt and response abilities through continually 

absorbing previous experiences and performing iterative 

http://www.airitilibrary.com/searchresult_1.aspx?Search=true&Condation=2%04%22Groundwater+level%22%021%2c2%2c3
mailto:changfj@ntu.edu.tw
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computation by using computers. With advanced 

development in technology and powerful computation 

ability of computers, ANNs have been widely used in 

various disciplines and fields (Mamdani and Assilian 

1975; Memdel 2001; Nayak et al. 2004;Nourani et al. 

2008;Chen and Chang 2009; Nouraniet al. 2011; Chang 

et al. 2010; Chang et al. 2012). Daliakopoulos et al. 

(2005) used seven different ANN structures to predict 

the groundwater level of monitoring wells on Crete 

island of Greece through, and the results demonstrated 

that it is sufficient to use monthly models for predicting 

yearly groundwater levels. Nayak (2006) applied the 

ANN to forecasting thegroundwater level of India's 

coastal plain and indicated that the ANN can precisely 

and appropriately forecast groundwater levels in the 

next few months with a forecast error of about 35 cm. 

Understanding the interactive recharge mechanism 

between mountainous water resources and groundwater 

can facilitate future discussion on mountainous water 

resource conservation strategy for alleviating land 

subsidence in downstream areas. So far, few studies 

have discussed about the groundwater recharge 

mechanism at mountainous area. To investigate the 

groundwater level variations at the mountainous areas, 

the Jhuoshuei River basin of the Central Taiwan is used 

as a case study. 

 

Methodology 

This study aims to investigate the interactive recharge 

mechanisms between surface water and groundwater 

over the Jhuoshuei River basin in Central Taiwan by 

using an artificial neural network coupled with statistical 

analyses. The methodology used consists of the Pearson 

correlation coefficient, the Thiessen polygons method 

and the back-propagation neural network, which are 

briefly addressed as follows: 

 

Pearson Correlation Coefficient 

In this study, the Pearson correlation coefficient 

(Pearson 1896) is used to identify the time lags between 

groundwater level variations and rainfall as well as 

streamflow. The Pearson correlation coefficient, or 

"Pearson product-moment correlation coefficient", is a 

quantitative method that measures the dependence 

between two quantities, which can be obtained by 

dividing the covariance of the two variables by the 

product of their standard deviations.  

The Pearson correlation coefficient ranges from −1 

to 1. A value of 1 indicates a positive (increasing) 

perfect linear relationship, a value of −1 indicates a 

negative (decreasing) perfect linear relationship, and a 

value of 0 indicates no linear relationship (uncorrelated) 

is detected. The closer the coefficient is to either −1 or 

1, the stronger the correlation between two variables is. 

For a series of n variables of X and Y (denoted 

by xi and yi, respectively, where i =1,2,..., n), the sample 

correlation coefficient can be used to estimate the 

population Pearson correlation r between X and Y. The 

sample correlation coefficient is given as: 
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(1) 

where x and y are the sample means of X and Y 

accordingly, and sx and sy are the sample standard 

deviations of X and Y accordingly. 

 

Thiessen Polygon Method 

The Thiessen polygon method was developed by 

Thiessen (1911), which is a method used to approximate 

the relative significance of data from points scattered 

arbitrarily across an area. The Thiessen polygon method 

introduces the concept of weighting, compared with the 

arithmetic averaging method. Therefore, the Thiessen 

polygon method is very useful when calculating rainfall 

in a given area. Thiessen polygons can be constructed 

by intersecting the perpendicular bisector lines between 

each pair of points. The formula of the Thiessen 

polygon method used in this study is shown as follows: 






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N

i i

N

i ii

A

AP
p

1

1  
(2) 

where p  is the average rainfall (mm) of the area, N is 

the number of rainfall gauging stations of the area, Pi is 

the rainfall of the i
th 

rainfall gauging station of the area, 

and iA is the controlling area (m
2
) 

 

Back-Propagation Neural Network (BPNN) 

In this study, the BPNN is used to construct estimation 

models for groundwater level variations owing to its 

superior nonlinear mapping ability. 

The BPNN, developed by Rumelhart et al. (1986), 

is the most prevalent network among the supervised 

learning networks in ANNs. The BPNN uses the 

gradient steepest descent method to modify the weights 

of interconnected neurons and easily manages the 

interactions of processing elements by adding hidden 

layers. In the learning process, the interconnection 

weights are adjusted by using an error convergence 

technique to obtain the desired output for a given input. 

In general, the error of the output layer will propagate 

backward to the input layer through hidden layers to 

obtain the desired output in the BPNN model. The 

gradient descent method is utilized not only to calculate 

the weight of the network and but to adjust the weight of 

interconnections so that minimize the output error. The 

structure of the BPNN model is shown in Fig. 1, and the 

formula is given below. 

In the BPNN, the input of the j
th

 neuron of the n
th

 

hidden layer is the nonlinear function of the output of 

the (n-1)
th

 hidden layer.   

)( j
n

j
n netFy   (3) 

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Covariance
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Arithmetic_mean
http://en.wikipedia.org/wiki/Standard_deviation#With_sample_standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation#With_sample_standard_deviation
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where y
n
j is the output of the n

th
 hidden layer, F is the 

activation function, and net 
n

jis the summation of 

weighted input Xi of the (n-1)
th

 hidden layer, which is 

shown below:  

j

m

i

ijij bxwnet 
1  

(4) 

where w
n
ji is the connection weight of the j

th
 neuron in 

the n
th

 hidden layer and the i
th

 neuron in the (n-1)
th

 

hidden layer, and b
n
j is the bias of the j

th
 neuron in the 

n
th

 hidden layer. 

Because the BPNN isa supervised learning 

network, it aims to reduce the difference between 

network outputs and target outputs. The error function E 

is defined as: 

21
( )

2
k k

k

E d y 
 

            (5) 

where d k is the target output of the k
th 

neuron, and y k is 

the network output of the k
th 

neuron. 

In general, the connection weights of the BPNN 

could be easily obtained by using the abovementioned 

algorithm, and the applicability of the constructed 

network should be further validated and tested. 

Consequently, data sets are commonly distributed into 

three independent sets for training, validating and 

testing, respectively, for the purpose of network 

configuration, validation and testing. The network 

would be trained to obtain their optimized connection 

weights based on the input-output patterns in the 

training data set, select the most suitable constructed 

network by using the validating data set, and then be 

further tested the applicability and reliability of the 

selected network by using the testing set.  

 

Fig.1. Structure of the BPNN model 

 

Case Study 

This study aims to investigate the groundwater recharge 

mechanism at mountainous area in the Jhuoshuei River 

basin through analyzing the groundwater level 

variations. The Jhuoshuei River with a total length of 

186.6 km is the longest river in Taiwan, and its drainage 

area is about 3156 square kilometers, which is the 

second largest drainage area in Taiwan. The Jhuoshuei 

River basin is located in Central Taiwan and has the 

highest elevation of about 3,200 meters. Its 

topographical terrain decreases from east to west (i.e. 

with terrain slope increases from west to east). Due to 

the highly complex topographical terrain of the 

Jhuoshuei River basin, rainfall is unevenly distributed 

and is concentrated in a five-month period starting from 

May to September. The total rainfall in the wet period 

accounts for 75% of the total annual rainfall, which 

implies there is a big difference of rainfall between wet 

and dry periods.  

 

Fig. 2. Distribution of streamflow gauging stations, rainfall gauging 

stations and groundwater level monitoring wells 

 

In the study area, groundwater level monitoring 

wells were built over the pass, and streamflow and 

rainfall gauging stations are located at the midstream 

and upstream of the Jhuoshuei River (Fig. 2). Data of 

groundwater level, streamflow and rainfall in the 

Jhuoshuei River basin are rather complete. Groundwater 

level and streamflow data were collected from the Water 

Resources Agency, Taiwan, while rainfall data were 

collected from the Water Resources Agency, Central 

Weather Bureau and Taiwan Power Company, Taiwan. 

The collection period of daily data ranged from 2001 to 

2010 in a total of eighteen rainfall gauging stations, four 

streamflow gauging stations and eight groundwater level 

monitoring wells (Tables 1-3). Missing data were 

infilled by using linear regression techniques based on 

the data of surrounding stations. The flowchart of the 

groundwater recharge mechanism is shown in Fig. 3.  

 

 

Rainfall 
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Fig.3. Flow chart of the groundwater recharge mechanism 

Table 1 Basic information of eighteen rainfall gauging stations in the 
study area 

Rainfall 

station 

Elevation 

(m) 

X-coordinate 

(TWD67) 

Y-coordinate 

(TWD67) 

R1 400 213782.9 2615639.8 
R2 1771 229514.0 2617731.8 

R3 1453 224643.7 2619615.9 

R4 1700 258098.0 2628024.9 
R5 296 236100.2 2630828.7 

R6 393 243999.4 2632976.6 

R7 203 226228.7 2635948.1 
R8 1135 241748.0 2605846.0 

R9 724 217736.7 2609447.3 

R10 2200 241950.2 2612736.2 
R11 485 234079.6 2621048.4 

R12 1666 238586.6 2624704.8 

R13 322 236038.3 2625353.0 
R14 215 226228.9 2636040.4 

R15 2303 269710.0 2667105.2 

R16 1200 268659.9 2649507.1 
R17 890 261871.4 2653191.4 

R18 1520 266952.6 2658733.9 

R19 231 214240.5 2615918.5 
R20 17 193447.9 2633516.6 

R21 30 194777.1 2633203.8 

 
Table 2 Basic information of four streamflow gauging stations in the 
study area 

 

Observation data were divided into the training, 

validation and testing phases of the BPNN model in the 

ratio of 6:2:2, respectively, for evaluating the 

performance of the estimation model. The evaluation 

criteria for model performance consist of the Pearson 

correlation coefficient and root mean square error 

(RMSE) given below: 
2

1

ˆ ( ) ( )
N

t

Q t Q t

RMSE
N


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


                                                 (6)  

where
Q̂

 is the estimated value and Q is the observed 

value, and N is the number of data. 

The RMSE is used to observe the estimation 

accuracy of the groundwater level variations. The lower 

the RMSE value is, the better the model performance is. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Result and Discussion 

Time delay analysis  

This study adopts the Pearson correlation coefficient to 

analyze the daily time-delay relationship between 

groundwater level variation and rainfall through 

investigating current groundwater level variation versus 

rainfall of the current day up to the previous nine days. 

A higher value of the Pearson correlation coefficient 

indicates a stronger relationship between groundwater 

level variation and rainfall. Figure 4 shows the results of 

the Pearson correlation coefficient analysis on 

groundwater level variations versus rainfall of different 

time lags at groundwater level monitoring wells. The 

results indicate that the patterns of groundwater level 

variations versus rainfall of different time lags are 

similar, and the highest correlation occurs on the 

previous day prior to current day for rainfall. Therefore, 

rainfall on the previous day prior to current day【R(t-1)

】 is determined as an input to the BPNN model for 

estimating groundwater level variations. 

Similarly, the Pearson correlation coefficient is 

used to detect the daily time-delay relationship between 

groundwater level variation and streamflow. The results 

are illustrated in Fig. 5, which also indicates the patterns 

of groundwater level variations versus streamflow are 

similar at each monitoring well, and the highest 

correlation occurs on the current day for streamflow. 

Therefore, streamflow on the current day is determined 

as an input to the BPNN model for estimating 

groundwater level variations.  

Table 4 Weights of rainfall gauging stations for the Thiessen polygon 
method in the study area 

Station Weight Station Weight 

R1 0.0064 R12 0.0263 

R2 0.0328 R13 0.0113 

R3 0.0421 R14 0.0178 

R4 0.1834 R15 0.0309 

R5 0.0314 R16 0.0753 

R6 0.0615 R17 0.0420 

R7 0.0424 R18 0.0287 

R8 0.1090 R19 0.0253 

R9 0.0677 R20 0.0486 

R10 0.0659 R21 0.0331 

R11 0.0182   

 

 

 

 

 

 

 

 

 

Streamflow 

station 

X-coordinate 

(TWD67) 

Y-coordinate 

(TWD67) 

S1 212103.2 2631755.0 

S2 232943.2 2633859.0 
S3 234363.9 2634798.0 

S4 194978.4 2634095.0 

Table 3 Basic statistics of eight groundwater level monitoring wells in the study area 

Monitoring Well depth X-coordinate Y-coordinate Groundwater level (m) 

well  (m)  (TWD67) (TWD67) Max Min Average SD1 Variance 

G1(1) 102.6 217282 2629020 146.6 138.5 141.8 1.91 3.65 

G1(2) 199.3 217282 2629020 145.4 136.3 142.7 1.53 2.33 

G2 204.5 212545 2628234 202.2 189.9 196.0 2.69 7.25 

G3 24.1 220800 2634163 176.0 167.5 169.2 1.06 1.12 

G4(1) 52.0 213977 2623841 169.1 161.5 166.5 0.75 0.56 

G4(2) 102.0 213977 2623841 170.4 164.4 167.5 0.89 0.79 

G5(1) 78.2 218500 2634400 145.2 133.0 137.7 2.24 5.00 

G5(2) 193.2 218500 2634400 139.5 132.2 135.6 1.50 2.24 

1 Standard deviation 
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Fig. 4. Correlation between groundwater level variation and rainfall of 

different time lags at groundwater level monitoring wells 

Effective rainfall threshold analysis 

According to the data collected in this study, it reveals 

that variations still occur in groundwater levels when it 

does not rain, which results in a low correlation between 

groundwater level variation and rainfall. This study 

makes an assumption that rainfall over certain threshold 

can significantly affect groundwater level variations. 

Therefore this study adopts the Thiessen polygon 

method to calculate the average rainfalls over the basin 

area at different thresholds for identifying thresholds. 

Table 4 shows the weights of rainfall gauging stations 

for the Thiessen polygon method. A total of 3620 

rainfall data were screened at different thresholds 

ranging from 0 mm to 15 mm with an increment of 1 

mm. Consequently, four types of patterns can be clearly 

classified after correlation analyses between 

groundwater level variations and rainfall filtered at 

different thresholds: 
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Slow-ascending type: 

Groundwater monitoring wells G1(1) and G4(2) are 

classified as the slow-ascending type (Fig. 6(a)). After 

filtering out rainfall data below the threshold of 2 mm, 

the correlation between groundwater level variations 

and rainfall significantly improves and shows an 

ascending trend. This ascending trend becomes less 

obvious when rainfall thresholds are higher than 2 mm. 

The ascending trend might be because the depth of these 

two wells are around 102 meters (at medium depth) so 

that it takes longer time for rainfall to infiltrate into 

these two wells. By filtering out small rainfalls (< 3 

mm), the effective rainfall is identified and thus the 

correlation improves significantly. However, the 

correlation becomes flatter towards higher rainfall 

thresholds.  

 

Ladder-type: 

Groundwater monitoring wells G3 and G4(1) are 

classified as the ladder-type. For G4(1), sudden 

increases in the correlation coefficients occur at rainfall 

screening thresholds of 1 mm and 7 mm, respectively 

(Fig. 6(b)). Similarly for G3, sudden increases in the 

correlation coefficients between groundwater level 

variations and rainfall occur at rainfall screening 

thresholds of 1 mm and 5 mm, respectively. The causes 

of such phenomena might be due to the shallow depths 

of these two wells (G3: 24.1 meters; G4(1): 52 meters) 

and the geologic structures of the wells. Apparently, the 

response to correlation is increasing when rainfall 

thresholds increase. In particular, the topsoil structure of 

G4(1) is of the clay layer, the infiltration of rainfall into 

this well would start only when rainfall reaches a certain 

degree, and thus the correlation is of a ladder-shape. 

 

Slow-descending type: 

Groundwater monitoring wells G5(1) and G5(2) are 

classified as the slow-descending type (Fig. 6(c)). The 

correlation between groundwater level variations and 

rainfall decreases and shows a descending trend when 

rainfall thresholds increase. The cause of the descending 

trend might be due to the geological structures of these 

two wells. The geological structure of these two wells is 

of the gravel layer, and therefore water mobility 

becomes fast owing to the high porosity of the gravel 

layer. In particular, the high water mobility of these two 

wells makes both wells within the same aquifer even 

though their well depths are different (G5(1): 78.2 

meters; G5(2): 193.2 meters). Rainfall infiltrates very 

quickly no matter how high the rainfall intensity is, and 

thus the use of rainfall thresholds would reduce the 

correlation between groundwater level variations and 

rainfall. However the correlations of these two wells are 

about 0.6 without conducting any rainfall screening, 

despite that both wells belong to the slow-descending 

type.  

 

Random type: 

Groundwater monitoring wells G2 and G1(2) are 

classified as the random type (Fig. 6(d)). Both G2 and 

G1(2) have low correlations between groundwater level 

variations and rainfall. The well depths of G2 and G1(2) 

are 204.5 m and 199.3 m, respectively (at deep depth), 

while the infiltration rate of rainfall into groundwater is 

tens of meters per day. Therefore, the impact of recharge 

from rainfall to groundwater is comparatively small for 

deep-depth wells such as G2 and G1(2), which might be 

the cause for the low correlation between groundwater 

level variations and rainfall. Besides, the correlation 

does not increase even though rainfall thresholds 

increase. 
 

Estimation model of groundwater level variations  

This study proposes an estimation model of groundwater 

level variations by using the BPNN. There are eighteen 

rainfall gauging stations in total. It will reduce the 

learning and training efficiency of the BPNN model if 

data of all eighteen rainfall gauging stations are 

incorporated as inputs into the model. Therefore, data of 

rainfall gauging stations that are highly correlated with 

groundwater level variations are determined as model 

inputs. Besides, data of streamflow gauging stations S3 

and S4 are not considered as inputs to the model 

because S3 is located near Ming-Tan Reservoir and thus 

is directly affected by reservoir operations while S4 is 

located far from groundwater level monitoring wells and 

thus has less influence on the groundwater level 

variations of monitoring wells. In Table 5, groundwater 

level monitoring wells G1(1), G3 and G4(1) have higher 

correlation coefficients with rainfall than with 

streamflow, conversely G5(1) has higher correlation 

coefficients with streamflow than with rainfall. From 2, 

it shows G5(1) is located right next to the Jhuoshuei 

river, and thus the groundwater level variation of G5(1)  

is apparently influenced by the lateral recharge from the 

river. This condition is consistent with the results that 

G5 has higher correlation with streamflow than the other 

three wells.  

Table 5 Correlation of model input and output 

Output 

(Monitoring well) 

Input 

(Rainfall) 
Corr1 

Input 

(Streamflow) 
Corr 

G1(1) 

R1 0.73 S1 0.69 

R7 0.70 S2 0.68 

R9 0.75   

R14 0.71   

R19 0.73   

G5(1) 

R8 0.77 S1 0.80 

R9 0.75 S2 0.76 

R10 0.75   

G3 

R1 0.63 S1 0.55 

R13 0.60 S2 0.60 

R14 0.60   
R19 0.64   

G4(1) 

R1 0.74 S1 0.67 

R9 0.76 S2 0.65 

R19 0.75   
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Fig. 5. Correlation between groundwater level variation and 

streamflow at groundwater level monitoring wells 

For the estimation of groundwater level variation, 

this study investigates five estimation models 

established with difference input combinations: without 

thresholding (streamflow, rainfall); and with 

thresholding (streamflow, rainfall, streamflow+rainfall). 

Table 6 displays the estimation results of the BPNN 

models for groundwater level monitoring wells G1(1), 

G3, G4(1) and G5(1).  

 

G1(1): slow-ascending type 

The best structure of the BPNN model for G1(1) has one 

hidden layer and four neurons. Observation data are 

divided into the training, validation and testing phases in 

the ratio of 6:2:2, respectively. The total number of 

groundwater level variation data for G1(1) is 1306. 

After conducting the rainfall threshold screening at the 

effective threshold of 1 mm, only 780 data remain for 

use. Without conducting the rainfall threshold screening, 

the correlation coefficient between observed and 

estimated values is 0.66 in the testing phase for the 

streamflow model, similarly, the correlation coefficient 

is 0.71 for the rainfall model. The results of the models 

with effective thresholds significantly improve model 
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performance: the correlation coefficient between 

observed and estimated values increases from 0.66 to 

0.71 (improvement rate: 8%) in the testing phase for the 

streamflow model, similarly, and the correlation 

coefficient increases from 0.75 to 0.80 (improvement 

rate: 7%) for the rainfall model. In addition, rainfall 

models outperform streamflow models in terms of 

correlation and RMSE values, which coincides with the 

results of G1(1) in Table 5. The reason might be G1(1) 

is a little bit far from the Jhuoshuei River and is less 

influenced by the lateral recharge from the river, and 

thus streamflow models have less performance than 

rainfall models. Alternatively, the estimation model 

combining streamflow and rainfall as inputs performs  

the best with the correlation coefficient of 0.91 in the 

testing phase, which indicates both rainfall and 

streamflow is important information to this estimation 

model.  

 

G5(1): slow-descending type 

The best structure of the BPNN model for G5(1) has one 

hidden layer and three neurons. Observation data are 

divided into the training, validation and testing phases in 

the ratio of 6:2:2, respectively. The total number of 

groundwater level variation data for G5(1) is 1065. 

After conducting the rainfall threshold screening at the 

effective threshold of 0 mm, only 821 data remain for 

use. However the estimation results indicate that it 

makes little improvements in the correlation coefficients 

between data without and with threshold screening for 

streamflow models (0.86 to 0.87 in the testing phases) 

and rainfall models (0.77 to 0.81 in the testing phases). 

In addition, streamflow models outperform rainfall 

models, which also coincides with the results of G5(1) 

in Table 5. This is because G5(1) is located right next to 

the Jhuoshuei river and is significantly affected by the 

lateral recharge from the river. Alternatively, the 

estimation model combining streamflow and rainfall as 

inputs performs the best with the correlation coefficient 

of 0.89in the testing phase, which implies streamflow 

significantly affects groundwater level variation in this 

well even though conducting rainfall threshold 

screening does not make a big improvement in the 

estimation results of the rainfall model.  

 

G3: ladder-type 

The best structure of the BPNN model for G3 has one 

hidden layer and five neurons. Observation data are also 

divided into the training, validation and testing phases in 

the ratio of 6:2:2, respectively. The total number of 

groundwater level variation data for G3 is 1203. After 

conducting the rainfall threshold screening at the 

effective threshold of 5 mm (the 2
nd

 sudden increase in 

correlation coefficients), only 370 data remain for use. 

The estimation results indicate that conducting rainfall 

threshold screening also makes excellent improvements 

in the correlation values for streamflow models (0.25 to 

0.62, 148% improvement in the testing phases) and 

rainfall models (0.43 to 0.82, 91% improvement in the 

testing phases). Similar results are shown in RMSE 

values. In addition, rainfall models outperform 

streamflow models, which also coincides with the 

results of G3 in Table 5. This might be because G3 is 

located a little bit far from the Jhuoshuei River, and thus  

 
(a) G1(1): slow-ascending type 

 
(b) G4(1): ladder-type 

 
(c) G5(1): slow-descending type 

 
(d) G2: random type 

Fig.6. Correlation patterns of groundwater level variations versus 

rainfall 
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streamflow has less influence on groundwater level 

variations. Alternatively, the estimation model 

combining streamflow and rainfall as inputs has similar 

performance as the rainfall model with threshold 

screening in the testing phase (the correlation coefficient 

is 0.82), which also reveals streamflow has less 

influence on groundwater level variations.  

G4 (1): ladder-type 

Similar to G3, the best structure of the BPNN model for 

G4(1) has one hidden layer and five neurons. 

Observation data are divided into the training, validation 

and testing phases in the ratio of 6:2:2, respectively. The 

total number of groundwater level variation data for 

G4(1) is 1129. After conducting the rainfall threshold 

screening at the effective threshold of 7 mm (the 2
nd

 

sudden increase in correlation coefficients shown in Fig. 

6(b)), only 323 data remain for use. The estimation 

results indicate that conducting rainfall threshold 

screening makes excellent improvements in the 

correlation coefficients for streamflow models (0.37 to 

0.63, 70% improvement in the testing phases) and 

rainfall models (0.43 to 0.82, 91% improvement in the 

testing phases). In addition, rainfall models outperform 

streamflow models, which also coincides with the 

results of G4(1) in Table 5. This might be because G4(1) 

is located in a distance from the branch of the Jhuoshuei 

River and the two streamlow gauging stations of the 

Jhuoshuei River. Alternatively, the estimation model 

combining streamflow and rainfall as inputs has similar 

performance as the rainfall model with threshold 

screening in the testing phase (the correlation coefficient 

is 0.82), which also reveals streamflow has less 

influence on groundwater level variations.  

In sum, the BPNN can well estimate groundwater 

level variations, in particular for the models with both 

streamflow and rainfall as inputs, where the correlation 

values are all above 0.82 and the RMSE values range 

from 0.07 to 0.15 m in the testing phases. Groundwater 

level monitoring wells G1(1), G3 and G4(1) are located 

in  a  d i s tance  fro m the  Jhuo shuei  r iver ,  and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In sum, the BPNN can well estimate groundwater level 

variations, in particular for the models with both 

streamflow and rainfall as inputs, where the correlation 

values are all above 0.82 and the RMSE values range 

from 0.07 to 0.15 m in the testing phases. Groundwater 

level monitoring wells G1(1), G3(1) and G4(1) are 

located in a distance from the Zhuoshui river, and  

therefore they are less affected by the lateral recharge 

from the river so that rainfall models perform better than 

strealflow models at these three wells. In contrast, G5(1) 

is located right next to the Jhuoshuei River, and 

therefore it is significantly affected by the lateral 

recharge from the river so that strealflow models 

perform better than rainfall models at this well. 

 

Conclusion 

This study investigates the hydro-system at the 

mountainous area in the upstream of the Jhuoshuei 

River basin by using statistic methods and the BPNN 

based on streamflow, rainfall and daily groundwater 

level data collected during the periods of 2001 to 2010.  

This study first uses the Pearson correlation 

coefficient to analyze the relationship between 

groundwater level variation and rainfall as well as 

streamflow. Several findings are delivered: current 

groundwater level variation (t) is related to rainfall of 

the previous day (t-1) while current groundwater level 

variation (t) is related to current steamflow (t); and the 

correlation between groundwater level variations versus 

both shallow and deep groundwater level monitoring 

wells together with the geologic structures of the wells 

reveal that the low correlations of the wells (G1(1) and 

G1(2); G3 and G3(2)) imply clay layers in aquifers can 

Table 6 Estimation performance of the BPNN models with different input combinations at four groundwater level monitoring wells 

Well【 1】  Input combination 
Corr2 RMSE (m) 

training validation testing training validation testing 

G1(1)【 1, 4, 1 mm, 102.6 m】  
 Streamflow 0.67 0.66 0.66 0.08 0.07 0.10 

 Rainfall 0.77 0.76 0.75 0.06 0.08 0.07 

 Streamflow* 0.75 0.74 0.71 0.09 0.09 0.11 
 Rainfall* 0.81 0.81 0.80 0.08 0.08 0.08 

 Rainfall+Streamflow* 0.84 0.83 0.91 0.07 0.07 0.07 

G5(1)【 1, 3, 0 mm, 78.2 m】  
 Streamflow 0.83 0.83 0.86 0.17 0.15 0.13 

 Rainfall 0.81 0.82 0.77 0.16 0.18 0.19 

 Streamflow* 0.83 0.84 0.87 0.15 0.19 0.22 
 Rainfall* 0.83 0.83 0.81 0.17 0.20 0.17 

 Rainfall+Streamflow* 0.88 0.90 0.89 0.15 0.15 0.15 
G3【 1, 5, 5 mm, 24.1 m】  

 Streamflow 0.38 0.31 0.25 0.12 0.15 0.42 

 Rainfall 0.63 0.49 0.43 0.15 0.14 0.22 
 Streamflow* 0.59 0.61 0.62 0.13 0.12 0.23 

 Rainfall* 0.78 0.78 0.82 0.11 0.18 0.10 

 Rainfall+Streamflow* 0.87 0.85 0.82 0.10 0.09 0.12 
G4(1)【 1, 5, 7 mm, 52 m】  

 Streamflow 0.41 0.31 0.37 0.17 0.30 0.12 

 Rainfall 0.44 0.40 0.43 0.19 0.24 0.12 
 Streamflow* 0.69 0.65 0.63 0.16 0.13 0.14 

 Rainfall* 0.82 0.85 0.82 0.11 0.12 0.12 

 Rainfall+Streamflow* 0.89 0.93 0.82 0.08 0.11 0.15 
1Number of hidden layers, number of neurons, threshold, well depth 
2Correlation coefficient 
*Model with threshold 
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well separate shallow and deep wells, while the gravel 

layers in aquifers make the shallow and deep wells 

(G5(1) and G5(2)) have similar groundwater level 

variation trends.  

The correlations between groundwater level 

variations and rainfall with threshold screening at for 

four wells are classified into four types of patterns: 

slow-ascending type; ladder-type; slow-descending 

type; and random type. In addition, the depth and 

geological structure of groundwater level monitoring 

wells are used to access the causes of those four types. 

Then, effective rainfall thresholds affecting groundwater 

level variations are identified: slow-ascending type 

(G1(1): 1 mm); ladder-type (G3: 7 mm; G4(1): 5 mm); 

and slow-descending type(G5(1): 0 mm). 

This study investigates the groundwater recharge 

mechanism at mountainous areas by the BPNN for 

constructing estimation models of groundwater level 

variations. The results demonstrate that the BPNN 

models perform rather well because observations and 

estimations have high correlations and small RMSE 

values. The groundwater level variations of the 

groundwater level monitoring well right next to the 

Jhuoshuei River are significantly influenced by the 

lateral recharge from the river, and the streamflow 

model can better estimate than the rainfall model. In 

contrast, the groundwater level variations of 

groundwater level monitoring wells far from the 

Jhuoshuei River are less influenced by the lateral 

recharge from the river, and the rainfall models can 

outperform the streamflow models. In addition, 

estimation models with both rainfall and streamflow as 

inputs perform the best. With a more understanding 

about the interactive recharge mechanism between 

mountainous water resources and groundwater, it can 

facilitate the discussion on mountainous water resource 

conservation strategy for alleviating land subsidence in 

downstream areas, the influence of hydraulic structures 

on infiltration during rainfall events, and the functions 

of forests for soil erosion reduction in the future. 
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Abstract Phosphorus is one of the key elements 

necessary for the growth of plants and 

animals.Nevertheless, excessive phosphorus has been 

shown to be a main cause of eutrophication, whichmay 

lead to large deteriorations in water quality and trophic 

status.Total phosphate (TP) is regarded as an index 

commonly used in representation of the phosphorus 

quantity in river water. This study aims to build a model 

for estimating regional TPconcentrations and recovering 

missing TP datathrough a dynamical neural architecture 

of the NARX(Nonlinear Autoregressive with 

eXogenous input)network. The Dahan Creek located at 

the downstream of the ShihmenDam is used as a case 

study. The water quality of the Dahan Creek has 

decreased rapidly due to heavy pollutant loads from 

surrounding urban areas.The non-trivial input factors 

and structures of the NARX network configured with 

cross-validationare investigated by the Gamma test and 

Bayesian regularization method, respectively. Results 

show the proposed NARX network can suitably estimate 

regional TP concentration and effectively reconstruct 

the missing TPdata, which can provideuseful 

information to government decision makers for dealing 

with river basinmanagement. 

 

KeywordsTotal phosphate (TP), Artificial Intelligence 

(AI), NARX neural network, Gamma test, Bayesian 

regularization method, River basinmanagement. 
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Introduction 

The seasonal variation ofsteamflowin Taiwan is very 

large. In drought seasons, low flows lead to an increase 

in pollution level. Pollution in the middle and 

downstreams of rivers is a major environmental  

issuebecause many industrial facilities and large 

populated cities are located along them. 

Current water quality indexes used in Taiwan are the 

River Pollution Index (RPI) and Water Quality Index 

(WQI), designed to assess the conditions of water bodies 

in rivers, lakes or reservoirs. TheWQI is more sensitive 

than the RPI and can detect light pollution, especially in 

the Dahan Creek. Therefore, the WQI is a more suitable 

index for water quality management.The WQI 

numerically summarizes the information of multiple 

water quality parameters into a single value, including 

Dissolved Oxygen(DO), Coliform Group, pH, 

Biochemical Oxygen Demand(BOD), Ammonia 

Nitrite(NH3-N), Suspended Solid(SS) and Total 

phosphate(TP). Due to scattered watersheds over 

Taiwan and high sampling cost, it isunlikely to obtain 

continuous time series water quality data withcomplete 

properties at all sampling locations. The WQIcomprises 

water quality parameters that aresampled monthly, 

except for the TP that is sampledquarterly. 

Total phosphate (TP), a combination of 

orthophosphate, polyphosphate and organic phosphate, 

is regarded as an index commonly used in representation 

of the phosphorus quantity in river water. When 

phosphorus enters into a river, it is usually in the form 

of phosphate and is transported from upstream to 

downstream by flowing water. Orthophosphate 

chemicals are commonly used in agricultural fertilizers 

that enter surface water easily during rainfall periods. 

Polyphosphateis a primary chemical elementadded with 

considerable amount in the presence of detergents. 

Organic phosphates are basically formed by biochemical 

procedures associated with excrement, kitchen waste, 

water plants, etc. Phosphorus is one of the key elements 

necessary for the growth of plants and animals. 

Nevertheless, the anthropogenic nutrient enrichment of 

natural waters is of environmental importance as it can 

lead to declines in water quality, changes in biotic 

population structures and low dissolved oxygen 

concentrations (Duda, 1993; Carpenter et al., 1998). 

Excessive phosphorus have been shown to be a main 

cause of eutrophication, for example, naturally 

occurring nutrients in large concentrations can often 

mailto:changfj@ntu.edu.tw
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cause algae blooms (Davis and Koop, 2006; Kristiana et 

al., 2011).  

Artificial neural network (ANN) technology is a 

computational method inspired by the studies of the 

brain and nerve systems in biological organisms.In the 

last decade, ANNs have been widely applied with 

success to various water resources problems, such as 

rainfall-runoff modeling (Antar et al., 2006; Chang et 

al., 2007), flood control (Chang et al., 2008), reservoir 

operation (Chang et al., 2010; Wang et al., 2010), 

groundwater problems (Krishna, et al., 2008 ; Nikolos, 

et al., 2008), and water quality (Chaves and Toshiharu, 

2007; McNamara et al., 2008). Recurrent neural 

networks (RNNs), which belong to a class of ANNs are 

powerful nonlinear models capable of extracting 

dynamic behaviors from complex systems through 

internal recurrence and have attracted much attention for 

years (Assaad et al., 2005; Chang et al., 2012; Chiang et 

al., 2010; Ma et al., 2008; Serpen and Xu, 2003). 

Nonlinear Autoregressive with eXogenous input 

(NARX) network (Lin et al., 1996) is a subclass of 

RNNs and is suitable to build the long-term temporal 

relationship between inputs and outputs(MenezesJr and 

Barreto, 2008). NARX networks have been 

demonstrated to be well applied to several nonlinear 

systems such as waste water treatment plants (Su and 

McAvoy, 1991; Su et al., 1992) and various time series 

forecasting (Muhammad and Saeed, 2010). However, its 

feasibility as a nonlinear tool for time series modeling 

has not been fully explored yet. Therefore, this study 

will explore the practical meaning and importance of 

recurrent connections from the NARX network’s output 

when dealing with regional estimation problems. 

In this study, a regional analytical mechanism 

incorporated with a neural network and several 

advanced statistical methods is developed and applied to 

determining the non-trivial factors that control the 

fluctuations of TP concentrationsas well as building a 

model for estimating regional TP concentrations. 

Finally, the reconstructed monthly TP data through a 

process that adopts the dynamical neural architecture of 

the NARX network can be analyzed and 

comprehensively producethe WQI monthlyso that help 

authorities monitoring hydro-environment much easily 

and implementing countermeasures in time. 

 

Materials 

2.1 Study area 

Dahan Creek, one of the most polluted rivers in 

northern Taiwan. The water quality has decreased 

rapidly due to heavy pollutant loads from the Taoyuan 

County, New Taipei City and their surrounding urban 

areas. The Dahan Creek basin downstream the Shihmen 

Dam is located at the southwestern end of the New 

Taipei City and presented in Fig.1. The catchment could 

be divided conveniently into two zones, based upon 

land-use morphology. Two zones were designed as the 

upstream (Shihmen Dam to Yuanshan Weir), 

downstream (Yuanshan Weir to the confluence point 

with the Xintian Creek). The upstream sub-catchment 

presence a better water quality rather than the 

downstream because of the distinct development level of 

urbanization. 

 

Fig. 1. The Dahan Creek basin downstream the Shihmen 

Dam and seven water quality gauged stations. 

 

2.2 Data collection 

For seven gauged stations on the river channel, a 

water quality survey was carried out in each month from 

June 2002 to June 2012. Nine characteristics of the 

water quality were recorded, including acidity (pH), 

electro conductivity (EC), dissolved oxygen (DO), 

biochemical oxygen demand(BOD), chemical oxygen 

demand (COD), suspended solid (SS), coliform group 

(Coliform), ammonia nitrogen (NH3-N) , water 

temperature (temp). Total phosphate (TP) measurements 

were also taken at the same place on the river quarterly. 

And the whole quarterlydata sets are separated into two 

parts, 2002 to 2009 with 30 length of data in every 

seven gauged stations are for model calibration purpose, 

and 2010 to 2012 are used to testing the model.Table 1 

shows the statistical analysis of each water quality at 

whole study area during the period of the model 

calibration data set, 2002 to 2009, which indicates that 

the maximum TP concentration have been reached 

above 6mgl
-1

. The locations of seven gauged stations are 

indicated in Fig.1.  

A relationship between TP and other water quality 

variables in the study area are discovered by the 

correlation coefficient and shown in Fig.2. It can easily 

find out that EC, BOD, COD, SS, and DO have stronger 

relationship to TP, with correlation coefficient value 

higher than 0.5. However, these remarkable variables 

shown a similar correlation coefficient that presents they 

may not all trulyaffect fluctuations of TP in our study 

area, and can hardly determine the prominent ones to 

reduce the dimension of the model inputs.It clearly 

indicates that we need more effective method to 

determine the non-trivial factors from these water 

quality variables. 
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Table 1  
Water quality of the Dahan Creek during the model 

calibration period (from 2002 to 2009) 

Variable 

pH EC DO BOD COD SS Coliform 
NH3-

N 
temp TP 

 

μmho/cm 

25℃ 

mg/L mg/L mg/L mg/L CFU/100mL mg/L ℃ mg/L 

           
min 6.6 182 0.00 1.00 4.00 3.6 10 0.02 13.0 0.01 

max 10.4 1200 14.10 22.80 535.00 13600 6.8E07 14.40 33.6 6.88 

median 8.0 311 7.70 2.60 12.35 38.4 4750 0.36 23.5 0.13 

mean 7.9 413 6.70 5.04 23.64 560 858244 1.94 22.9 0.40 

SD
1
. 0.6 218 3.18 5.20 44.28 1832 5499257 3.12 5.4 0.79 

n 210 210 210 210 210 210 210 210 210 210 
1Standard deviation 

 

 

Fig. 2. The relationship between TP and the other water 

quality parameters (from 2002 to 2009). 

 

Methods  

3.1 Gamma test (GT) 

The Gamma test(GT),presented byAgalbjorn et al. 

(1997), can estimate the noise level in a data set and 

produce estimation directly from the data without 

assuming anyparametric form of the equations that 

govern the system. The only requirement is that the 

system should be governed by a smooth function 

because the GT will exploit the hypothesized continuity 

of this governing function.Performing a single Gamma 

test isa fast procedure, which can provide the noise 

estimate for each subset of input variables. When the 

subset for which theassociated noise estimate ( value) is 

closest to zero, it can be considered as the “best 

combination” of inputs.Recent applications have noted 

that the GT combined with ANNs can identify non-

trivial input variables effectively (Moghaddamnia et al., 

2008; Moghaddamnia et al., 2009; Noori et al., 

2011).Therefore, the GT combined with the NARX 

network is utilized to determine the non-trivial factors 

that affect thefluctuationof TP concentrationsfrom other 

nine water quality variables. 

 

3.2 Nonlinear Autoregressive with eXogenous input 

(NARX) network 

NARX is an important class of nonlinear discrete-

time systemsthat have two tapped-delay 

elementsproduced from input and output layers.We 

focus on the recurrent connection from output-delay 

terms. Fig.3 shows the architecture of the NARX 

network. It consists of 3 layers (input, hidden and output 

layers) and has recurrent connections from the output 

which may delay several unit times to form new inputs. 

   is the unit time delay, and     is the output-

memory order. Therefore, this nonlinear system can be 

mathematically represented by the following equation: 

 )();(,),1()( tUdtztzftz z 
 

(1) 

whereU(t) and z(t) denote the input vector and output 

value of the model at a discrete time step t, respectively. 

And f(‧) is the nonlinear mapping function that needs 

to be approximated by a learning algorithm. 

When the NARX network needs to be trained, it can be 

one of the following two modes. The first mode is the 

Series-parallel (SP) mode, where the output’s regressor 

in the input layer is formed only by actual values of the 

system’s output, d(t): 

 )();(,),1()( tUdtdtdftz z 
 

(2) 

The other alternative is the Parallel (P) mode, where 

estimated outputs are fed back into the output’s 

regressor in the input layer and can be mathematically 

represented as Eq. (6). 

It is common that the application of estimating target 

variables in unrecorded times by a regional model often 

has poor performance because the information of target 

variables is not always available in certain gauged 

stations. Therefore, the NARX network can be trained in 

the SP mode to construct the relationship between actual 

and estimated values of target variables. Then the 

NARX network in the P mode applied to the unrecorded 

period for improving estimation performance through 

the recurrent information, the estimating values derived 

from the model. This is the most import idea of this 

study that the recurrent connection of the NARX 

network has practical meaning when dealing with the 

estimation for the target variable in unrecorded times. 

‧
‧
‧

1
‧
‧
‧

1

1

)(1 tu )(2 tu )(tuN

)(tZ

)1( tZ)2( tZ)( ZdtZ 

Input Layer

Hidden Layer

Output Layer

 

Fig. 3. Architecture of the NARX network without 

recurrent connection from input-delay terms. 
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3.3 Bayesian regularization 

An appropriate and ideal regional ANN model is the 

one that produces small errors not only insamples from 

gauged stations but also in samples from assumed 

unrecording period. The regularization method proposed 

by MacKay in 1992 is that an objective function is 

added to improve the generalization ability of the neural 

network byconstraining the number and size of network 

weight values. The idea is based on that the true 

underlying function is assumed to have a degree 

ofsmoothnesscontrolled by network parameters, and the 

network response will be smooth as the parameters keep 

small. Thus a network is able to sufficiently represent 

the truefunction, rather than capture the noise.The 

objective function of the network in the regularization 

method is given by 

WD EEWM  )(
 

(3) 

whereED is the mean square error of network 

outputs.andEW is a penaltyterm of network complexity in 

theregularization method.  and  are regularization 

parameters that can be determined byBayesian 

techniques.Therefore, the weights ofthe network can be 

considered as random variables.Let Wbe the network 

weight vector, Dbe the sampledata, the posterior 

distribution according to the Bayes’ rule is shown as 

follows: 

),,|(

),|(),,|(
),,,|(











DP

WPWDP
DWP

 

(4) 

where         is the prior density,            is the 

likelihood function,            is the normalization 

factor, and H presents the structure of the network. 

Assuming the noise and the prior distribution forthe 

weights are both Gaussian, the probability densities can 

bewritten as: 

 )(exp
),(

1

)exp(
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1
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EE
Z
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(5) 

where 

 



 dWWMZM )(),( 

 
(6) 

From the Bayesian framework, the optimal weights 

can be derived by maximizing the posterior probability, 

which is equivalentto minimizing the regularized 

objective function shown in Eq. (3). 

The value of  and can also be optimized by applying 

the Bayes’ rule. 

)|(
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(7) 

Therefore, the values of and can then be inferredat the 

minimum WMP of M(W),which are shown as: 

)(2 MPW

p

MP
WE


 

 

(8) 
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(9) 

where   represents the effective number of network 

parameters. 

 

3.4 Cross Validation 

Cross-validation, which consists of partitioning the 

data in training and test sets, is commonly used to obtain 

a reliable estimate of the test error for performance 

estimation or for use as a model selection criterion. In 

thek-fold cross-validation for model selection, the first 

step is to assign a model parameter setting (i.e. initial 

weights, epoch numbers, number of neurons in the 

hidden layer, and output-memory orders of the NARX 

network), and then the original sample is partitioned into 

k subsamples. Among the k subsamples, a single 

subsample is retained as validation data for testing the 

model, and the remaining k-1 subsamples are used as 

training data. The cross-validation process is then 

repeated k times, with each of the k subsamples being 

used exactly once as validation data. The k results from 

the folds canthen be averaged to produce a single 

estimation. Therefore, averaged error performances 

derived from different parameter settings are compared 

to choose the most appropriate model for further testing 

the application. k is 42 in this study.  

Cross validation can produce a low-bias estimator for 

the generalization properties of statistical models, and 

therefore provides a sensible criterion for model 

selection and performance comparison, especially for 

samples that are hazardous, costly or impossible to 

collect, such as the TP concentration in this study. 

 

The proposed regional analytical mechanism is 

incorporate with four aforementioned advanced statistic 

methods for dealing with the problem of regional 

estimation, and its implementation procedure is shown 

in Fig.4. Therefore, this regional analytical mechanism 

first effectively extracts non-trivial factors that affect the 

fluctuations of TP concentrations through the GT. Then 

the NARX network is utilized to achieve more 

preciseregional estimation for the TP concentrations of 

seven stations in the unrecorded time by using the 

information of the estimated TP concentrations from 

recurrent connections, and the network complexity is 

controlled automatically by the Bayesian regularization 

method to prevent over-fitting. And the cross validation 

produces a low-bias estimator for the generalization 

properties of statistical models and provides a sensible 

criterion for model selection in the calibration stage. 

 

Results and discussion 

4.1 Determination of TP-affected water quality 

factors 
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Training data set 

from gauged stations 

in 2002 to 2009

Using Gamma test to determine the best 

input combination of water quality 

variables  

Training NARX network in Series-

parallel (SP) mode by Bayesian 

regularization method

Testing data set from 

gauged stations in 

2010 to 2012

Reconstructing the time series of TP 

concentration  and calculating WQI 

monthly

Determining proper parameter 

setting by cross validation

Utilizing the trained NARX network in Parallel (P) 

mode to estimate TP concentration

 
Fig. 4. Procedure of the proposed mechanism for 

regional analysis 

 

Sufficient data ranging from 2002 to 2009 in seven 

water quality monitoring stations are first utilized by the 

GT, and then are used for the calibration of regional 

estimation models. The data sets of nine water quality 

factors were scaled to [-1,1] at first, and a total of 2
9
-

1=511  values corresponding to all possible input 

combinations can be calculated through the GT. The 

capability and reliabilityof the GT would increase when 

analyzing a set ofresults. Ifthe frequency ofoccurrence 

of each input variable in the set ofbest results is 

examined, we areable to extract only a smallsubset of 

inputs that are actually relevant to determining the 

output variable.Therefore,   values are sorted in an 

ascending order.  values smaller than the 10
th

 percentile 

(         ) of all values are defined as the best 

results of the GT, whereas values bigger than the 90
th

 

percentile (         ) of all values are defined as the 

worst results of the GT.Fig.5 shows the results of the 

GT, where the blue bars represent the occurrence 

frequency of variables in the best results (      
)and the 

red bars represent the occurrence frequency of variables 

in the worst results (      
).As a result, non-trivial 

factors affecting fluctuations of TP concentrations are 

those with higher blue bars and lower red bars 

simultaneously and can be easily identified by the ratios 

of      
to      

, shown as the dotted line in Fig.5. The 

results of the GT demonstrate that EC and SS are non-

trivial factors that may significantly affect TP 

concentrations.The EC has certain relationship with TP 

concentrations because conductivity in water is affected 

by the presence of inorganic dissolved solids such as 

chloride, nitrate, sulfate, phosphate anions or sodium, 

magnesium, calcium, iron, and aluminum cations 

(USEPA). Therefore, the rise of TP concentrations in 

water will result in an increase in conductivity, which 

depends on the mechanism that hydrolyzes phosphorus 

in water into the form of phosphate anions.Dissolved 

inorganic phosphorus interacts strongly with sediments 

and is involved in various precipitation dissolution 

reactions, e.g., calcium carbonate phosphate and 

iron/aluminium oxide minerals (Bowes et al., 2003), 

which reveals the reason why the SS is also one of the 

non-trivial factors. It proves that although the GT cannot 

determine the specific chemicalmechanism, it can still 

effectively extract non-trivial and meaningful factors 

that affect the fluctuations of TP concentrations, which 

are difficult to identify by the traditional correlation 

matrix shown in Table 1 because the linear correlation 

cannot be extended to highly non-linear problems. 

 

Fig. 5. Determination of non-trivial factors by the GT 

results. 

 

4.2Regional estimation for TP concentration by the 

NARX network 

Traditional water quality models are either built based 

on sufficient geological field dataor constructed through 

the probabilistic theory. However a limited budget on 

monitoring programs leads to a deficiency of field data. 

Under this condition, many parameters are estimated by 

rare data, which may not fit the probabilistic assumption 

and might cause the difficulty for physical and 

probabilistic models to estimate certain water quality 

variables within an acceptable range of errors or 

uncertainty. Therefore, the NARX network is 

employedin this study to estimate the regional TP 

concentration in the Dahan Creek.  

Variables EC and SS determined by the GT in seven 

gauged stations are used as exogenous inputs to the 

NARX network. The data sets in seven gauged stations 

monitored between 2002 and 2009 are used for model 

calibration.Therefore, the NARX network in the SP 

mode trained by the Bayesian regularization method is 

calibrated by a 42-fold cross validation.The most 

appropriate NARX network comprises two inputs of 

water quality variables, two output-memory orders and 

10 hidden layer neurons, and the effective number of the 

trained network parameters,   , is 37.74. To explore the 

effective and useful NARX network in the regional 

estimation task, the backpropagation neural network 

(BPNN) that represents a classical type of ANNs is also 

implemented with a similar network structure (without 

recurrent connections) to the NARX network.The 
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BPNN trained with the Levenberg-Marquardt 

optimizationalgorithm is also calibrated by a 42-fold 

cross validation.The constructed BPNN consists of two 

inputs of water quality variables(the same as those of the 

NARX network) and six hidden layer neurons. The 

results show the average root mean square error (RMSE) 

of the NARX network in the training and validation 

phases are 0.188 and 0.375mgl
-1

, respectively, whereas 

the average RMSE of the BPNN in the training and 

validation phases are significantly increased to 0.262 

and 0.665mgl
-1

, respectively. It is worth noting that the 

effective number of network parameters,   , has been 

optimized from the original 61 to 37.74 after the 

calibration of the NARX network. This demonstrates 

that the Bayesian regularization method can effectively 

control the number of network parameters that are well 

determined by the data and can equivalently reduce the 

network size to avoid the over-fitting problem caused in 

a rather complex network structure. As a result, the 

NARX network derives acceptable resultswhen 

comparing the mean and standard deviation 

(0.40±0.79mgl
-1

) of the TP concentrations in seven 

gauged stations and has similar performance in the 

training and validation phases while the BPNN requires 

fewer hidden layer neurons to prevent the over-fitting 

problem but still performs poorly in the validation phase. 

After finishing the model calibration, the observed TP 

concentrations in seven gauged stationsfrom2010 to 

2012 are utilized to test the two constructed regional 

models, and the TP concentration data collected during 

March and June in 2010are used as the initial values of 

the output regressor in the NARX network in the P 

mode. In addition to RMSE, mean absolute error (MAE), 

Nash–Sutcliffe model efficiency coefficient (E),and the 

correlation coefficient (CC) are also used in the testing 

stage for comparison purpose. E is defined as: 


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(10) 

where   is the observed TP concentration during the 

i
th

recorded time of the same year in seven gauged 

stations,     is the estimated TP concentration during the 

i
th

recorded time of the same year in seven gauged 

stations,   represents the average of the observed TP 

concentrations of seven gauged stations in a certain year, 

and n is the length of data. 

The result of model comparison is summarized in 

Table 2. The results indicate that the NARX network 

has smaller RMSE and MAE values but much higher E 

and CC values than the BPNN. The serial estimations of 

the TP concentrations in seven gauged stations in three 

different testing years obtained from the NARX network 

and BPNN are shown in Fig.6. It indicates that although 

the NARX network has some underestimation in the 

high TP concentration, it can still well extract the trend 

of the TP concentrations in seven gauged stations in all 

three different years, whereas the BPNN can not reflect 

the fluctuation of the TP concentrations in most gauged 

stations. The BPNN even produces a reverse trend when 

being compared with observed TP concentrations time 

series, especially in the downstream gauged stations 

with higher TP concentrations. Fig.7 shows the scatter 

plots of observed and estimated TP concentrations for 

2010 up to 2012, which are derived from the NARX 

network and the BPNN. The estimation values derived 

from the NARX network are close to the ideal line and 

only have some underestimated points at high values. 

However the BPNN has poor estimation ability when 

the TP concentration is higher than 0.2 mgl
-1

.Therefore, 

the NARX network can adequately utilize the 

information of model outputs through recurrently 

connecting to the network itself. The NARX network 

coupled with the Bayesian regularization methodshows 

an impressive generalizability and derives reliable 

estimation of regional TP concentrations when 

comparing the mean and standard deviation of the TP 

concentrations in the whole gauged stations in three 

different testing years and four aforementioned 

performance criteria. 

 

4.3Reconstructing the time series of TP 

concentration and calculating WQI 

From the previous section, the NARX network can 

provide reliable point estimation and extract the trend of 

TP concentration in seven gauged stations. Therefore, it 

can be utilized to reconstruct the time series of TP 

concentrations from quarterly to monthly monitoring 

scale. Figure 8 shows the reconstructed monthly time 

series and quarterlymonitoredtime series of the TP 

concentrations in seven gauged stations from 2010 

to2012. It reveals that the TP concentrations in two 

gauged stations (S6 and S7) which located relatively 

close to the downstream, have intensive oscillation 

inalmost every month, which cannot be easily detected 

based only on quarterly data. Moreover, the monthly 

WQI can then be calculated (Fig.9). It also indicates that 

the WQI scores are at the level of either bad or poor 

water quality in S6 and S7 in almost every month. Such 

clear and powerful information can be provided to the 

government for making more management effortsin 

these two gauged stations and their surrounding areas. 

 

Conclusion 

In this study, a regional analytical mechanism 

incorporated mainly with a neural network and four 

advanced statistical methods is developed and applied to 

the estimation of TP concentrations in the Dahan Creek. 

It is difficult to identify non-trivialfactors by traditional 

correlation matrix because of the highly nonlinearity or 

unknown complex mechanisms in certain parts of the 

study area. Therefore, the GT is first used to effectively 

extract non-trivial and meaningful factors (EC and SS 

variables) from a large number of possible input 
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Table 2 

Performance of the NARX network and the BPNN for 

TP concentration estimation in seven gauged stations 

from 2010 to 2012 

  

RMSE 

(mgl-1) 

MAE 

(mgl-1) 
E CC 

Mean 

(mgl-1) 

SD1. 

(mgl-1) 

NARX 

network 

Estimation 

in 2010 
0.075 0.052 0.86 0.95 0.222 0.210 

Estimation 

in 2011 
0.151 0.102 0.73 0.92 0.237 0.297 

Estimation 

in 2012 
0.057 0.037 0.79 0.90 0.147 0.130 

BPNN 

Estimation 

in 2010 
0.230 0.144 -0.30 0.25 0.222 0.210 

Estimation 

in 2011 
0.276 0.181 0.11 0.40 0.237 0.297 

Estimation 

in 2012 
0.136 0.102 -0.18 0.25 0.147 0.130 

1Standard deviation 

 

 

(a) 

 

 

 

 

 

 

 

(b) 

 

 

 

Fig.6. Serial estimation of the TP concentrations in 

seven gauged stations in three different testing years by 

(a) NARX network and (b) BPNN 

 

Fig.7. Scatter plots of observed and estimatedTP 

concentrations derived from the NARX network and the 

BPNN in seven gauged stations from 2010 to 2012. 

 

combinations that affect the target variable (TP 

concentration). Then the NARX network trained by the 

Bayesian regularization method adequately utilizes the 

information of model outputs through recurrent 

connections to the network itself for estimating the 

target variable at unrecorded period, which solves the 

over-fitting problem and improves the generalization 

ability of network models. Besides, cross validation can 

produce a low-bias estimator of the generalization 

properties of network models and provide a sensible 

criterion for model selection and performance 

comparison in the calibration stage of network models. 

In the calibration and testing stages, the NARX network 
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(a) 

 
(b) 

 
 

(c) 

 
Fig. 8. Reconstructed monthly time series and quarterly 

monitored time series of the TP concentrations in seven 

gauged stations from (a) 2010 to (c) 2012. 

 

Fig. 9. Reconstructed monthly WQI in seven gauged 

stations from 2010 to 2012. 

 

has much better performance than the BPNN, which 

proves the importance of the information of model 

outputs in the problem of regional estimation. Finally, 

the constructed NARX network can be utilized to 

reconstruct the time series of TP concentrations from 

quarterly to monthly monitoring scale, which is 

meaningful and helpful for the government to make 

more efforts on those gauged stations and their 

neighborhood that have intensive oscillation of TP 

concentrations. We believe that the proposed regional 

analytical mechanism can be easily and appropriately 

applied to regional estimation problems for estimating 

missing, hazardous or costly data in other study areas, 

which needs to be further explored in our future works. 
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