

Brazilian Sustainable Remediation Forum

Fórum Brasileiro de Remediação Sustentável

Brazilian Sustainable Remediation Forum

- First meeting held on October 18, 2010
- Founding members:
 - AECOM
 - BASF
 - CETESB (São Paulo State Environmental Agency)
 - DuPont
 - Shell/Cosan
- President: Sander Eskes (AECOM)

Brazilian Sustainable Remediation Forum (cont'd)

- Organization
 - Based on social networks interactivity
 - Focus on knowledge transfer to external users (i.e., non-members)
 - Organized around discussion groups (technical, legal, etc.)
 - Meetings are held 3 times per year (discussion groups more often)
 - No formal organizational structure
- Interaction with government agencies and industry
 - Close cooperation with São Paulo State Environmental Agency (CETESB)
 - Limited interaction with industries through branch organizations
- Interaction with the public
 - Mouth-to-mouth advertising (advocacy)
 - Blog (mostly accessed over the weekend)
 - Social networks (Facebook / LinkedIn / Twitter)

Brazilian Sustainable Remediation Forum (cont'd)

- Policy making (state level)
 - Technical discussion groups
 - Legislative forums
- Key documents
 - White paper
 - Translations and adaptations of CLU-IN guideline documents (www.clu-in.org)

Tools

- AFCEE Sustainable Remediation Tool (SRT™)
- Various carbon tools
- Remediation cost estimation tools (RACER™, etc.)
- Bow-Tie risk analyses tools (THESIS™, etc.)

Forum participation

Members on distribution list (September 2012): 34

Milestones

 Selection of forum name and logo: Fórum Brasileiro de Remediação Sustentável (*Brazilian* Sustainable Remediation Forum) in January 2011

- Incorporation of sustainability concepts in São Paulo State Environmental Law 13.577, February 2011.
- Creation of an official blog in April 2011: http://foresbr.wordpress.com
- Organization of a roundtable discussion and workshop on Sustainable Remediation at the CIMAS II conference in São Paulo, October 2011.
- Application of Bow-Tie technology (ongoing)

Blog http://foresbr.worldpress.com/

Blog visitors since Jan 2011: 4000

What matters in Brazil?

Relative importance of Sustainable Remediation aspects in Brazil - Poll among 30 participants at a workshop in São Paulo - Nov 2011

Key issues in Brazil

Sustainable land management (Source: SURF-UK)

Calculating the Monetary Value of a Remediation Alternative

Not all monetary values can be calculated directly...

Economic values

- -Negative(CAPEX, O&M, NPV, etc.) ► Calculate \$
- +Positive (e.g., return on investment) ► Calculate \$

Environmental values

- -Negative
 - Water & energy costs ➤ Calculate \$
 - Ecological impacts
 ▶ Determine risk levels
- +Positive
 - Carbon credits ➤ Calculate \$
 - Return from materials re-use ➤ Calculate \$

Social values

- -Negative (community impacts, H&S risks) ▶ Determine risk levels
- +Positive (local benefits, benefits to society) ► Calculate \$

How to compare dollar values and risk levels?

Proposed solution:

- 1. Determine the <u>net monetary value</u> of those aspects that can be calculated directly
- 2. For all other aspects, perform a Bow-Tie Risk Analysis and calculate the cost of managing the risk.

How is risk quantified?

 Statistically, the level of risk can be calculated as the product of a) the <u>probability</u> that harm occurs; and b) the <u>severity</u> of that harm.

	CONSEQUENCES				LIKELIHOOD				
SEVERITY			Environment	Reputation	1	2	3	4	5
	People	Asset			Very Unlikely	Unlikely	Possible	Likely	Very Likely
1	No/ Slight Injury	No/ Slight damage	No/ Slight effect	No/ Slight Impact	Low	Low	Low	Low	Low
2	Minor Injury	Minor damage	Minor effect	Limited Impact	Low	Low	Low	Medium	Medium
3	Major Injury	Local damage	Local effect	Major Impact	Low	Low	Medium	Medium	High
4	Fatality	Major damage	Major effect	Nat. Impact	Low	Medium	Medium	High	High
5	Multiple fatalities	Extensiv e damage	Massive effect	Internat. Impact	Medium	Medium	High	High	High

What is a bow-tie diagram?

Assessing the Risk

The risk can be assessed by selecting a category from a risk matrix

 Risk matrices are surprisingly uniform throughout the world, when following Best Management Practices (BMP)

Creating a bow-tie diagram

 A bow-tie diagram shows how a "top event" will be prevented and mitigated.

How to apply this to Sustainable Remediation:

- We can calculate a bow-tie diagram for all the top events associated with a particular remediation alternative
- The risk management costs are calculated as the sum of the installation and maintenance costs of all prevention and mitigation barriers
- This cost is added to the remediation alternative as a negative monetary value

Using Bow-Tie, we can now associate a monetary value with social and ecological impacts (defined as the cost for prevention and mitigation)

Economic values

- Negative(CAPEX, O&M, NPV, etc.) ➤ Calculate \$
- + Positive (e.g., return on investment) ► Calculate \$

Environmental values

- Negative
 - Water & energy costs ➤ Calculate \$
 - Ecological impacts
 ► Bow-Tie
 ► Calculate
- + Positive
 - Carbon credits ➤ Calculate \$
 - Return from materials re-use ➤ Calculate \$

Social values

- Negative (social impacts, H&S risks) ➤ Bow-Tie ➤ Calculate \$
- + Positive (local benefits, benefits to society) ► Calculate \$

Advantages of proposed methodology

- Methodology avoids subjectivity, or having to make political choices
- Risks assessments and the associated costs of implementing and maintaining the risk barriers can be based on BMPs that are widely accepted
- Besides social impacts, it's possible to incorporate ecological risks, H&S risks, etc.
- We do not have to make questionable choices between risks, in other words, we never have to compare risks directly (e.g., a "cancer slope factor" versus "the risk of having a diver accident")

Thank you!

Sander Eskes

Tel. +55 11 3627 2054 Cel. +55 11 9 8922 0003 sander.eskes@aecom.com

AECOM

Rua Antônio das Chagas, 133 04714-000 – São Paulo – SP – Brazil www.aecom.com

