

Outline of the Presentation

- Status of Brownfield Site Contamination
- Problems and Challenges
- Risk Based Contaminated Land Framework
- HERA Software Introduction
- Recent Activities
- Platform for Collaboration
- Summaries

Status of Brownfield Site Pollution (HERA)

Relocation of Contaminated Sites Intensified

Beijing: 200 sites within the 4th Ring Road were relocated and subjected redevelopment (8 km²) – Beijing Olympic Action Plan

Shengyang: 56 polluted sites were subject to relocate in 2008; Relocate all heavily polluted industries in 2009.

Jiangsu Province: 400 chemical works were relocation to suburbs, 1000 small scale were shut down between 2000 and 2005

Chongqing: 112 sites in urban

areas in 2010

Guangzhou: 147 large scale industries shut down subject to relocation in 2007

Status of Brownfield Site Pollution (HERA)

Presence of High Risk Sites

- 1000 Pesticides Manufacturing Sites (44 containing POPs)
- 80 Mining waste sites, no prevention measures
- **Numerous Chemical Works**

Pressure on Realizing Land Values

- Sites Dismantled and Demolished on Relocation
- Frequent Environmental Incidents
- Complicated Site Histories
- Groundwater Investigation being Largely Ignored

Relocation of Polluters Leading to Large Quantity of Sites

 86,000 corporations shut down or relocated during 2001-2007

 300,000 industrial corporations in China, 40% in urban areas, posing serious threat to human health and the environment

Lack of Relevant Chinese Guidelines

- 1. Technical Guidelines for Site Environmental Investigation (Draft)
- 2. Technical Guidelines for Site Environmental Monitoring (Draft)
- 3. Technical Guidelines for Risk Assessment for Contaminated Sites (Draft)
- 4. Technical Guidelines for Soil Remediation for Contaminated Sites (Draft)

Understanding the Threat of Site Contamination

Soil and Groundwater Contamination Sources

- Human Health
- **Water Environment**

Catching Up with the Rest of the World (Mainly Europe and USA)

Complete Removal

- 1. Difficult to achieve
- 2. No need to do so

Risk based remediation framework that focuses on the selection of techniques and environmental effects More attention on sustainability that balances on remediation and economy

Based on CL:AIRE Presentation

Trends in Selecting Groundwater Remediation (FY 1986-2008)

 Groundwater ICs and Other includes institutional controls and other components not classified as treatment, MNA, or containment, such as monitoring and alternative water supplies.

GW In Situ Treatment

- GW Containment (Vertical Engineered Barrier)
- Groundwater ICs and Other remedy components selected prior to FY 1998 may be under-represented in figure.
- · RODs and decision documents may be counted in more than one category.
- RODs from FY 1986—2004 include RODs and ROD amendments.

History of ASTM RBCA Development

Guidance	1989	1995	1998	2000	2002	2004	2005	2006
USA	USEPA RAGS	ASTM E1739 Petroleum RBCA	ASTM P104 Chemical RBCA	ASTM E2081 Chemical RBCA	No	New Gu	uidance olished	e being

History of UK CLEA Development

Relevant Chinese Guidelines

- 1. Soil Quality Standards for Industrial Sites 1999
- 2. Technical Guidelines for Risk Assessment for Contaminated Sites (Draft) 2009
- 3. Risk Assessment Tool HERA (August 2012)

Human and Environmental Risk Assessment Software

Key Features

- **➤ Windows Based Software Using Visual Studio (C#)**
- **►**User Friendly Interface, High Stability and Fast Calculation

Process

- **➤ Multi-Tiered Risk Assessment System**
- >Toxicity and MCL Based Soil and Groundwater Assessment
- **▶** Derivation of Generic and Site Specific Assessment Criteria
- **➤**Multi-Tiered Database Management
- **▶** Implementing CL: AIRE & CIEH Statistical Guidance

Exposure Pathways Included

Exposure pathways	USA UK RBCA CLEA		China HERA	
Plant Uptake	V	√	√	
Soil Ingestion	√	√	√	
Dermal Contact	√	√	√	
Indoor Dust	X	√	√	
Outdoor Dust	√	√	√	
Indoor Vapour	V	√(Only Soil)	√	
Outdoor Vapour	V	√(Only Soil)	√	
Soil Leaching	√	X	√	
Air dispersion	√	X	√	
Groundwater Migration	√	X	√	

HERA Software Introduction (HERA)

Exposure Pathways	Contaminant Transport Models
Plant Uptake	Ryan Model; Trap Model; PRISM Model
Inhalation of Indoor Particulates	USEPA Q/C Model; ASTM Model
Inhalation of Otdoor Particulates	USEPA Q/C Model; ASTM Model
Inhalation of Outdoor Vapour (Surface Soil)	ASTM Model; USEPA Q/C Model
Inhalation of Outdoor Vapour	Johnson-Ettinger Model
(Subsurface Soil)	Johnson-Ettinger & Mass Balance Model
Inhalation of Indoor Vapour	Johnson-Ettinger Model
(Subsurface Soil)	Mass Balance Model & Johnson-Ettinger Model
Soil Leaching	ASTM Model; SAM Model with Biodecay
Inhalation of Groundwater Vapour (Outdoor)	ASTM Model
Inhalation of Groundwater Vapour (Indoor)	Johnson-Ettinger Model
Air Dispersion (offsite)	3D Gaussian Dispersion Model
Groundwater Migration (offsite)	Domenico Model with First-Order Decay

Recommended Software Architecture for Undertaking Risk Assessment

The First International Workshop on Site Remediation November 22nd to 24th 2010

Policies Technologies Funding Mechanism

The First Training Course for Soil and Groundwater Risk Assessment Using RBCA June 13th to 15th, 2011, Nanjing, China

Hands-On Training for RBCA Tool Kit V2.5

Organiser: Key Laboratory of Soil Environment and Pollution Remediation

Supporting Organiser: GSI Environmental Inc, Texas, USA

The First Soil and Groundwater Risk Assessment RBCA Training June 13 to 15th 2011

- Risk Assessment Fundamentals
- Fate and Transport Modelling
- Collation of Physio-Chemical and Toxicity Parameters
- **RBCA Interface Introduction**
- Derivation of Generic and Site-Specific Assessment Criteria
- Comparison of International Risk Assessment Guidelines
- Developing Chinese Specific RBCA Model

Application of Statistical Tools

No. of Attendees	120
Government	28
Universities	20
Research Institutes	22
Consulting	50

The Second International Workshop on Site Remediation September 22nd to 24th 2012

The Workshop on Site Investigation, Assessment and Remediation December 3rd 2012

The Second Training Course for Soil and Groundwater Risk Assessment Using HERA December 4th to 5th, 2012, Nanjing, China

Organiser: Centre for Site Remediation, Institute of Soil Science, CAS Nanjing Kaiye Environmental Technology Ltd

The Second Soil and Groundwater Risk Assessment HERA Training December 4th to 5th 2012

- Risk Assessment Principles
- Fate and Transport Modelling
- Collation of Physio-Chemical and Toxicity Parameters
- HERA Interface
- Derivation of Generic and Site-Specific Assessment Criteria
- **Example Application**

No. of Attendees	100
Government	15
Universities	25
Research Institutes	20
Consulting	40

Special Publication on Contaminated Land Management

- Contaminants of Concern and Adverse Environmental Impact for Key Industries
- Comparison of USA, UK and Chinese Risk Assessment Guidelines and the Implications for China
- Theory and Common Used Models for the Derivation of Soil Generic Assessment Criteria for Contaminated Sites
- Natural Attenuation Mechanisms and the Status of Nano-iron Technology for the Remediation of Chlorinated Solvents in Groundwater

Platform for Collaboration

- SuRF China in 2013, SITEREM 2014, ICCL 2015
- Developing Chinese Soil and Groundwater Remediation Network

http://www.CSGR.net

Summaries

- Slowdown of Redevelopment Needs
- Establishing Risk-Based/Sustainable Contaminated Land Management Framework
- Learning from USA and European Experience
- Providing Opportunities for Business and Research (Remediation Technologies and Equipments)
- Leading to Safe and Sustainable Brownfield Redevelopment

