L:個人研究

L.1 Slides - The Application of GoldSim

The application of GoldSim

Chih-Lung Chen 2012.11.02

Institute of Nuclear Energy Research

What is GoldSim ?

GoldSim was developed by Golder Associates Inc. It is a modular and iconified software. User can simulate nuclide/mass transport easily. The probabilistic analysis is one of its powerful functions.

Institute of Nuclear Energy Research

What is Go	oldSim - Source
3.14 Image: Carrier Failure Dummy Canister Dummy_WasteForm Outer Barrier Failure Image: Carrier Failure Image: Carrier Failure < Previous Mode Failure Mode 1 of 1 Next Mode >> Description: Image: Carrier Failure Image: Carrier Failure Image: Carrier Failure	Source Properties : Canister Definition Element ID: Canister Description: Properties Number of Packages: 4000 Barriers: single Outer Barrier # Packages failed by events: Inventories Number of Inventories: 1
Effective Time: ETime Probability: I Distribution: Uniform Failure Mode Deff Weibull Exponential Duration: User Defined Immediate Table View Current View Combined	Inventory Cells Cell Balance Fraction of Balance Dummy_WasteFor Add Cell Delete Cell Save Source Results Final Values Time Histories Ungmosed Mass in Source: Ctimulative Releases to Inventory Cells: Number of Failed Packages:
Add Failure Mode Delete Failure Mode Help Close	確定 取消 説明

Transport – Pipe module

****	Pipe Pathway Propertie	s:Pipel 🔀	Pipe Pathway Properties	: Pipe1 🛛 🗙
	Definition Inflows Outflows		Definition Inflows Outflows	
	Element ID: Pipel	Appearance	List of Outflows	
· · · · · · · · · · · · · · · · · · ·	Description:	Solid Properties : Geo	osphere	Medium Er
Frac	Basic Pipe Properties	Definition		
	Length: 50.0 { m	Element ID: Geosphere		
pipe module	Area: 23.010.23 Perimeter: 20.0 {m}	Description:	Geosphere	
	Dispersivity: 5.0 {m}	Solid Properties		
	Infill Geosphere	Dry Descity: 2.6e3(kg/m3)	Display Units	Previous Value Link
	Cumulative Input:	Porosity: 0.075		
	Source Zone Length: 0(1)	Tortuosity: 1		
Pipe1	Advanced Pipe Properties	Partition Coefficients: Local Vector	Edit Clr m3/kg	
••••	Coating	Advanced Pro	perties	J Save lime Histories
	Matrix Diffusion Zones.	Save Results		
	Save Masses and Concentrations in Pathway	Einal Values	Time <u>H</u> istories	
	Concentrations: 🗌 Final		能明 定 取消 説明	
· · · · · · · · · · · · · · · · · · ·	1			
**•				
Institute of Nuclear Ene	ray Pasaarah			
institute of Nuclear Ene	rgy Research			6

	ransport -	Fracture Set	Properti	es : FractureS	
and the second s		Description:			
		Basic Fracture Set Prop	perties		
│ ▶_,~(Dispersivity:	.01{m}		
Fracture	Set2	Fluid Saturation:	1		earance
Tractar		Advanced Fracture Set	Properties		
********	and the second sec	Coating	g	Suspended Solids	
		Matrix Diffusio	on Zones	Stagnant Zone	
	Fracture Network		確定	取消	
	Number of Pipes in the network: 7 Pipe Length Flow Area Awe	t T Properties S	Source Sink	Upstream Paths	Downstream Paths
	1 7 0.0015768 0.0005 7.014 2 9 0.0015768 0.0005 9.018	0.003154 fractureset2 ap	el		2
Dipo1	3 10 0.0015768 0.0005 10.02	0.003154 fractureset2		2	4
Fibel	4 11 0.0015768 0.0005 11.022	0.003154 fractureset2		9	5
	5 12 0.0015768 0.0005 12.024 6 13 0.0015768 0.0005 13.026	0.003154 fractureset2 0.003154 fractureset2			6
	7 14 0.0015768 0.0005 14.028	0.003154 fractureset2	well é	5	
					əs
	Ald Pires Dolot Pires	Torono on Managada 1 - Mar	u Minorah 1	Notwork 1 of 1	>

Transport – Cell module

Cell Pathway Properties : Well	X	Cell Pathway	Properties	s : Well	×
Definition Inflows Outflows Diffusive Fluxes	1	Definition Inflows Outf	lows Diffusive Fluxe	es	
Element ID: Appearance		List of Inflows			
Description:		From Pathway	To Pathway	Medium	
Media in Cell		INCOVERAULZ	W CLI	w attr	
Watter 250(m3)	<u> </u>				
Soil 575000(kg)	m				
Selected Medium		Add Inflow	Delete Inflow	🦳 Previous Value L	ink
🗖 Save Final Concentrations 👘 Save Concentration Histories					
		Properties of Selected Ir	iflow		
Cell Inventory		Inflow: Well.W	ater_from_NetworkPa	ath2	
Cumulative Input:	-	Flow Rate: 0.0015	768{m3/yr}		
Discrete Changes: Multiple		Species flux rates:	Save Einal Value	s 🦳 Save Time <u>H</u> istories	
Source Association	-				
none 🔽 Do not associate with Source					
Save Masses in Pathway		4			
🥅 Einal Values 📄 Time Histories					
				·····································	=+38F
					ax99

What is Go	oldSim - Probability
GoldSim - Constant Source compare with C. CH-DLL Cr.gsm Ele Edit View Insert Craphics Model Help Image: Constant Source Compare with C. CH-DLL Cr.gsm Image: Constant Source Compare with C. CH-DL Cr.gsm Image: Constant Compare with C. CH-DL Cr.gsm <	Simulation Settings Model Author Name: Analysis description: Image: Dynamic Model - Time Options Image: Timestep 700 Customize Timesteps Timestep length: 1000.00000 yr Date-time Start date-time: 1999/9/13 上午 09:32:49 End date-time: 1999/9/13 Image: Duration: 7000000 (yr) Time display units: yr Monte Carlo options Max. Histories to save: Simulation Run Mode: Run All Realizations Options Max. Histories to save: Use Latin Hypercube Sampling Random seed: 1 Expected result size: 397 MB OK Cancel Help
Institute of Nuclear Energy Research	9

1-D mass transport

1-D mass transport

Conclusion(1)

- Boundary condition of GoldSim pipe module is a semi-infinite boundary
- Developing and confirmed the <u>Dynamic Link</u> <u>Library (DLL) function in GoldSim can help user</u> to connect other software (ex. AMBER)
- Applied DLL of GoldSim to enhance pipe module [Semi-infinite boundary→infinite boundary]

Advection-Dispersion (pipe module)

Advection-Dispersion Model (AD Model) ---Continuous model

 Based on mass balance principle. The governing equation derived from finite difference method. It is not necessary to assume a well mixed volume element. Generally used to simulate nuclides/ contaminant transport behavior in groundwater.

Compartment Model (cell module)

Multi-Compartment model (MC model) ---Multi-box model, Tank-in-series model, Discrete model

 Based on mass balance principle, too. It sliced the pathway into several element with equal volume or not. It assumed that mass flow into the volume element, it mix well immediately. Generally used to simulate nuclides/contaminant transport behavior in river or lake.

AMBER

- AMBER was developed by Enviros and Quintessa, and supported by ENRESA, JAEA and SKI etc.
- Nuclides/contaminant migration in Biosphere are simulated by compartment model
- It can apply to the three phases (solid, liquid and gas) simulation and perform probabilistic analysis

Institute of Nuclear Energy Research

GoldSim V.S. AMBER (1)

GoldSim V.S. AMBER (2)

Conclusion (2)

- AMBER is a compartment model that is similarly as cell module in GoldSim. In viewpoint of safety assessment, the biosphere assessment were simulated by AMBER can be done by GoldSim cell module directly. This will avoid the difficult or mistake between two software.
- The compartment model is different from the advection-dispersion model. When we performed safety assessment, we should choice reasonable model corresponding to environmental condition.

Institute of Nuclea	Energy Research
---------------------	-----------------

Institute of Nuclear Energy Research

Case study

Common parameters :

- Porosity : 0.1
- Cross-section : 1 m²
- Diffusion coef. : 10⁻⁹ m²/day
- Not consider decay effect

Institute of Nuclear Energy Research

Case (B) – velocity

The influence of groundwater velocity (u) [mixing degree] to the numbers (N) of pipes or cells

- Length : 200 m
- Dispersivity: 1 m

Institute of Nuclear Energy Research

Case (C) – complex

According to the previous results, we get the relationship (N=Lu/2D) between cell and pipe modules. Here, we assumed two sets parameters to prove the formula.

- (a) Length (L) : 100 m
 Velocity (u) : 0.01 m/day
 Dispersivity (α) : 0.1 m
 Numver (N) : 500
- (b) Length (L) : 200 m
 Velocity (u) : 0.01 m/day
 Dispersivity (α) : 10 m
 Numver (N) : 10

Dispersivity

Q: Does dispersivity value change with the pipe number?

Cell number

Q : more cell number is more accurate !

- The results of more cell number does not close to the results of the pipe.

-pipe module (AD model) : mainly be used for groundwater or fracture mass transport.

-cell module (MC model) : mainly be used in river, ocean or air mass transport.

 In GoldSim, cell module and pipe module have the relationship ,Lu/2D. More cell number does not benefit for the accurate of results but only time-consuming.

Conclusion(3)

- By case (A) : specific cell number is necessary. More cells is just time-consuming.
- By case (B) : the velocity or source type does not change the simulation results of specific cell numbers to AD model.
- By case (C) : if someone wants to simulate mass migration behavior in groundwater by GoldSim cell module, the cell number should match the formula of Lu/2D.

GoldSim - FracMan

GoldSim can connect PAWorks module of FracMan to simulate nuclide migration in fracture networks. PAWorks includes all major pathways which were analyzed by FracMan.

GoldSim-Dashboard

Safety assessment model in GoldSim can transfer into a dashboard that let people to change parameters by themselves and gain the analysis result immediately. This can help people to increase their confidence of safety assessment.

Institute of Nuclear Energy Research

43

Process model V.S. assessment model

Process model

- Focus on performance assessment of partial system
- To gain material characteristics by software detail calculation or experiment
- FEHM : a finite element analysis software to simulate a saturated groundwater flow field and nuclide migration

Assessment model

- Focus on probability analysis of total system
- Calculate potential max. dose rate (concentration) by multirunning
- GoldSim : a probability analysis software

Institute of Nuclear Energy Research

Institute of Nuclear Energy Research

Particle tracking of FEHM

	Flow line	F	Н	J	L	
	Case A (k=10 ⁻⁹ m ²)	2.066	1.778	1.553	1.369	
	Case B (k=10 ⁻¹⁰ M ²)	20.660	17.780	15.530	13.690	
Travel	Case C (k=10 ^{-10.5} m ²)	41.320	35.560	31.070	27.380	
(day)	Case D (k=10 ⁻¹¹ M ²)	206.600	177.800	155.300	136.900	
	Case E (k=10 ⁻¹² m ²)	2066.000	1778.000	1553.000	1369.000	
	Case F (k=10 ^{-12.5} m ²)	4132.000	3556.000	3107.000	2738.000	
Path length (m)	Case A \sim Case F	297.8	278.2	260.8	244.8	
velo	velocity(V) = $\frac{\mathbf{k} \rho \mathbf{g}}{\mu} \cdot \frac{\Delta \mathbf{h}}{\Delta \mathbf{L}}$					
Institute of Nuclea	r Energy Research				5	

Concentrations

Modified cross section in Goldsim

54

F	Pipe module	Pipe_Obs_1	Pipe_Obs_2	Pipe_Obs_3	Pipe_Obs_4
	Case A (k=10 ⁻⁹ m ²)	10.540	10.590	11.250	12.550
	Case B (k=10 ⁻¹⁰ m ²)	10.500	10.500	11.300	12.500
Cross	Case C (k=10 ^{-10.5} m ²)	10.566	10.592	11.255	12.550
(m ²)	Case D (k=10 ⁻¹¹ m ²)	13.000	13.100	14.000	15.700
	Case E (k=10 ⁻¹² m ²)	7.800	8.100	8.900	10.500
	Case F (k=10 ^{-12.5} m ²)	5.570	5.770	6.383	7.467

Institute of Nuclear Energy Research

Comparison of concentration

Modified research

- Chen(2009) did not consider decay effect
- Each nuclide with different decay half-life. After migration, the nuclides concentration will be different because of decay effect.
- Does the assessment model of daughter nuclide (which is producted from its parent nuclide) be same with the assessment model of parent nuclide?

CO-60[5.27 yr] Cs-137[30.04 yr] Sr-90[28.74 yr] → Y-90[64.01 hr] $Pu-241_{[14.70 yr]} \rightarrow Am-241_{[432 yr]} \rightarrow Np-237_{[2.14\times10^{6} yr]}$

Institute of Nuclear Energy Research

Cross section- Case B (k=10⁻¹⁰ m²)

Nuclides	Half-life	Pipe_Obs_1	Pipe_Obs_2	Pipe_Obs_3	Pipe_Obs_4
Co-60	5.27 yr	10.52	10.58	11.25	12.56
Cs-137	30.04 yr	10.53	10.57	11.24	12.55
Sr-90	28.74 yr	10.53	10.58	11.24	12.55
Y-90	64.01 hr	10.52	10.53	11.13	12.31
Pu-241	14.70 yr	10.52	10.58	11.25	12.55
Am-241	432 yr	10.97	10.54	10.71	11.40
Np-237	2.14×10 ⁶ yr	10.95	10.12	9.86	10.04

Chen (2010)

Conclusion (4)

- Even it has different concentration distribution between process model (FEHM) and assessment model (GoldSim). But they have same maximum concentration value.
- GoldSim pipe module by justified cross section can simplify complicate process model of FEHM. It is validated by cases study to prove this methodology which can construct a representative assessment model.

References

- Bajracharya, K. and D.A. Barry, 1992, Mixing cell models for nonlinear equilibrium single species adsorption and transport, Journal of Contaminant Hydrology, Vol. 12, p.227-243.
- Bechtel SAIC Company, 2003, Total System Performance Assessment-License Application Methods and Approach, TDR-WIS -PA-000006 REV 00 ICN 01
- Chen, C.L., S.I. Su and Y.C. Liu, 2005, Verification and modification of the mass transfer pipe module in GoldSim, monthly journal of Taipower's engineering, vol.688, p.100-110. (In Chinese)
- Chen, C.L. and J.C. Lai, 2007, Application of Dashboard in GoldSim platform to Public Communication, Taipower Nuclear, Vol.295, p.26-38. (In Chinese)
- Chen, C.L. and J.C. Lai, 2008a, Study on compartment mass transport model(AMBER) and pipe mass transport model(GoldSim), Taipower Nuclear, Vol.302, p.28-43. (In Chinese)
- Chen, C.L. and J.C. Lai, 2008b, Development and Verification the simulation technology of Discrete Fracture Network in GoldSim platform, Taipower Nuclear, Vol.307, p.38-57. (In Chinese)
- Chen, C.L., 2009, Technology Verification of Develop Representative Assessment Model for Radioactive Waste Disposal, Taipower Nuclear, Vol.317 p.21-38. (In Chinese)
- Chen, C.L., 2010, Technical Development of Multiple Radioactive Nuclides Assessment Model for Radioactive Waste Disposal, monthly journal of Taipower's engineering, vol.750, pp.41-51. (In Chinese)
- Chen, C.L., 2012, Analysis of Character Difference of Cell Module and Pipe Module in GoldSim, monthly journal of Taipower's engineering, vol.762, pp.1-13. (In Chinese)

Institute of Nuclear Energy Research

References

- DOE, 1998, Viability Assessment of a Repository at Yucca Mountain, Volume 3: Total System Performance Assessment, DOE/RW-0508/V3.
- JNC, 2005, H17: Development and management of the technical knowledge base for the geological disposal of HLW -- Knowledge Management Report, JNC TN1400 2005-022.
- Sardin, M., D. Schweich, F.J. Leij and M.T. Van Genuchten, 1991, Modeling the nonequilibrium transport of linearly interacting solutes in porous media: a review, Water Resources Research, Vol. 27, No.9, p.2287-2307.
- Shanahan, P. and D.R.F. Harleman, 1984, Transport in lake water quality modeling, Journal of Environmental Engineering, Vol. 110, No.1, p.42-57.
- Van Ommen, H.C., 1985, The "mix-cell" concept applied to transport of non-reactive and reactive components in soils and groundwater, Journal of Hydrology, Vol. 78, p.201-213.
- Wang, G.T. and S. Chen, 1996, A new model describing convective-dispersive phenomena derived by using the mixing-cell concept, Appl. Math. Modelling, Vol.20, p.309-320.

Thank you for your attention

Institute of Nuclear Energy Research

M:JNFL 現況說明

M.1 : Slides – Outline of JNFL Facilities

Outline of JNFL Facilities

Uranium Enrichment Plant

- O Start of Operation : March, 1992
- o Design Capacity: 1,500 tSWU/y
- O Current Status: ·Running Capacity 1,050 tSWU/y
- Building completion "Centrifuge Machinery Factory' (October, 2009)
- o "Advanced type of centrifuges" Start operation: December,2011
- O Total production of enriched uranium 1.698tUF6 (as of November 30.2012)

Prospects for total demand of Japan in 2010; approx.5,800 tSWU

- O Start of Operation : December, 1992
- O Design Capacity: 600,000 m³ (equivalent to 3 million 200 liter drums)
- O Current Status:
- (as of November 30,2012) ·The number of drums are stored
- No.1 approx. 147,000
- No.2 approx. 103,000

Approx 650,000 drums in total are stored at Nuclear Power Stations in 2009

- O Start of Operation : April, 1995
- O Design Capacity: 2,880 canisters
- O Current Status : Received 1.414 canisters 1,310 canisters from France 104 canisters from Britain

Spent Fuel Receiving and Storage Facility

- O Start of Operation : December, 1999
- O Design Storage Capacity: 3,000 tU
- O Current Status:
- ·Receive 3,344tU S/F(Cumulative total) (as of October 31,2012)
- Storing 2,919tU S/F (as of October 31,2012)

Annual quantities of S/F discharged from Reactors in Japan; 900 - 1,000tU Approx 14,000tU S/F in total are stored at reactor sites as of March 31,2011

Reprocessing Plant (under final commissioning test)

- O Reprocessing Capacity : Max.800 tU/y
- Expected Start of Commercial Operation October,2013
- O Reprocessed 425tU S/F (Cumulative total)

O Design Capacity: Max.130 t-HM / y • Number of employee : approx 300 • Start of construction : October 2010 • Start of operation : March2016

December,2012

Vitrified Waste Storage Center

(as of November 30.2012) (Completed on March 31,2007)

MOX Fuel Fabrication Plant (MOX:Mixed Oxide Fuel)

(planned)

