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ABSTRACT 
 

In the current concept of repository for radioactive waste 
disposal, compacted bentonite will be used as an engineered 
barrier mainly for inhibiting migration of radioactive nuclides. 
Hydrogen gas can be generated inside the engineered barrier by 
anaerobic corrosion of metals used for containers, etc. If the 
gas generation rate exceeds the diffusion rate of gas molecules 
inside of the engineered barrier, gas will accumulate in the void 
space inside of the engineered barrier until its pressure 
becomes large enough for it to enter the bentonite as a discrete 
gaseous phase. It is expected to be not easy for gas to entering 
into the bentonite as a discrete gaseous phase because the pore 
of compacted bentonite is so minute. Therefore the gas 
migration tests are conducted in this study to investigate the 
mechanism of gas migration. On the basis of the experimental 
facts obtained through the gas migration tests, possible gas 
migration mechanism is proposed. A simplified method for 
calculating gas pressure at large breakthrough, which is defined 
as a sudden and sharp increase in gas flow rate out of the 
specimen is also proposed. 

Bentonite, gas migration, laboratory experiment, modeling 
 
INTRODUCTION 

 
In the current concept of repository for radioactive waste 

disposal, compacted bentonite will be used as an engineered 
barrier mainly for inhibiting migration of radioactive nuclides 
[1][2][3]. Hydrogen gas can be generated inside the engineered 
barrier by anaerobic corrosion of metals used for containers, 
etc. If the gas generation rate exceeds the diffusion rate of 
dissolved gas inside of the engineered barrier, gas will 
accumulate in the void space inside of the engineered barrier 
until its pressure becomes large enough for it to enter the 
bentonite as a discrete gaseous phase. It is expected to be not  

easy for gas to entering into the bentonite as a discrete gaseous 
phase because the pore of compacted bentonite is so minute. 
Therefore it is necessary to evaluate the effect of the 
accumulated gas pressure on surrounding objects such as 
concrete lining, rock mass and to evaluate volume of gas and 
water drained from the compacted bentonite by the 
accumulated gas pressure. It is also necessary to evaluate the 

effect of gas breakthrough on the barrier function of the 
compacted bentonite. To solve these problems, it is basically 
necessary to reveal and to model gas migration mechanism. 
Experimental studies as well as modeling have been conducted 
to investigate and to model gas migration phenomenon in 
compacted bentonite [4][5][6][7][8]. Numerical simulation 
analyses using various kinds of gas migration models were 
conducted for the results of the large scale model test for gas 
migration [9]. 

 
Table1 Test cases of the gas migration test 

Case
No.

Dry 
Density
(Mg/m3)

Specimen Size Measured  values

Diameter
(mm)

Height
(mm)

Swelling 
pressure
(MPa)

Hydraulic 
coductivity

(m/s)

No.1 1.218 60 20 0.390 7.08×10-13

No.2 1.202 60 20 0.391 7.25×10-13

No.3 1.407 60 20 0.698 3.70×10-13

No.4 1.392 60 20 0.637 3.79×10-13

No.5 1.585 60 20 1.733 1.43×10-13

No.6 1.607 60 20 1.854 1.40×10-13

No.7 1.423 200 20 0.720 3.71×10-13

No.8 1.391 200 20 0.639 4.29×10-13
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However, all the parameter which were used for these analyses, 
were not determined based on clear physical grounds.  
 

In this paper, judging that relevance of gas migration 
analysis for the gas migration model test is ambiguous because 
gas migration mechanism is not clear yet even in small-sized 
specimen tests, precise experiments of gas migration tests using 
small-sized specimens are conducted for clarify gas migration 
mechanism of saturated highly compacted bentonite. A method 
for evaluating gas pressure at large breakthrough, which is 
defined as a sudden and sharp increase in gas flow rate out of 
the specimen, is proposed.  
 
 
GAS MIGRATION TEST 

Measurement of volume of discharged pore water and gas 
during the gas migration test is necessary for assessment of 
leakage of nuclides. Measurement of earth pressure is 
necessary for evaluating earth pressure acting on facilities for 
radioactive waste disposal. Furthermore, hydraulic 
conductivity of the specimen after large breakthrough is also 
important because of assessing low permeability of engineered 
barrier after large breakthrough. Therefore, hydraulic 
conductivity of the specimen is also measured before and after 
large breakthrough. 
 
Test conditions 
 

Table 1 shows test cases of the gas migration test conducted 
in this study. In the test cases from No.1 to No.6, the effect of 
dry density of the specimen on the gas migration characteristics 
is investigated, while the effect of diameter of the specimen on 
the gas migration characteristics are investigated comparing the  
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results of test cases No.7 and No.8 with those of test cases No.3 
and No.4. 
 

Figs 1 and 2 shows cross sections of an experimental cell 
which is made basically of stainless steel. Volume of 
discharged water and gas can be measured by porous metal 
which is divided into two pieces by a divider to allow volume 
of discharged water and gas near the inner wall of the vessel 
are measured. The divider is called ring in this paper. The 
dividers of 1mm in thickness are placed at 24.5 mm, 90.5 mm 
from the centre of the specimen of the test cases from No.1 to 
No.6 and the test cases from No.7 to No.8, respectively. Axial 
stress is measured by both a load cell and an earth pressure 
gauge, while radial stress and pore fluid pressure are measured 
by three earth pressure gauges and a pore pressure gauge, 
respectively. Table 2 shows basic properties of bentonite used 
in this study. Powdered bentonite is statically compacted at 
natural water content ranging from 7.2% to 9.9% to form 
specimens.  
 
Pressurization 
 

Water pressure is applied to the lower end of the compacted 
bentonite specimen for about 110 days to let water infiltrate 
through the specimen for complete water saturation. Swelling 
pressure and hydraulic conductivity in Table 1 are measured 
after infiltration of water. At the end of infiltration, hydraulic 
conductivity written in Table 1 is measured. After exchanging 

the lower wet porous metal for a dry porous metal, air pressure 
of 0.3 MPa, water pressure of 0.3 MPa are applied as back 
pressure to lower end of the specimen, upper end of the 
specimen, respectively. This state of stresses is called initial 
state in this paper. Gas migration tests start from this state. 
Swelling pressure at initial state is written in Table 1. 

Table 2  Properties Bentonites used in this study 

Type Sodium 
bentonite

Specific gravity of soil 
particle 2.78 (Mg/m3)

Montmorillonite content Note1) 50 (%)

Cation exchange capacityNote2) 1.040 
(mequiv./g)

Capacity of exchangeable Na 
ionNote3)

0.611 
(mequiv./g)

Capacity of exchangeable Ca 
ionNote3)

0.389 
(mequiv./g)

Capacity of exchangeable K 
ionNote3)

0.024 
(mequiv./g)

Capacity of exchangeable Mg 
ionNote3)

0.015 
(mequiv./g)

 
Note1) Estimated by amount of absorption of methylene blue 
Note2) The sum total of excahangeable Na ion, Ca ion, K ion 

and Mg ion capacity 
Note3) Estimated by extraction using 1N-CH3COONH4 
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THE TEST RESULTS AND CONSIDERATION 
 
Behavior of specimen during pressurization and proposal 
of gas migration mechanism 
 

Figs.3, 4, 5 and 6 show examples of results of the gas 
migration test, showing change of gas pressure, earth pressure, 
pore fluid pressure, volume of discharged water and effective 
gas permeability with the passage of time. Breakthrough of gas,  

2.0

1.5

1.0

0.5

0.0M
ea

su
re

d 
ab

so
lu

te
 p

re
ss

ur
e 

(M
P

a)

120100806040200

The number of days that have elapsed

 Gas pressure
 Pore fluid pressure

Test case No.3

Breakthrough at the inside of the divider 

Earth pressure                            Load cell
 Upper earth pressure gauge    Radial earth pressure gauge

Breakthrough outside of the divider 

Large breakthrough outside of the divider

Initial total axial 
earth pressure

(a) Gas pressure, earth pressure and pore fluid pressure 

12

10

8

6

4

2

0

-2

-4

V
ol

um
e 

ra
tio

 (
%

) 
or

 V
ol

um
e 

of
 d

is
ch

ar
ge

d 
w

at
er

 (
cm

3 )

120100806040200

The number of days that have elapsed

 Total volume of discharged water
Volume ratio       v,int (%)

v,ext (%)    v,int-v,ext (%)

Test case No.3

Breakthrough at the 
inside of the divider 

Breakthrough outside 
of the divider 

Large breakthrough outside of the divider

(b) Volume of discharged water 

10
-24
 

10
-22
 

10
-20
 

10
-18
 

10
-16
 

10
-14
 

E
ff

ec
tiv

e 
ga

s 
pe

rm
ea

bi
li

ty
 (

m
2 )

12080400

The number of days that have elapsed

Before large breakthrough
 Inside of the divider 

 Outside of the divider
After large breakthrough

 Inside of the divider 

 Outside of the divider

Test case No.3

Breakthrough at the 
inside of the divider 

Breakthrough outside 
of the divider 

Large breakthrough 
outside of the divider

(c) Effective gas permeability 
Fig.4 Change of measured values with the passage of time 

(Test case No.3) 

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0M
ea

su
re

d 
ab

so
lu

te
 p

re
ss

ur
e 

(M
P

a)

100806040200

The number of days that have elapsed

 Gas pressure
 Pore fluid pressure

Test case No.5

Breakthrough at the 
inside of the divider 

Earth pressure                              Load cell
 Upper earth pressure gauge    Radial earth pressure gauge

Breakthrough outside 
of the divider 

Large breakthrough 
outside of the divider

Initial total axial earth pressure

(a) Gas pressure, earth pressure and pore fluid pressure 

10

5

0

-5

V
ol

um
e 

ra
ti

o 
(%

) 
or

 V
ol

um
e 

of
 d

is
ch

ar
ge

d 
w

at
er

 (
cm

3 )

100806040200

The number of days that have elapsed

 Total volume of discharged water
Volume ratio      v,int (%)

 v,ext (%),  v,int-v,ext (%)

Test case No.5

Breakthrough at the 
inside of the divider Breakthrough outside of the divider 

Large breakthrough outside of the divider

(b) Volume of discharged water 

10
-25
 

10
-23
 

10
-21
 

10
-19
 

10
-17
 

10
-15
 

10
-13

2E
ff

ec
tiv

e 
ga

s 
pe

rm
ea

bi
lit

y 
(m

2 )

100806040200

The number of days that have elapsed

Before large breakthrough
 Inside of the divider 

 Outside of the divider
After large breakthrough

 Inside of the divider 

 Outside of the divider
Test case No.5

Breakthrough at the
 inside of the divider Breakthrough outside of the divider 

Large breakthrough 
outside of the divider

(c) Effective gas permeability 
Fig.5 Change of measured values with the passage of time 

(Test case No.5) 

4 Copyright © 2010 by ASME



 5 Copyright © 2010by ASME 

  
which is defined as appearance of bubbles in the 
semitransparent drainage tube, occurs when applied gas 
pressure is equal to the initial total axial stress or somewhat 
smaller. By increasing the gas pressure more, large 
breakthrough of gas, which is defined as a sudden and sharp 
increase in gas flow rate out of the specimen, occurs. When the 
total gas pressure exceeds the initial total axial stress, the total 
axial stress is always equal to the total gas pressure because 
specimens shrink in the axial direction with causing the 
clearance between the end of the specimen and the lower 
porous metal as illustrated in Fig.7.  
 

Effective gas conductivity, which is defined by Eq.(1), after 
the large breakthrough is ranging from 108 to 1010 times larger 
than that measured before the large breakthrough of gas 
migration.  
 

   22
1

)(

2

outin PtPA
HPQK





        (1) 

where, Kg : effective gas permeability, Q : flow rate of gas in a 
normal state (Nm3/s),  : coefficient of viscosity, Pin : inflow 
gas pressure (Pa), Pout : outflow gas pressure (Pa), A : area of 
radial section of the specimen (m2), H : height of the specimen 
(m), P1 : atmospheric pressure 
 

This fact means that the large breakthrough of gas 
migration is effective in reducing gas pressure accumulated in 
the vault for radioactive waste disposal and that the large 
breakthrough must be accompanied by the damage, such as 
fissures, to the specimen.  
 

Figs. 3(b), 4(b), 5(b) and 6(b) show volume change of 
discharged water with the passage of time. The internal volume 
ratio, v,int, which is defined as volume of discharged water 
inside the divider divided by soil volume inside the divider and 
the external volume ratio, v,ext, which is defined as volume of 
discharged water outside of the divider divided by soil volume 
outside of the divider, are also plotted in the graphs. According 
to Figs. 3(b), 4(b), 5(b) and 6(b) and their digital values, the 
following facts and consideration, which are concerned with 
gas migration mechanism of saturated highly compacted 
bentonite, can be drawn : 

 
1) As soon as the gas pressure, which is initially equal of 

back pressure of 0.3 MPa, increases, discharge of water 
can be seen. This means gas entry pressures into the 
bentonite specimens are zero or very small. 

2) For the first several days of pressurization, the external 
volume ratio equals the internal volume ratio. This means 
gas enters uniformly during this period of days. 

3) After the first several days of pressurization, the internal 
volume ratio is larger than the external volume ratio before 
gas breakthrough inside of the ring. The preferential 
pathways of gas are formed. Since formation of the 
preferential pathways is accompanied by deformation of 
surrounding soil, the preferential pathways out of the ring  
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proceed more slowly because rigidity of the side wall of the 
cell prevent preferential pathways from forming. 

4) After the breakthrough inside the ring, discharge of water 
inside the ring almost stops because the preferential 
pathway inside the ring reaches the upper end of the 
specimen. 

 
Gas migration mechanism in highly-compacted bentonite 

mentioned above is shown in Fig.8 and summarized as 
follows :  
 
1) At the very beginning of pressurization, gas enters the 

bentonite specimen uniformly.(See Fig.8(a)).  
2) By increasing gas pressure after the very beginning of 

pressurization, preferential pathways are formed (See 
Fig.8(b)).  

3) The preferential pathways inside of the ring proceed more 
rapidly than those out side of the ring. 

4) After the preferential pathway inside the ring reaches the 
upper end of the specimen, discharge of water inside of the 
ring almost stops (See Fig.8(c)). 

5) By increasing applied gas pressure to initial axial total earth 
pressure, the bentonite specimen begins to shrink in the 
axial direction with causing the clearance between the 
end of the specimen and porous metal (See Fig.8(e)). 

6) By increasing applied gas pressure more beyond initial axial 
total earth pressure, large breakthrough occurs forming 
fissures in the bentonite specimen (See Fig. 8(e)). 

 
Initial total earth pressure and its relation to breakthrough 
gas pressure and large breakthrough gas pressure  
 

Figure 9 shows initial total earth pressure and its relation to 
gas pressure at breakthrough and large breakthrough. 
According to Figure 9, gas pressure, when the breakthrough 
inside the ring occurs, equals initial axial total earth pressure, 
while large breakthrough gas pressure is larger than the initial 
axial total earth pressure. It can be also said that the 
relationships shown in Fig.9 are not affected by the diameter of 
the specimen. 
 
Relationship between dry density and effective gas 
permeability 
 

Figure 10 shows the relation between dry density and 
effective gas permeability. Existing test results[4] are also 
plotted in Fig.10, indicating that effective gas permeability 
before large breakthrough, effective gas permeability after 
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large breakthrough are respectively approximate minimum, 
maximum of the data, irrespective of dry density as well as 
diameter of the specimen. 
 
Comparison between hydraulic conductivity after large 
breakthrough and that before gas migration test 
 

Figure 11 shows comparison between hydraulic 
conductivity after large breakthrough and that before gas 
migration test, indicating that hydraulic conductivity after large 
breakthrough is somewhat smaller than that before gas 
migration test. This means that the nature of very low hydraulic 
conductivity of highly compacted bentonite does not change 
substantially due to large breakthrough irrespective of dry 
density as well as diameter of the specimen.  
 
A SIMPLIFIED METHOD FOR EVALUATING LARGE 
BREAKTHROUGH PRESSURE 
 

As mentioned previously in this paper, large breakthrough 
is effective in reducing gas pressure accumulated in the vault of 
radioactive waste disposal. Thus, a simplified method for 
evaluating large breakthrough pressure is proposed herein.  
 
Modeling large breakthrough 
 

As described previously in this paper, large breakthrough 
must be caused by rupture of the specimen. Therefore, in this 
paper, hydraulic fracturing mechanism which is expressed by 
Eq.(2), is assumed. The hydraulic fracturing mechanism can be 
illustrated in Fig.12. 

 

twrg uP                  (2) 

where, Pgas : gas pressure, 't : tensile strength, 'r : effective 
radial stress, uw : pore water pressure 
 

As illustrated in Fig.7, specimens shrink in axial direction 
with causing a gap between the end of the specimen and the 
lower porous metal. Shrinkage of specimens must be caused by 
theory of consolidation mechanism of soils. Therefore, stress 
state of specimens during shrinkage is estimated by one-
dimensional consolidation theory. In this paper, for simplicity, 
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the specimens are assumed to be fully saturated throughout 
pressurization. Thus one-dimensional consolidation theory for 
fully saturated soils is used for calculation.  
 

Further, assuming the fissure appears at the end of the 
specimen propagates in the specimen rapidly, the criteria of 
large breakthrough of the specimen is expressed by rewriting 
Eq.(2) as follows :  

 

01 K
t

Break,end,a 


 
                 (3) 

where, 'a,end,Break : Increment of effective axial stress at the 
pressurized end of the specimen from initial effective axial 
stress, K0 : coefficient of earth pressure at rest.  
 

Coefficient of volume compressibility, mv , in the one-
dimensional consolidation theory, is calculated by the 
following equation : 

 
mv= - (ddb /db)/dPs= - (ddb / dPs / db)        (4) 

 
where, db : dry density of bentonite, Ps : swelling pressure 
 
Comparison between calculated results and experimental 
results 
 

Using one-dimensional consolidation theory, the values of 
'a,end,Break of the test cases in Table 1, which are calculated 
backwards from one-dimensional consolidation theory, are 
plotted in Fig.13 against their respective swelling pressures. 
Using Eq.(3), in which K0=0.5 is assumed, and the average 
relationship in Fig.13, tensile strength in Eq. (2) is estimated.  
 

Measured large breakthrough pressures of test in Table 1 
are plotted against the calculated results in Fig.14, showing 
good agreement with calculated results. 
 

Comparison between calculated results and experimental 
results is also conducted for test results by JAEA [4] shown in 
Table 3 which was conducted for specimens with various 
heights under various pressing speed. Figure 14 shows that the 
calculated results show good agreement with test results by 
JAEA. In this case, tensile strength in Eq. (2) is also estimated 
using Eq.(3), in which K0=0.5 is assumed, and the average 
relationship in Fig.13. Good agreement between the calculated 
results and the experimental results can also be seen in Fig.15. 
 
CONCLUSIONS 
 

Firstly, the following conclusions were obtained through by 
the results of the gas migration tests which are conducted in 
this study:  

 
1) Bubbles appear in the semitransparent drainage tube at first 

when the gas pressure is equal to the initial total axial 
stress or somewhat smaller. By increasing the gas pressure 
more, large breakthrough of gas migration, which defined 
as a sudden and sharp increase of amount of emission gas, 
occurred. When the total gas pressure exceeds the initial 
total axial stress, the total axial stress is always equal to the 
total gas pressure because specimens shrink in the axial 
direction with causing the clearance between the end of the 
specimen and porous metal. 

2) Effective gas conductivity after large breakthrough of gas 
migration is ranging from 108 to 1010 times larger than that 
measured before the large breakthrough of gas migration. 
This fact means the large breakthrough is effective in 
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reducing gas pressure accumulated in the vault for 
radioactive waste disposal.  

3) On the basis of experimental facts, possible gas migration 
mechanism of dense bentonite is proposed. 

4) Hydraulic conductivity of water measured after large 
breakthrough of gas migration is somewhat smaller than 
that measured before the gas migration test. This fact means 
that it might be possible to neglect decline of the function of 
bentonite as engineered barrier caused by large 
breakthrough of gas migration. 

 
Secondly, the following conclusions were obtained by 

modeling breakthrough of gas migration: 
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Fig.13 Relationship between swelling pressure and effective axial stress increment at the gas pressurized end of the specimen when 

gas breakthrough occurred 

Table 3 Test cases of gas migration test conducted by 
JAEA [4] 

Specimen size Test 
case 
No. 

Dry density
(Mg/m3) 

Pressing 
speed 

(MPa/day) 
Diam.
(mm)

Height
(mm)

No.9 1.6 5.98×10-2 50 10 
No.10 1.6 1.92×10-1 38 20 
No.11 1.6 1.00×10-1 50 30 
No.12 1.6 6.86×10-2 50 30 
No.13 1.8 2.45×10-2 50 10 
No.14 1.8 1.22×10-2 50 30 
No.15 1.8 9.54×10-2 50 30 
No.16 1.8 1.42×10-1 50 50 
No.17 1.8 4.81×10-2 50 50 

Note : Gas pressure is applied to the applied to the specimen 
continuously. 
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5) The bentonite specimen shrinks in axial direction when total 
gas pressure exceeds initial total stress of the specimen. The 
phenomenon was modeled by one-dimensional 
consolidation theory so that it can be handled simply. 

6) Stresses of bentonite specimen at large breakthrough of gas 
migration is estimated by reverse calculation of the test 
results. The estimated stresses are accordant with the 
stresses which estimated by assuming hydraulic fracturing 
mechanism. This fact means breakthrough of gas migration 
probably occurs according to the hydraulic fracturing 
mechanism.  

7) The breakthrough pressure of gas migration is calculated by 
using the proposed relationship between swelling pressure 
and effective axial stress at breakthrough of gas migration. 
The calculated results show good agreement with not only 
test results obtained by this study but also those by other 
organization. 
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ABSTRACT 
 
In the current concept of repository for radioactive waste 

disposal, compacted bentonite will be used as an engineered 
barrier mainly for inhibiting migration of radioactive nuclides. 
Hydrogen gas can be generated inside of the engineered barrier 
by anaerobic corrosion of metals used for containers, etc. It is 
expected to be not easy for gas to entering into the bentonite as 
a discrete gaseous phase because the pore of compacted 
bentonite is so minute. Therefore it is necessary to investigate 
the effect of gas pressure generation and gas migration on the 
engineered barrier, peripheral facilities and ground.  

In this study, a method for simulating gas migration 
through the compacted bentonite is proposed. The proposed 
method can analyze coupled hydrological-mechanical 
processes using the model of two-phase flow through 
deformable porous media. Validity of the proposed analytical 
method is examined by comparing gas migration test results 
with the calculated results, which revealed that the proposed 
method can simulate gas migration behavior through 
compacted bentonite with accuracy. 

Key Words : bentonite, gas migration, two-phase flow, 
stress-strain relationship 

 
INTRODUCTION 

 
In the current concept of repository for radioactive waste 

disposal, compacted bentonite will be used as an engineered 
barrier mainly for inhibiting migration of radioactive nuclides. 
Hydrogen gas can be generated inside of the engineered barrier 
by anaerobic corrosion of metals used for containers, etc. If the 
gas generation rate exceeds the diffusion rate of dissolved gas 
inside of the engineered barrier, gas will accumulate in the void 
space inside of the engineered barrier until its pressure 
becomes large enough for it to enter the bentonite as a discrete 
gaseous phase. It is expected to be not easy for gas to enter into 
the bentonite as a discrete gaseous phase because the pore of 

compacted bentonite is so minute. Therefore it is 
necessary to evaluate the effect of the accumulated gas 
pressure on surrounding objects such as concrete lining, 
rock mass and to evaluate volume of gas and water 
discharged from the compacted bentonite by the 
accumulated gas pressure. To solve these problems, the 
author already conducted gas migration tests of saturated 
highly compacted bentonite [1]. Moreover a numerical 
analysis method of gas migration is necessary for 
evaluating amount of discharged water and gas from the 
facility and for evaluating stresses around the facility 
considering the shape of the facility, initial conditions and 
boundary conditions. Numerical simulation analyses using 
various kinds of gas migration models were conducted for 
the results of the large scale model test for gas migration 
[2]. However, since the numerical analysis methods 
currently used for gas migration through compacted 
bentonite are mostly based on conventional two-phase 
flow model, equilibrium of forces is not considered. Thus, 
stresses, amount discharged water and gas induced by 
deformation of specimen can not be considered, resulting 
in erroneous estimation. 
 

It seems effective to develop a finite element 
computer code for simulating gas migration in compacted 
bentonite based on the model of two-phase flow through 
deformable porous media for solving the problems 
mentioned above. Thus, in this study, the finite element 
computer code is developed. Furthermore, the validity of 
the code is investigated in this paper by comparing 
calculated results with results of gas migration tests. 

 
EQUATIONS DESCRIBING GAS MIGRATION 
PHENOMENON 
 
Continuity equation of water and that of gas 
considering deformation of bentonite specimen  

Proceedings of the ASME 13th International Conference on Environmental Remediation and  
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In this paper, compressive stress, compressive strain as 

well as compressive pressure have plus signs. 
  

Mass flow rate, qwm, into the soil element, whose 
position coordinate is (x1, x2, x3), is expressed as follows :  
 

tVmq wwwm ΔΔΔ              (1) 

where, w : density of water, t : time increment, V : volume 
of soil element (=Δx1 × Δx2 × Δx3 ), Δx1 ,Δx2, Δx3 : length of the 
soil element in x1-, x2- and x3-direction, respectively, mw : 
outflow rate of water per unit volume of soil, which is 
expressed by the following equation using Darcy's law  : 
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where, kw : hydraulic conductivity, uw : pore water pressure, g : 
gravitational acceleration, Einstain's summation convention is 
used the right side of Eq.(2). 
  

Assuming incompressibility of soil particles, the 
following equation holds :  
 

 VnVV s ΔΔΔ            (3a) 

   0Δ  t/Vs            (3b) 
where, Vs : volume of soil particles in the soil element, , n : 
porosity 

 
Therefore, considering Eq.(3b),   tV   is expressed 

as follows :  
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where, e : void ratio, v : volumetric strain of soil 
 

According to Eqs.(3a), (3b) and (4), mass increment of 
soil element, which has volume of V, during time of t is 
expressed as follows : 
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where, Sw : water saturation 
 

According to the law of conservation of mass, the right 
side of Eq.(1) equals the right side of Eq.(5). Thus, the 
following equation is obtained :  
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     (6) 

 
Using bulk modulus of water, Kw and pore water 

pressure, uw, change of density of water is expressed as 
follows :  
 

wwww uK// d1d              (7) 
 

Substituting Eq.(7) into Eq.(6), continuity equation 
of water is obtained as follows :  
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Substituting mg, Sg, Kg and ug into mw, Sw, Kw and uw 

in Eq.(8) respectively, the following equation is obtained 
as continuity equation of gas.  
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where, ug : gas pressure, Kg : bulk modulus of gas, Sg : gas 
saturation, mg：outflow rate of gas per unit volume of 
soil , which is expressed by the following equation using 
Darcy's law  :  
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where, g : density of gas, ug : pore gas pressure, kg : 
coefficient of gas permeability  
 

The relationship between water saturation, Sw, and 
gas saturation, Sg, is expressed as follows :  

wg SS  1              (11) 
 

Further, differentiating Eq.(11) partially with respect 
to t, the following equation is obtained :  
 

t/St/S wg                (12) 
 

Considering the Boyle's law, Kg is expressed as 
follows :  
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  (13) 
where, Pa : atmospheric pressure, Vg : volume of gas at 
gas pressure of ug, ug0 : initial gas pressure, Vg0 : volume 
of gas at gas pressure of ug0,  ug : gas pressure increment, 
ΔVg : gas volume increment  

 
Substituting Eqs. (11), (12) and (13) into Eq.(9), the 

following equation is obtained : 
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Relationships among dry density increment, porosity 
increment and volumetric strain increment 
  

Since dry density change of the specimen is caused by 
volume change of the specimen during the gas migration test, 
there is the following relationship between dry density 
increment dρd and volumetric strain increment dεv : 
 

vdd  dd                (15) 
 

There is the following relationship between porosity 
increment dn and volumetric strain increment dεv :  
 

   vεd1d  nn            (16) 
 
Equilibrium of forces 
  

Equilibrium of forces is expressed as follows :  
 

 0 ijij bx/          (17) 
where,  : wet density of bentonite, bi : body force per unit 
mass in i-direction 
 

Stress ij in Eq. (17) is explained on the following. 
 
a) Relationships among volumetric strain increment, 

mean effective stress increment and suction 
increment  

 
A state of pore water around soil particles is assumed in 

Fig.1. According to Fig.1, strain of unsaturated soil is caused 
not only by externally applied stress but also by suction due to 
surface tension of water. Thus, strain of unsaturated soil is 
assumed to be divided into the following two classes :  
 
1) Strain accompanied by inter-particle slippage caused by 

change in effective stresses  
2) Strain , which is not accompanied by inter-particle slippage, 

caused by change in effective stresses  
 

Thus, in this paper, Stress-strain relationship of 
unsaturated bentonite is assumed as follows :  
 

  drcwcdmv K/uSuK/ ddd       (18a) 
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where, Kd : bulk modulus of the soil specimen in terms of 
effective stress, Kdr : bulk modulus of the soil specimen in 
terms of suction, Kdr0 : a constant, m, 'm : mean effective 
stress, mean total stress, respectively, uc : suction (=ug - 
uw) 
 

Assuming that suction uc is given as a function of 
water saturation Sw , suction uc is expressed as follows :  
 

 wwgc Sfuuu           (19) 
 

The first term of the right-hand side of Eq.(18a) 
corresponds to strain 1) mentioned above while the 
second term of the right-hand side of Eq.(18a) 
corresponds to strain 2) mentioned above.  
 
b) Three-dimensional stress-strain relationship  
 

Since plastic strain seems to be not created in the 
specimen throughout the gas migration test because of 
small shear stress, the specimen is assumed to be an 
isotropic elastic body. Thus, Kd(uc) in Eq.(18a) is 
expressed as follows :  
 

      dcdcd /uEuK  13       (20) 

 
where, Ed, d : Young's modulus, Poison's ratio of the soil 
specimen in terms of effective stress, respectively. 
Poison's ratio is assumed to be 0.3. 
 

Eq.(18a) is rewritten as follows :  
 

    drcwcdvcdm K/uSuKuK ddd       (21) 
 

Eq.(21) is further rewritten as a three-dimensional 
stress-strain relationship as follows :  
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where, u : pore fluid pressure. 
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Gas

Soil particle
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Fig.1  Assumed state of pore water near soil particles of 

bentonite 
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Pore fluid pressure is defined as pressure obtained by 
taking stress transferred by a soil skeleton from total stress in 
this paper. 

 
Pressure which is measured by pore pressure gauge shown 

in Fig.3 is regarded as pore fluid pressure. Further, since stress 
transferred by a soil skeleton is nothing but effective stress, the 
following equation holds :  
 

umm            (23) 

 

c) Increments of suction, water saturation, gas 
pressure and pore fluid pressure expressed by 
volumetric strain increment 

 
Differentiating Eq.(19), the following equation is 

derived.  
 

  wwwgc SSfuuu dddd         (24) 

 
By eliminating both dug and duw from Eqs.(8), (9) 

and (24) and by considering Eqs.(11) and Eq.(13), the 
following equation is obtained :  
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where, 

       gwwaggw u,S,nF/S/Puu,S,nA  11  (25b) 

     gwwwgw u,S,nF/S/Ku,S,nB 1   (25c) 

     gwwaggw u,S,nF/KPuu,S,nC 1   (25d) 

 













w

ag

w

w
wgw S

Pu
S
K)S(fnu,S,nF

1
  (25e) 

 
Similarly, by eliminating both dSw and duw from 

Eqs.(8), (9) and (24) and by considering Eqs.(11) and 
Eq.(13), the following equation is obtained :  
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According to Bishop's equation [3], pore fluid 
pressure of unsaturated soils is expressed as follows :  
 

   wgwg uuSuu             (27) 

 
Thus, pore fluid pressure increment du is expressed 

as follows :  
 

         wwwwwg SSSfSSfuu ddd    (28) 
 

 
 
Fig.2 Procedure of gas migration analysis by the proposed 

method 

4 Copyright © 2010 by ASME



  Copyright © 20xx by ASME 

 

 
Summary of equations describing gas migration 
phenomenon 
 

Basic equations for the numerical analysis are Eqs. (8), 
(14) and (17). Figure 2 shows a procedure for calculating gas 
migration problem for one finite element using equations 
mentioned previously. Though Fig.2 shows a procedure if the 
strain increment of the element is given, it is possible to solve 
the problem similarly if the stress increment of the element is 
given. 
 
OUTLINE OF GAS MIGRATION TEST FOR 
SIMULATION ANALYSIS 
 

Outline of the gas migration test is described herein. 
Detailed description of the test is available in the literature 1. 
 
Test conditions 
 

Table 1 shows test cases of the gas migration test 
conducted in this study. In the test cases from No.1 to No.6, the 
effect of dry density of the specimen on the gas migration 
characteristics is investigated, while the effect of diameter of 
the specimen on the gas migration characteristics are 

investigated comparing the results of test cases No.7 and 
No.8 with those of test cases No.3 and No.4. In this study, 
numerical simulation analysis is conducted for the Test 
Cases No.3 and No.5 in Table 1. 
 

Fig.3 shows a cross section of an experimental cell 
which is used for the Test Cases from No.1 to No.6. 
Volume of discharged water and gas can be measured by 
porous metal which is divided into two pieces by a divider 
to allow volume of discharged water and gas near the 
inner wall of the vessel to be measured. Axial stress is 
measured by both a load cell and an earth pressure gauge, 
while radial stress and pore fluid pressure are measured by 
three earth pressure gauges and a pore pressure gauge 
respectively. Table 2 shows basic properties of bentonite 
used in this study. Helium gas instead of hydrogen gas is 
used for the tests. 
 

Water infiltrated into the specimen one-
dimensionally for complete water saturation of the 
specimen. At the end of infiltration, hydraulic conductivity 
written in Table 1 is measured. After exchanging the lower 
wet porous metal for a dry porous metal, air pressure of 
0.3 MPa, water pressure of 0.3 MPa are applied as back 
pressure to lower end of the specimen, upper end of the 
specimen, respectively. This state of stresses is called 
initial state in this paper. Gas migration tests start from the 
initial state. Swelling pressure at the initial state is written 
in Table 1. 
 
Test results 
 

Fig. 4 shows results of the Test Case No.3, showing 
change of gas pressure, earth pressure, pore fluid pressure,  

Table 1  Test cases of the gas migration test 

Case
No.

Dry 
Density
(Mg/m3)

Specimen Size Measured  values

Diameter
(mm)

Height
(mm)

Swelling 
pressure
(MPa)

Hydraulic 
coductivity

(m/s)

No.1 1.218 60 20 0.390 7.08×10-13

No.2 1.202 60 20 0.391 7.25×10-13

No.3 1.407 60 20 0.698 3.70×10-13

No.4 1.392 60 20 0.637 3.79×10-13

No.5 1.585 60 20 1.733 1.43×10-13

No.6 1.607 60 20 1.854 1.40×10-13

No.7 1.423 200 20 0.720 3.71×10-13

No.8 1.391 200 20 0.639 4.29×10-13

 

Table 2  Properties Bentonites used in this study 

Type Sodium 
bentonite

Specific gravity of soil particle 2.78 (Mg/m3)

Montmorillonite content Note1) 50 (%)

Cation exchange capacityNote2) 1.040 
(mequiv./g)

Capacity of exchangeable Na ionNote3) 0.611 
(mequiv./g)

Capacity of exchangeable Ca ionNote3) 0.389 
(mequiv./g)

Capacity of exchangeable K ionNote3) 0.024 
(mequiv./g)

Capacity of exchangeable Mg ionNote3) 0.015 
(mequiv./g)

Type Sodium 
bentonite

Specific gravity of soil particle 2.78 (Mg/m3)

Montmorillonite content Note1) 50 (%)

Cation exchange capacityNote2) 1.040 
(mequiv./g)

Capacity of exchangeable Na ionNote3) 0.611 
(mequiv./g)

Capacity of exchangeable Ca ionNote3) 0.389 
(mequiv./g)

Capacity of exchangeable K ionNote3) 0.024 
(mequiv./g)

Capacity of exchangeable Mg ionNote3) 0.015 
(mequiv./g)  

Note1) Estimated by amount of absorption of methylene blue 
Note2) The sum total of excahangeable Na ion, Ca ion, K ion and 

Mg ion capacity 
Note3) Estimated by extraction using 1N-CH3COONH4 

Outflow inside
of the divider

Specimen
（F 60mmH20mm）

Inflow

Load cell

Porous metal

Earth pressure 
gauge

Bolt
A divider for discharged fluid

Pore pressure 
gauge

Earth pressure gauge

O-ring

Outflow outside
of the divider

 
Fig.3 Sections of specimen cells used for the gas migration 

test from Case No.1 to CaseNo.6 
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volume of discharged water and effective gas permeability with 
the passage of time. Breakthrough of gas migration, which 
defined as first appearance of small bubbles in the 
semitransparent drainage tube out from the specimen, occurs 
when applied gas pressure is equal to the initial total axial 
stress. By increasing the gas pressure more, large breakthrough 
of gas migration, which defined as a sudden and sharp increase 
of amount of discharged gas, occurs. When the total gas 
pressure exceeds the initial total axial stress, the total axial 
stress is always equal to the total gas pressure because 
specimens shrink in the axial direction with causing clearance 

between the lower end of the specimen and the lower 
porous metal as illustrated in Fig.5.  
 

Effective gas permeability, which is defined by 
Eq.(29), after the large breakthrough is ranging from 108 
to 1010 times larger than that measured before the large 
breakthrough of gas migration as shown in Fig.4(f).  
 

   22
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             (a) Applied gas pressure                             (b) Total axial stress 
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Fig.4  Measured results and calculated results with the passage of time (Test case No.3） 
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where, Kg,eff : effective gas permeability, Q : flow rate of gas in 
a normal state (Nm3/s),  : coefficient of viscosity, Pin : inflow 
gas pressure (Pa), Pout : outflow gas pressure (Pa), A : area of 
radial section of the specimen (m2), H : height of the specimen 
(m), P1 : atmospheric pressure 
 

This fact means that the large breakthrough of gas 
migration is effective in reducing gas pressure accumulated in 
the vault for radioactive waste disposal and that the large 
breakthrough must be accompanied by the damage , such as 
fissures, to the specimen.  
 
SIMULATION ANALYSIS 
  
Determination of parameters concerning properties 
of bentonite 
 
a) Hydraulic conductivity and swelling pressure of 

fully saturated bentonite 
 

Fig. 6 shows relations between hydraulic conductivity and 
dry density, and between swelling pressure and dry density. For 
numerical simulation analysis, solid lines in Fig. 6 are used.  

 
b) Young's modulus and Poison's ratio of fully 

saturated bentonite under drained condition 
 

Coefficient of volume compressibility mv in the one-
dimensional consolidation theory, is calculated by the 
following equation [1] : 

 
mv= - (ddb /db)/dPs= - (ddb / dPs / db)        (30) 

where, db : dry density of bentonite, Ps : swelling 
pressure 
 

Further, Young's modulus can be calculated as 
follows :  
 

 vdddd m)(/)()(E   1211        (31)  
 
c) Relations between suction and water 
saturation 
 

The relationship between effective water saturation 
Se and water saturation Sw is expressed as follows :  
 

    rsatrwe /e/eSS   1        (32) 
 
where,  r : minimum volume water content, θsat : 
saturated volume water content 
 

Further, the relationship between effective water 
saturation Se and suction uc is expressed by van 
Genughten's model [4] as follows :  
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Fig.5 Shrinkage of specimen due to gas pressure over initial 
axial total stress 
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where, a,  : constants which are independent of effective 
water saturation Se 

 
Based on the results of tests by Takeuchi et al. [5], the 

relationship between the constants in Eq.(33) of KunigelV1 and 
dry density is shown in Fig.7. Figure 8 shows the relationship 
between suction and water saturation calculated by Eq.(33) 
using the constants evaluated by Fig.7 
 
e) Relationship between bulk modulus and water 

saturation 
 

The relationship between bulk modulus and water 
saturation is expressed based on the empirical relation obtained 
by Takaji and Suzuki [6]. The relationship is shown as follows :  
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   (34) 

where, Kｄ(Sw), Kd,sat：bulk modulus of soil at water saturation 
of Sw, water saturated bulk modulus, respectively, E50, E50,sat : 
secant Young's modulus of soil at water saturation of Sw, secant 
Young's modulus of saturated soil, respectively  
 
f) Kdr0 in Eq.(18b) 
 

By integrating Eq.(18a) on the condition that dv in 
Eq.(18a) equals zero, swelling pressure affected by initial water 
saturation can be calculated. Further, by comparing the 
calculated results with swelling pressure test results, Kdr0 is 
determined. 
 
g)  in Eq.(27)  
 

Based on the pore fluid pressure, applied gas 
pressure and water pressure as back pressure during the 
gas migration test,  in Eq.(27) is determined as follows :  
 

ww S)S(                     (35) 
 
h) Relationship between relative hydraulic 

conductivity and water saturation 
 

van Genughten's model is adopted for the 
relationship between relative hydraulic conductivity and 
water saturation. In that case, the parameter  in the 
equation is determined the relationship in the right-hand 
side of Fig.7. 
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i) Relationship between relative gas permeability 

and water satulation 
 

The relationship between relative gas permeability 
kgr and water saturation Sw is reportedly expressed by 
Corey's model as follows [7] :  
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where, ng : a constant which is independent of effective 
water saturation Se 
 

Calculated results by Corey's model of ng=2.08 
coinside well with measured results by Tanai et al [6]. 
However, in that case, kgr=0 if Sw is more than 0.8. This 
contradicts most of results of gas migration tests.  
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 Therefore, if Sw is more than 0.8, kgr is calculated by the 
following equation :  

 
 wgrgr S/ka  1             (38) 

 
0.05 is adopted for the value of agr in Eq.(38) based on the 

theoretical consideration on the results of the gas migration test 
 
Comparison between measured results and 
calculated results 
 

Figure 4 shows calculated results with measured results. 
As for axial total stresses in Fig.4(b), radial total stress in 
Fig.4(c) and pore fluid pressure in Fig.4(d), measured results 
can be simulated by the calculated results with accuracy. 

 
Figure 4(e) shows volume of discharged water with the 

passage of time. Before the large breakthrough, the measured 
result can be simulated with accuracy by the numerical 
analysis.  
 

Figure 4(f) shows effective gas permeability with the 
passage of time. As shown in Fig.4(f), calculated effective gas 
permeability coincides with measured effective gas 

permeability with accuracy before the large breakthrough. 
Though, as mentioned previously, effective gas 
permeability after the large breakthrough is ranging from 
108 to 1010 times larger than that measured before the 
large breakthrough, the calculated results can not simulate 
the behavior. This is merely because sudden increase in 
effective gas permeability due to damage to the specimen 
is not considered in this numerical analysis code. This is 
desirable to be improved. 
 

Figure 10 shows comparison between calculated 
results and measured results in terms of water saturation 
of specimens after large breakthrough. Calculated results 
in Fig.10 are calculated from volume of discharged water 
at large breakthrough. Figure 10 shows good coincidence 
between calculated results and measured results.  
 

As described previously, by increasing applied gas 
pressure beyond initial axial total stress, the specimen 
shrink in axial direction with causing clearance between 
the lower end of the specimen and the lower porous metal 
as illustrated in Fig.5. In order to simulate this behavior, a 
joint element is placed between the lower end of the 
specimen and the lower porous metal. Consequently, as 
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              (c) Effective gas permeability                  (d) Axial displacement 

Fig.11  Effect of constraint of deformation of elements on calculated results 
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shown in Fig.9, displacement of the lower end of the specimen 
can be expressed.  
 

As described above, the gas migration test results can be 
simulated by the proposed numerical analysis method with 
accuracy.  
 
The effect of constraining deformation of soil on the 
calculated results by the proposed numerical method  
 

Calculation without considering deformation of soil is 
conducted by constraining deformation of each element in the 
one-dimensional gas migration analysis to compare with the 
calculated results of considering deformation. Both calculated 
results are shown in Fig.11. At the same time, shrinkage of the 
specimen begins at about 60 elapsed days from the beginning of 
pressurization as shown in Fig.11(d), difference between both 
calculated results can be seen in Figs.11(a) and Fig.11(b). After 
about 60 elapsed days, total axial stress together with volume of 
discharged water of constraining deformation condition are 
smaller than those calculated results of considering 
deformation. This difference is attributable to shrinkage of the 
specimen. Contrastively, calculated effective gas permeability is 
almost not affected whether deformation of the soil elements is 
constrained or not.  
 

Therefore, it is revealed that accuracy of the calculated 
results is possibly enhanced by considering deformation of soil 
during pressurization. 
 
CONCLUSIONS 
 

In this study, a method for simulating gas migration 
through the compacted bentonite is proposed. The proposed 
method can analyze coupled hydrological-mechanical 
processes using the model of two-phase flow through 
deformable porous media. 
  

Validity of the proposed analytical method is examined by 
comparing gas migration test results with the calculated results. 
It is revealed that the proposed method can simulate gas 
migration behavior through compacted bentonite with accuracy. 
  

The effect of constraining deformation of soil on the 
calculated results is investigated. Calculation without 
considering deformation of soil is conducted by constraining 
deformation of each element in the one-dimensional gas 
migration analysis to compare with the calculated results．As a 
result, it is revealed that accuracy of the calculated results is 
possibly enhanced by considering deformation of soil during 
pressurization.  
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Gas Migration Mechanism of Saturated Highly-compacted Bentonite and its Modelling

Central Research Institute of Electric Power Industry 
Yukihisa Tanaka, Michihiko Hironaga, Kohji Kudo

Introduction  : In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be 
generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of dissolved gas inside of the engineered barrier, gas will accumulate in 
the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete 
gaseous phase because the pore of compacted bentonite is so minute. Therefore it is necessary to investigate the following subjects:

a) Effect of the accumulated gas pressure on surrounding objects such as concrete lining, rock mass.
b) Effect of gas breakthrough on the barrier function of bentonite.
c) Revealing and modeling gas migration mechanism for evaluating the scale effects in laboratory specimen test.

Therefore in this study, firstly, gas migration tests for saturated highly compacted bentonite are conducted to investigate and to model the mechanism of gas migration phenomenon. Secondly, a method for evaluating gas 
pressure of large gas breakthrough, which is defined as a sudden and sharp increase in gas flow rate out of the specimen, is proposed. Finally, a finite element code for simulating gas migration in compacted bentonite based 
on the model of two-phase flow through deformable porous media is newly developed. 

Properties Bentonite used in this study
1. Gas Migration Mechanism of Saturated Highly-compacted Bentonite

0.015Capacity of exchangeable Mg ion (meq/g)
0.024Capacity of exchangeable K ion (meq/g)
0.389Capacity of exchangeable Ca ion (meq/g)
0.611Capacity of exchangeable Na ion (meq/g)
1.040Cation exchange capacity (meq/g)

50Montmorillonite content (%)
2.78Density of clay particle (Mg/m3)
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Axial sectional view of the vessel for the test

Case
No.

Dry 
Density
(Mg/m3)

��������	��
� Measured  values

Diameter
(mm)

Height
(mm)

Swelling 
pressure
(MPa)

Hydraulic 
coductivity

(m/s)

No.1 1.218 60 20 0.390 7.08�10-13

No.2 1.202 60 20 0.391 7.25�10-13

No.3 1.407 60 20 0.698 3.70�10-13

No.4 1.392 60 20 0.637 3.79�10-13

No.5 1.585 60 20 1.733 1.43�10-13

No.6 1.607 60 20 1.854 1.40�10-13

No.7 1.423 200 20 0.720 3.71�10-13

No.8 1.391 200 20 0.639 4.29�10-13

Test cases of Gas migration test by CRIEPI
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Estimated gas migration mechanism  from  the beginning of gas pressurization  to
large breakthrough
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Test case No.3, Dry density : 1.407 Mg/m3, Specimen size : H20mm, �60mm
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Time history of volume of discharged water

Definition of Volume 
Ratio
�v,int : volume of 
discharged water 
inside the divider 
divided by soil 
volume inside the 
divider.
�v,iout : volume of 
discharged water 
outside of the divider 
divided by soil 
volume outside of the 
divider.

CONCLUSIONS
(1) Gas migration mechanism of saturated dense bentonite was clarified.
(2) Large breakthrough was modeled assuming hydraulic fracturing mechanism and one-dimensional theory. The calculated results 
showed good agreement with experimental results.

(3) A finite element code for simulating gas migration in compacted bentonite based on the model of two-phase flow through deformable
porous media was newly developed by CRIEPI.

(4) It was revealed that the results of the gas migration test can be simulated by the newly developed finite element code.

2. Modelling Large breakthrough

3. Modelling gas migration behaviour by Gas/Liquid Two-phase Flow through Deformable Porous Media

A finite element code for 
simulating gas migration in 
compacted bentonite by CRIEPI

Basic model 
The model of two-phase flow 
through deformable porous media

Basic equations
�continuity of gas flow,
�continuity of water flow,
�stress-strain relationship of soil 
�equilibrium of forces

Basic assumptions of CRIEPI’s Code Comparison  between measured results calculated results by the CRIEPI’s code. Calculated results by the CRIEPI’s code.
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Introduction of Yokosuka project:

- Typical results of validation of survey

Edited based on 

CRIEPI Report 

N15 andN11038

- Typical results of validation of survey

technology for siting program for HLW -
�Borehole survey (and geophysical prospecting)

technology (FY 2006-2010)

�Ground water monitoring technology (FY 2010-2011)
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Three Stages of Site Selection Program by NUMO

Volunteers

Preliminary 
Investigation 
Areas (PIAs)

Detailed 
Investigation 
Areas (DIAs)

Final 
Repository 

Site

Areas:

Volunteer areas

and their surroundings

Methods:

Literature Surveys (LS)

Areas: PIAs

Methods:

Borehole survey, 

geophysical prospecting, etc.

(Preliminary Investigations)

Selection of DIAs

Areas: DIAs

Methods:

Detailed surface explorations,

measurements and tests in

underground investigation facilities 

(Detailed Investigations)

Selection of repository siteSelection of PIAs
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Progress and present situation of Yokosuka Project

●●●●Main objectives of Yokosuka Project in FY 2006-2010:

�To confirm the applicability of existing survey technology for obtaining 

properties of geological environment in the stage of Preliminary Investigation.

�Key technologies:

•Borehole survey: applicability to various geological conditions (Miura Group/Hayama Group in YDP-

1,2 borehole), and characterization of the properties of geological environment of these two Groups.

•Geophysical prospecting: validity of surface seismic and electromagnetic prospecting methods (for

obtaining information about geological structure, and salt/fresh water boundary before borehole surveys)

Main items of survey technologies
Research progress every fiscal year

Division of

cooperative

Main objectives

of survey

(Yokosuka DV site: Neogene sedimentary and coastal environment)

3

2006 2007 2008 2009 2010 2011

・Literature survey

・Surface survey
(Geological and geophysical (electrical))

・Borehole survey (YDP-1)
(Depth=350m, mainly Miura G.)

Part 2

(2008-2009)
・Borehole survey (YDP-2)
(Depth=500m, mainly Hayama G.)

・Geophysical prospecting
(Additional: seismic, electromagnetic)

・Groundwater monitoring
(Installation of MP55 for YDP-2)

Part 4

(2011)
・Groundwater monitoring
(Baseline assessment for groundwater)

Part 3

(2010)

Technology for

Preliminary

Investigation

Technology for

groundwater

monitoring

Main items of survey technologiescooperative

research

of survey

technologies

Part 1

(2006-2007)

Research progress of

Yokosuka Project in

FY 2006-2011

Completed !!

A verification study of monitoring technology for obtaining baseline data of

groundwater newly started in FY 2010 (pressure measurement still continued in 2012).



Outline of the Yokosuka Project in FY 2006-2010

Survey area:

CRIEPI Yokosuka

grounds

“Neogene

sedimentary 

and coastal 

environment”

・地下水流動解析
・坑道の施工性評価

地質環境地質環境地質環境地質環境モデルモデルモデルモデル（（（（Ver. 0）））） 既存情報調査既存情報調査既存情報調査既存情報調査 ・地質環境情報の収集
・空中写真判読

地表調査計画

地表調査地表調査地表調査地表調査
・地表踏査
・物理探査

ボーリング調査計画

ボーリングボーリングボーリングボーリング調査調査調査調査 ・ボーリング掘削
・コア観察，試料採取
・孔内検層・試験
・室内岩石・水質試験

・地下水流動解析
・施設設計，
性能評価

地質環境地質環境地質環境地質環境モデルモデルモデルモデル（（（（Ver. 1））））

・地下水流動解析
・施設設計，
性能評価

地質環境地質環境地質環境地質環境モデルモデルモデルモデル（（（（Ver. 2））））

【文献調査段階に該当する項目】

【概要調査段階に該当する項目】

【【【【実証研究実証研究実証研究実証研究のののの実施実施実施実施範囲範囲範囲範囲】】】】Scope of this Project

Ground water 

flow assessment

Repository design 

Performance

assessment

Repository design 

Performance

assessment

Literature Survey

Literature 

survey

Surface 

survey

Borehole 

survey

Plan for the next 

Plan for the next 

(Site descriptive model)

SDM (Ver. 0)

SDM (Ver. 1)

SDM (Ver. 2)

Preliminary Investigation

国土地理院（1997）
を基に編集・加筆
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100m100m100m100m

grounds

(A drilling yard is limited

in only the SW corner)

Drilling yard

Houses

Tanks

Place for 
pipes etc.

Drilling rig (H=36m)

Ca. 10m

YDP-2 (FY 2008-2009)
(Depth: 500m)

YDP-1 (FY 2006-2007)

(Depth: 350m)

Building for experiment 

in CRIEPI Yokosuka

Investigation flow and the scope of

Yokosuka Project in FY 2006-2010

●調査・評価体系の適用性確認
・地質環境情報の取得可能性提示
・調査・評価手順の検証・適正化

•Characterization of geological
environment
•Validation of survey technology
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Miura/Hayama boundary:

at a depth of ca. 500m
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Geological model before drilling
(based on literature data)

Revision of geological model due to the restriction of earlier surveys
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No seismic prospecting

due to the limitation of

noise and vibration, etc.

Miura G.

Hayama G.

�The restriction of the

surface survey stage (no

seismic prospecting)

caused a high degree of

uncertainty of the

determination of the

Miura G./Hayama G.

boundary.

�Such uncertainty

should be reduced
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The boundary:

at a depth of 207m

Geological model after drilling
(based on YDP-1 borehole data)
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Results of core observation
of YDP-1 (FY 2006-2007)
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Hayama G.

should be reduced

through surface seismic

prospecting, if there is no

restriction.

㹢Under the restriction,

microtremor array

observation method (no

artificial seismic source)

was carried out after

YDP-1 drilling and its

validity was confirmed.
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Confirmation of the Miura/Hayama boundary using microtremor array
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●●●●Result of microtremor

array observation method:
�The boundary of velocity

structure (corresponding to the

Miura/Hayama geological

boundary) was detected using

microtremor array observation.

�P and S wave velocity obtained

through both geophysical logging
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Microtremor

array observation

Sonic log
PS log (S wave)

through both geophysical logging

and prospecting indicates:

the Miura G. < the Hayama G.

㹢It seems difficult to recognize

the Hayama G. as fractured and

brittle rock through the results of

surface geophysical prospecting

before borehole survey.

(It is beyond the limits of ability

of geophysical prospecting.)
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Offset VSP (+seismic

tomography) profile
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Confirmation of the Miura/Hayama boundary using VSP after drilling

Offset VSP (+seismic

tomography) profile

Distance=12m

Reflection event

Reflection event

Reflection event

Reflection event

207m 217m
Geological

boundary

(Dip=45㫦㫦㫦㫦)

Geological

boundary

(Dip=65㫦㫦㫦㫦)

�Geological evidence (from

core observation) indicates that

the Miura/Hayama boundary

has an irregular shape locally.

VSP was conducted after each of

YDP-1 and YDP-2 drilling using a

mini-vibrator in consideration of the

effects of its noise and vibration.
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(Dip=45㫦㫦㫦㫦) (Dip=65㫦㫦㫦㫦)
has an irregular shape locally.

�On the other hand, the

results of VSP suggest the

boundary is horizontally

continuous around from

the borehole point on a

larger scale.

(e.g. discrepancy in encounter

depth and dip angle of the

boundary between the two

boreholes.)
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YDP-1: bedding plane YDP-2: bedding plane
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Schmidt’s net projection of

bedding planes (lower hemisphere)

207.45-
354.0m

217.2-
502.0m

Based on the correlation of bedding planes through the

observations of borehole wall and core, it is concluded that..

�Miura G.: Bedding planes are gently dipping westward, and it

is easy to correlate lithology between two boreholes.

�Hayama G.: Bedding planes are moderately to steeply dipping

(unevenness in dipping direction), and it is difficult to correlate

intercalations within mudstones between two boreholes.

YDP-1

YDP-2

350m

500m

It is difficult to correlate

intercalations within the

Hayama G. between

YDP-1 and YDP-2.

Schmidt’s net projection of

bedding planes (lower hemisphere)
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Information for establishing stratigraphy from microfossil biochronology

Ma
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Microfossil biostratigraphy of the Miura G., Hayama G.
and their equivalents in the Miura and Boso Peninsula
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�There is an unconformity between the Miura and Hayama groups:

unevenness of age gaps between YDP-1 and YDP-2.

�Radiolarian biostratigraphy revealed that there is an alternation of

specific age zones within the the whole Hayama G.: indicating

complicated geological structure, even though we can not

recognize any fault crushed zone between each of units.
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Geological structure model after the results of borehole surveys

㪥㪥㪥㪥 㪪㪪㪪㪪

Section line

Borehole location

CRIEPI Yokosuka
grounds

Elevation (m) Borehole location
YDP-1, 2 (projected)

�The Miura G. is divided into the Hatsuse

and Misaki Formations, and the Misaki F. is

subdivided into 5 members based on lithology:

alternation of sandy siltstone and sandstone.

�The Hayama G. can not be subdivided due

to difficulty in correlating intercalations (tuffs 

and tuffaceous sandstones) within the group:

fractured and brittle mudstone dominant.
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㪥㪥㪥㪥 㪪㪪㪪㪪
Miura G.

Hayama G.

Misaki F. Hatsuse F.

Misaki F.

YDP-1, 2 (projected)

N-S cross section of geological model along the
western margin of the CRIEPI Yokosuka grounds

Zushi F.



Geochemical characteristics of rocks of the Miura and Hayama groups

SiO2（（（（wt%）））） Fe2O3（（（（wt%）））） CaO（（（（wt%）））） K2O（（（（wt%））））
D

ep
th

(m
)

Miura G.

Hayama G.

(tuffaceous sandstone)

Comparison of bulk rock chemistry (extracted) of the Miura and Hayama groups

Generally, the chemistry of both groups has igneous (volcanic clastic) characteristics.
�The Miura shows intermediate (andesitic), the Hayama shows intermediate to acidic.

�The Miura is characterized by low SiO2, K2O and high Fe2O3 (total), CaO content, as 

compared with the Hayama.

�The Miura’s characteristics rich in CaO coincide with the occurrence of fossils and calcites

(possibly have also influenced water chemistry in the Miura).

�There is not remarkable difference in chemistry of mud and intercalations within the Hayama.
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In the Hayama G., there is clear correlation between Class 

C rock (rudaceous or clayey) and the sections of large 

borehole diameter after drilling (borehole breakout).(no 
core)

Characterization of rock quality of the Miura and Hayama groups

�Miura G.:
•Class: A (Columnar)

•Fracture: very few

�Hayama G.:
•Class: B (Fragmentary)

or C (rudaceous to clayey)

•Fracture: a large number
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Generally, resistivity 

drops into a few Ωm 

stepwise from the 

surface with depth.

⇒possibility of a 

reflection of lithology 

and water chemistry.

�Physical properties of the Miura G. are characterized by higher porosity

and lower P-wave and S-wave velocity (as compared with the Hayama G.).

�Intercalations of sandstone within both the Miura and Hayama show 

lower porosity and higher density (as compared with siltstone or mudstone).

�Markedly fractured (clayey) zones within the Hayama are characterized 

by smaller density and smaller P-wave and S-wave velocity.
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�Under overburden pressure,

rocks are tightly engaged

through fractures in the

Hayama G. even though

there are a large number of

P and S wave velocity obtained 

through both geophysical logging 

and prospecting indicates:

the Miura G. < the Hayama G.
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(In terms of understanding rock mechanical properties)
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fractures as a whole and also

immanent microfractures in a

rock specimen.

�On the other hand, the

overburden pressure is once

released, e.g. through

drilling, fractures are opened

and the core of the Hayama

G. becomes fragmentary or 

rudaceous in shape (brittle).
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Caliper log (mm)
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Silty sandstone

(scoriaceous)

Silty sandstone and 

pebbly siltstone 
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�Miura G. (at YDP-1):
�Borehole wall: stable (possible to clean the 

borehole wall with fresh water)

�Borehole breakout: rare (caliper log data)

⇒In situ borehole tests related to rock mechanical 

properties (borehole loading test and initial stress 

measurement) were conducted shallower than 200m.

�Hayama G. (at YDP-1 and 2):
We skipped in situ testing of rock mechanical and 

Issues of in situ borehole tests related to rock mechanical properties
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Borehole loading test
（（（（GL-101.75m））））

We skipped in situ testing of rock mechanical and 

stress for the Hayama G. The reason is the following.

�㪜㫃a㫊㫋㫀㪺㩷mo㪻㫌㫃㫌㫊㪑㩷1㪅㪎㪍㪜㫃a㫊㫋㫀㪺㩷mo㪻㫌㫃㫌㫊㪑㩷1㪅㪎㪍㪜㫃a㫊㫋㫀㪺㩷mo㪻㫌㫃㫌㫊㪑㩷1㪅㪎㪍㪜㫃a㫊㫋㫀㪺㩷mo㪻㫌㫃㫌㫊㪑㩷1㪅㪎㪍䌾䌾䌾䌾1㪅㪎㪎㩷㪞㪧a1㪅㪎㪎㩷㪞㪧a1㪅㪎㪎㩷㪞㪧a1㪅㪎㪎㩷㪞㪧a
�㪛㪼㪽o㫉ma㫋㫀on㪛㪼㪽o㫉ma㫋㫀on㪛㪼㪽o㫉ma㫋㫀on㪛㪼㪽o㫉ma㫋㫀on mo㪻㫌㫃㫌㫊mo㪻㫌㫃㫌㫊mo㪻㫌㫃㫌㫊mo㪻㫌㫃㫌㫊㪑㪑㪑㪑 51㪋51㪋51㪋51㪋 㪤㪧a㪤㪧a㪤㪧a㪤㪧a

�㪜㫃a㫊㫋㫀㪺㩷mo㪻㫌㫃㫌㫊㪑㩷0㪅㪎㪏㪜㫃a㫊㫋㫀㪺㩷mo㪻㫌㫃㫌㫊㪑㩷0㪅㪎㪏㪜㫃a㫊㫋㫀㪺㩷mo㪻㫌㫃㫌㫊㪑㩷0㪅㪎㪏㪜㫃a㫊㫋㫀㪺㩷mo㪻㫌㫃㫌㫊㪑㩷0㪅㪎㪏䌾䌾䌾䌾1㪅0㪋㪞㪧a1㪅0㪋㪞㪧a1㪅0㪋㪞㪧a1㪅0㪋㪞㪧a
�㪛㪼㪽o㫉ma㫋㫀on㪛㪼㪽o㫉ma㫋㫀on㪛㪼㪽o㫉ma㫋㫀on㪛㪼㪽o㫉ma㫋㫀on mo㪻㫌㫃㫌㫊mo㪻㫌㫃㫌㫊mo㪻㫌㫃㫌㫊mo㪻㫌㫃㫌㫊㪑㪑㪑㪑 5㪋55㪋55㪋55㪋5 㪤㪧a㪤㪧a㪤㪧a㪤㪧a

䇼䇼䇼䇼Hydraulic fracturing method䇽䇽䇽䇽
�㪤a㫏㫀m㫌m㪤a㫏㫀m㫌m㪤a㫏㫀m㫌m㪤a㫏㫀m㫌m 㪿o㫉㫀㫑on㫋a㫃㪿o㫉㫀㫑on㫋a㫃㪿o㫉㫀㫑on㫋a㫃㪿o㫉㫀㫑on㫋a㫃 㫊㫋㫉㪼㫊㫊㫊㫋㫉㪼㫊㫊㫊㫋㫉㪼㫊㫊㫊㫋㫉㪼㫊㫊 㩿㪪㪟㪀㩿㪪㪟㪀㩿㪪㪟㪀㩿㪪㪟㪀㪑㪑㪑㪑
㪏㪏㪏㪏㪅㪅㪅㪅㪏㪐㪏㪐㪏㪐㪏㪐䌾䌾䌾䌾㪐㪐㪐㪐㪅㪅㪅㪅㪎㪏㪎㪏㪎㪏㪎㪏 㪤㪧a㪤㪧a㪤㪧a㪤㪧a
�㪤㫀n㫀m㫌m㪤㫀n㫀m㫌m㪤㫀n㫀m㫌m㪤㫀n㫀m㫌m 㪿o㫉㫀㫑on㫋a㫃㪿o㫉㫀㫑on㫋a㫃㪿o㫉㫀㫑on㫋a㫃㪿o㫉㫀㫑on㫋a㫃 㫊㫋㫉㪼㫊㫊㫊㫋㫉㪼㫊㫊㫊㫋㫉㪼㫊㫊㫊㫋㫉㪼㫊㫊 (Sh):

5555㪅㪅㪅㪅1㪋1㪋1㪋1㪋䌾䌾䌾䌾5555㪅㪅㪅㪅㪍㪉㪍㪉㪍㪉㪍㪉 㪤㪧a㪤㪧a㪤㪧a㪤㪧a
�㪪㫋㫉㪼㫊㫊㪪㫋㫉㪼㫊㫊㪪㫋㫉㪼㫊㫊㪪㫋㫉㪼㫊㫊 㪺on㪻㫀㫋㫀on㪺on㪻㫀㫋㫀on㪺on㪻㫀㫋㫀on㪺on㪻㫀㫋㫀on㪑㪑㪑㪑 㪪㪟㪪㪟㪪㪟㪪㪟䋾䋾䋾䋾㪪㪿㪪㪿㪪㪿㪪㪿䋾䋾䋾䋾㱟㫍㱟㫍㱟㫍㱟㫍
�㪧㫉㫀n㪺㫀pa㫃㪧㫉㫀n㪺㫀pa㫃㪧㫉㫀n㪺㫀pa㫃㪧㫉㫀n㪺㫀pa㫃 㫊㫋㫉㪼㫊㫊㫊㫋㫉㪼㫊㫊㫊㫋㫉㪼㫊㫊㫊㫋㫉㪼㫊㫊 㪻㫀㫉㪼㪺㫋㫀on㪻㫀㫉㪼㪺㫋㫀on㪻㫀㫉㪼㪺㫋㫀on㪻㫀㫉㪼㪺㫋㫀on㪑㪑㪑㪑 㪥㪥㪥㪥㪉㪎㪉㪎㪉㪎㪉㪎㫦㫦㫦㫦㪮㪮㪮㪮
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Sandy siltstone 

dominant

Silty sandstone 

dominant

Medium to 

coarse sandstone 

dominant

Sandy siltstone 

dominant

Borehole loading test
（（（（GL-186.50m））））

Initial stress measurement
（（（（GL-169.40m））））

䇼䇼䇼䇼The possibility of tests䇽䇽䇽䇽
�Borehole breakout: frequent sections of large 

borehole diameter after drilling (> ca. 140 mm = the 

maximum permissible diameter of test tools)

�Risk of test tools being stuck caused by borehole 

wall collapse: high (because of unstable borehole wall 

reflecting immanent microfractures and in some parts 

the presence of swelling clay within the Hayama G.)

䇼䇼䇼䇼The quality of obtained data䇽䇽䇽䇽
�Possibility of removing mud cake: unrealistic

(from the viewpoint of maintaining borehole wall)15Result of in situ borehole tests related to 
rock mechanical properties at YDP-1
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In situ testing of rock mechanical and stress 

for the Hayama G. was skipped because of 

difficulty in ensuring the quality of testing.

In this phase, rock mechanical properties were roughly 

summed up based on “converted values as uniaxial 

compression strength” (through empirical formulas)

using the results of various lab. tests and also loggings.

�The results of velocity logging suggest a possibility 

that the rock strength of the Hayama G. is higher than 

Miura G.

Hayama G.
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Comparison of rock mechanical properties (“converted 
values as uniaxial compression strength” from various tests)
�In situ borehole logging: Velocity logging (Vp)
�Lab. tests: Uniaxial and triaxial compression tests, point 
road test, pnetrometer test

Tuffaceous 
sandstone
dominant

Markedly 
fractured 
(clayey) 
zone

Uniaxial compression strength (kgf/cm2)

that the rock strength of the Hayama G. is higher than 

that of the Miura G. under the confining pressure.

�On the other hand, such clearly higher or lower

relationship between the Miura and Hayama Groups

can not be recognized for the results of lab. tests:

relatively low for test specimens of the Hayama G.

(possibility of the effects of immanent microfractures.)

Anyway we have not obtained directly the real 

rock strength property data of the main body of 

“fractured mudstone” (Hayama G.) which is 

fragmentary or rudaceous in core shape.
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Issues of lab. tests of rock mechanical properties of the Hayama G.

�Specimens for rock mechanical strength tests of the Hayama G. can only be
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tuffaceous sandstones), not the main rock facies (mudstones).

�As for a uniaxial compression test (under no confining pressure), the test is not

concluded successfully in some cases because of the effects of microfractures within

the rock specimen.⇒It seemed that a triaxial compression test were effective.

�As for a triaxial compression test, it is inevitable

to adopt a multiple-step loading test to obtain c’

and φ’ for a single rock specimen, because of the

difficulty in obtaining two or more specimens
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difficulty in obtaining two or more specimens

from the same rock facies at the same depth.

�However in reality, multiple-step loading does

not work effectively under higher confining

pressure for rock specimens obtained at deeper

part, because of the limit of pressure resistant

capacity of the test apparatus.

⇒Nevertheless, the results of single-step loading

tests indicate clearly high rock strength property

of the Hayama G. under overburden pressure.
(→at least for intercalations.)
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�Miura G.:
㹢order of 10-7 m/s

�Hayama G.:
㹢order of 10-9 m/s

(Hydrauric conductivity obtained 

through lab. tests has scattering 

distribution around values of in 

situ tests or deviates toward the 

lower conductivity side)
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�Miura G.:
㹢hydrostatic pressure

�Hayama G.:
㹢higher than the 

hydrostatic pressure (Miura).

Blue: YDP-1 data

Green: YDP-2 data
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pressure had been decreasing 

gradually during a sequential 

test in this section.)
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●●●●Water sampling

●●●●Water sampling

(pressure confined)

䂥䂥䂥䂥 Pore water (YDP-1)

䂦䂦䂦䂦 Pore water (YDP-2)

䂓䂓䂓䂓 Drilling mud (YDP-1)

䂔䂔䂔䂔 Drilling mud (YDP-2)

�Groundwater samples 

showing sufficiently few 

effects of drilling mud 

had not been obtained 

for a realistic period 

through water sampling

for the low permeable 

Hayama G.

�Chemical data showing 

�In such case, a pore

water squeezing method

of core samples was

available for obtaining

water samples.
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Water was sampled through in situ sampling or pore water squeezing.

Ca（（（（mg/l））））

（（（（KCl as 
drilling mud））））

（（（（KCl as 
drilling mud））））

（（（（Flex as 
drilling mud））））

Depth
(m)

�Chemical data showing 

relatively fewer effects of 

drilling mud suggest the 

following tendency.

�The upper part:

(shallower than ca. 100m)

⇒Fresh water

�The lower part:

(deeper than ca. 100m)

�Salinity increases to sea 

water level with depth.

�There is a part showing 

high concentrations of 

Ca, Mg, and SO4 within 

the Miura G. as compared 

with other parts.



Summary: establishment of site descriptive models

Division of groundwater flow system (around boreholes):

�GL-0䌾䌾䌾䌾100m (shallower Miura): Rainwater (higher circulation)

Hydrogeological structure model
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現海水と原位置平衡値の
範囲は，文献に基づく。

2036Cl/Cl distribution with depth Cl concentration with depth Geochemical properties of groundwater model

�GL-0䌾䌾䌾䌾100m (shallower Miura): Rainwater (higher circulation)

�GL-100䌾䌾䌾䌾200m (deeper Miura): Rainwater + Seawater (high mobility)

�GL-200䌾䌾䌾䌾300m (shallower Hayama): Rainwater + Seawater + Fossil seawater

�Deeper than GL-300m (main Hayama): Fossil seawater (higher stagnancy)
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