Rainfall-Based Debris Flow Warning Model and Debris Flow Monitoring System

Hsiao-Yu, Huang

Senior Engineer Debris Flow Disaster Prevention Center Soil and Water Conservation Bureau Council of Agriculture, Taiwan

Soil and Water Conservation Bureau, Taiwan

Outline

- 1. Type of Debris-Flow Warning System
- 2. Methodology of RTI Model
- 3. Rainfall-Based Debris Flow Warning Model
- 4. Debris Flow Monitoring

1

1. Type of Debris-Flow Warning System

👔 y Soil and Water Conservation Bureau, Taiwan

Historic Typhoon Disasters in Taiwan

0		0	0		0		0		0	1	0	0	0	0	0	\mathbf{O}
1950	6	50	70		80		90	1	1999	2000	01	04	05	07	08	09
	●溫妮颱風(58) Winnie typh.	●葛樂禮颱風(63) Gloria typh.		●畢莉颱風(76) Billie typh.	· まし 風 人(と) しつ ···· ひつ ···	●林恩颱虱(37) I vnn tvnh) : : : :	●賀伯颱風(96) Herb typhoon	•Chi-Chi Earthquake (%)	●象神颱風(00) Xangsane typh.	●桃芝颱風(0) Nari typhoon	●敏督利颱風(04) Mindulle ●艾利颱風(04) Aere	●海棠颱風(05) Masha	●聖帕颱風(07) Sepat	●卡玫基颱風(08) Kalmaegi ●辛樂克颱風(08) Sinlaku	●莫拉克颱風(09) Morakot
	Ma	inly fl	ood	ina (disas	ster	S		T	flows	disasi	od & de ters afte	r Chi-		Comp Haza	rds
										Chił	aring	uake in	1999		in 20	109

(1). Post-event Type

Using geophone, wire sensor, or CCD image to take the signal of debris flow after occurring. Advantage : Highly Accurate, less false alarms Disadvantage : Shortage of Evacuation time, Higher cost,

It could not be installed entire area, so always got leakage.

(2). Pre-event Type

Using rainfall parameters to set the warning criteria.

Advantage : Lower Cost, Wide coverage, Extend evacuation time

Disadvantage : Lower Accurate, more false -alarms

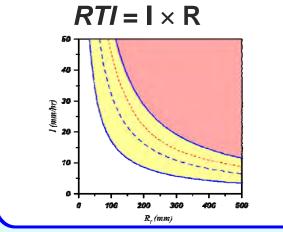
5

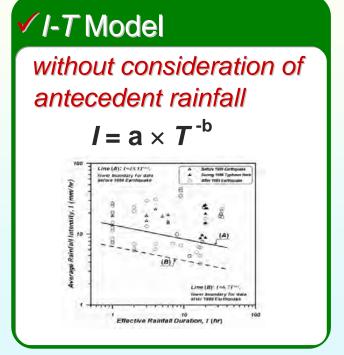
Soil and Water Conservation Bureau, Taiwan

Rainfall Parameters

Rainfall Parameters	Definition						
l (Rainfall intensity)	$\rm I_{10}$ (Intensity of 10 minutes) , $\rm I_{60}$ (Intensity of 60 minutes), $\rm I_{d}$ (Intensity of 1 day), $\rm I_{a}$ (Intensity of rainfall event)						
<i>R (Accumulated</i> Rainfall)	R _{4hr} (4 hrs accumulated rainfall), R (Event accumulated rainfall), R _d (Daily accumulated rainfall), R _{te} (Effective Accumulated rainfall)						
T (Duration)	T _e (Effective rainfall duration), T (Event duration)						
P (Antecedent-Rainfall)	P ₇ (Previous 7 days rainfall) P ₁₄ (Previous 14 days rainfall) P ₂₀ (Previous 20 days rainfall)						

Warning Models of rainfall parameter

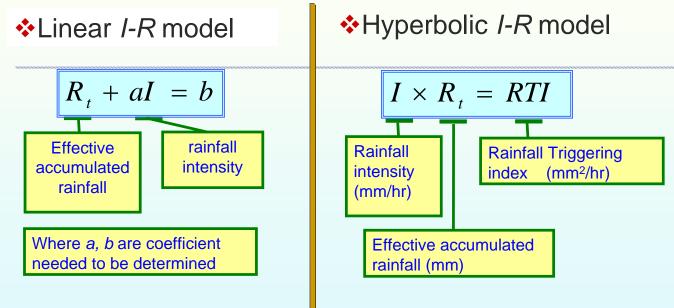

Тур	Taiwan	Abroad
I-R	Hsieh (1995, 2000) Jiang and Lin (1991) Fang and Yao (1997) Jan (2002-2006)	Katsumi (1978) Tang (1991) Meng(1991) Kawakami (1981)
I-T	Jan (2001), Chen (2000), Huang (2000), Yao (2001)	Caine (1980) , Keefer(1987) Cannon-Ellen (1985) Wieczorek (1987), Marchi(2000)
R-T	Fang (2001,2003)	青木佑久(1980)
I-P		Wang (1972), Wu(1990)
other		Katsumi (1973), Wilson (1997)

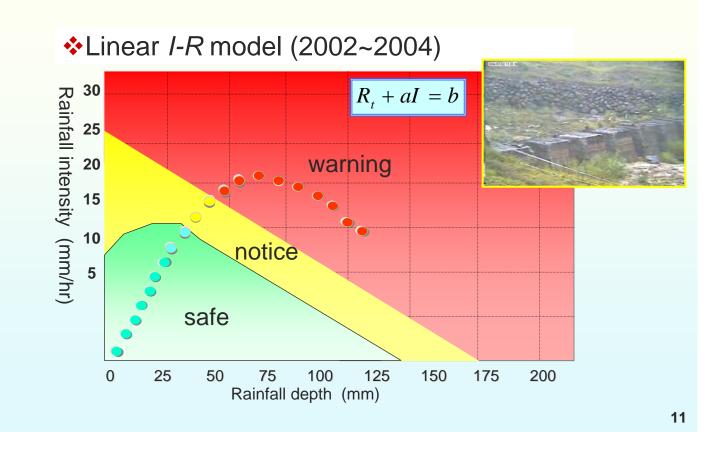


👔 🙀 Soil and Water Conservation Bureau, Taiwan

✓ I-R Model

with consideration of antecedent rainfall





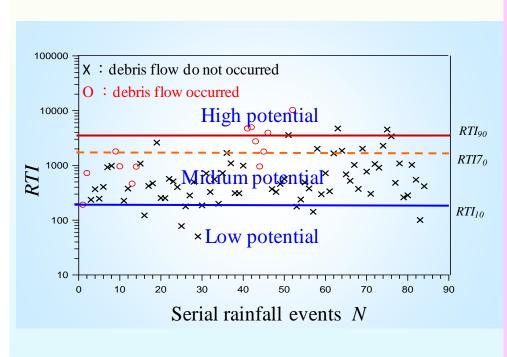
2. Methodology of RTI Model

👬 🐠 Soil and Water Conservation Bureau, Taiwan

A. Development of RTI Model

Soil and Water Conservation Bureau, Taiwan

Hyperbolic I-R model (After 2004)


Rainfall Triggering Index (RTI) =Rainfall intensity × Effective accumulated rainfall

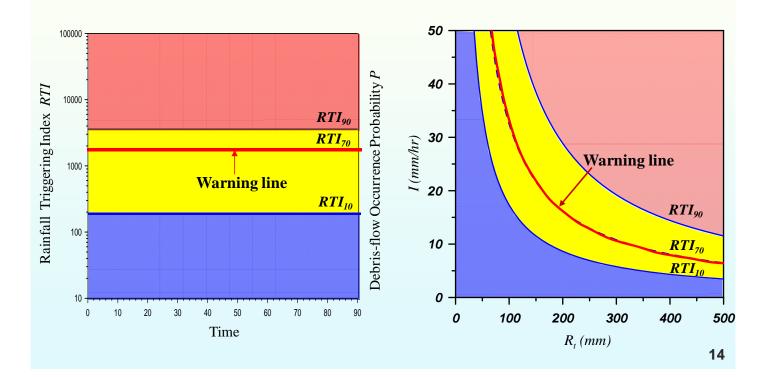
RTI = I × R_i

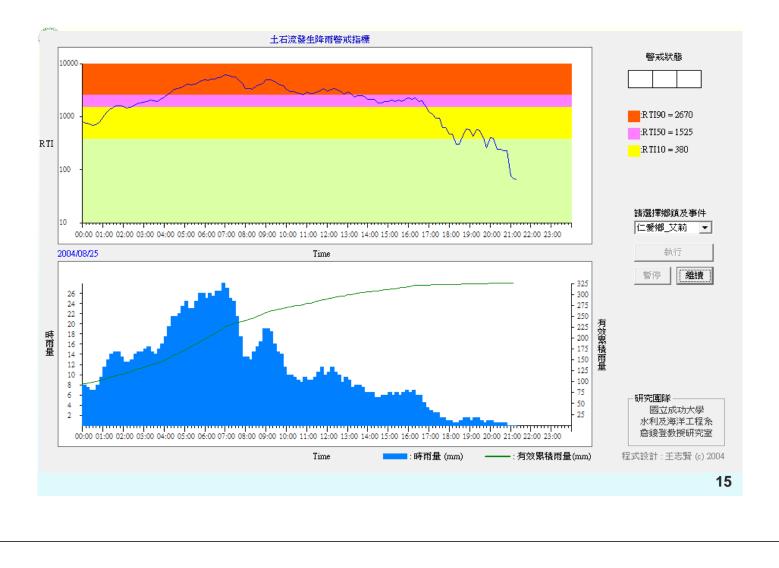
$$R_i(t) = R(t) + \sum_{i=1}^{7} \alpha^i R_i$$
R(t) is the amount of the accumulated rainfall at time t in the considered rainfall event
R_i is the amount of the antecedent *i* day's rainfall
 α is a weighting factor and is set to be 0.8
Debris-flow rainfall events : Hourly rainfall at the debris-flows occurrence ti

Debris-flow rainfall events : Hourly rainfall at the debris-flows occurrence time No debris-flow rainfall events : Peak of hourly rainfall in the rainfall events

Determine the critical RTI-values for Debris-Flow Occurrence

✓ A lower critical line (RTI_{10}) is defined as the lowest *RTI*-values of rainfall events that had triggered debris flows

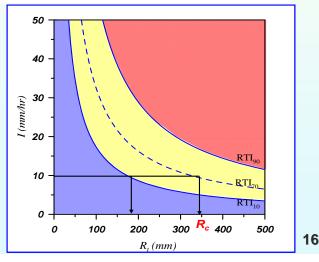

✓ An upper critical line (RTI_{90}) is defined as that 90% of *RTI*-values for the historical rainfall events no matter with triggering and not triggering debris flows is smaller than it .


✓ Other debris-flow occurrence probability

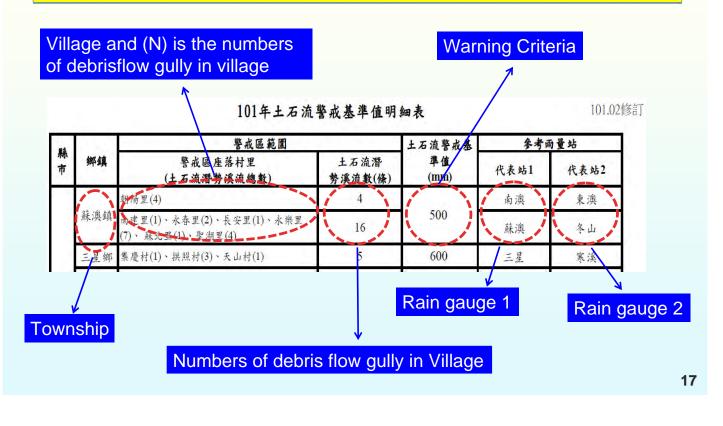
$$P(RTI) = 0.1 + 0.8(\frac{RTI - RTI_{10}}{RTI_{90} - RTI_{10}})$$

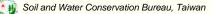
Soil and Water Conservation Bureau, Taiwan

Determine the critical RTI-values for Debris-Flow Occurrence



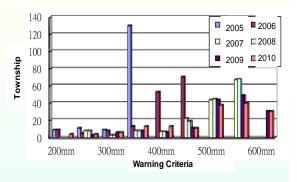
Soil and Water Conservation Bureau, Taiwan

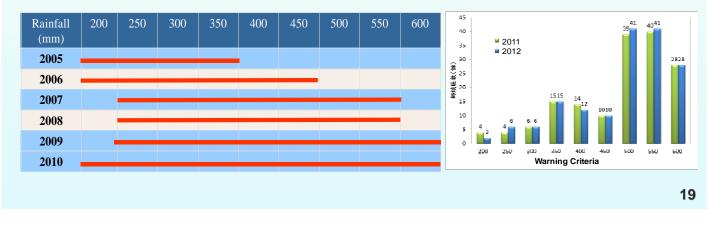

Simplified RTI model


- The critical RTI-value involves two parameters (I and R) is too academic and not easy to understand for people living in mountainous areas.
- ✓ The critical accumulated rainfall (R_c) is set for easier public understanding and application for evacuation.

Rc is estimated from the critical RTI-value with a consideration of rainfall intensity of 10 mm/hr, and rounded with 50mm as an interval of the critical accumulated rainfall. That is to say for different counties, *Rc* could be 200, 250, 300, 350, 400, 450, 500, 550, or 600 mm.

Warning criteria value Table

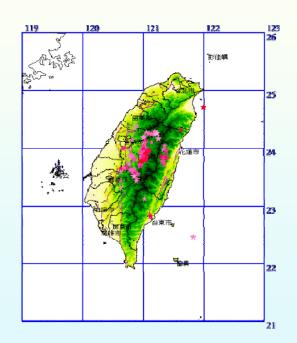




3. Rainfall-Based Debris Flow Warning Model

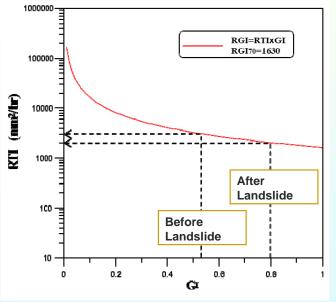
Reasons for adjustment

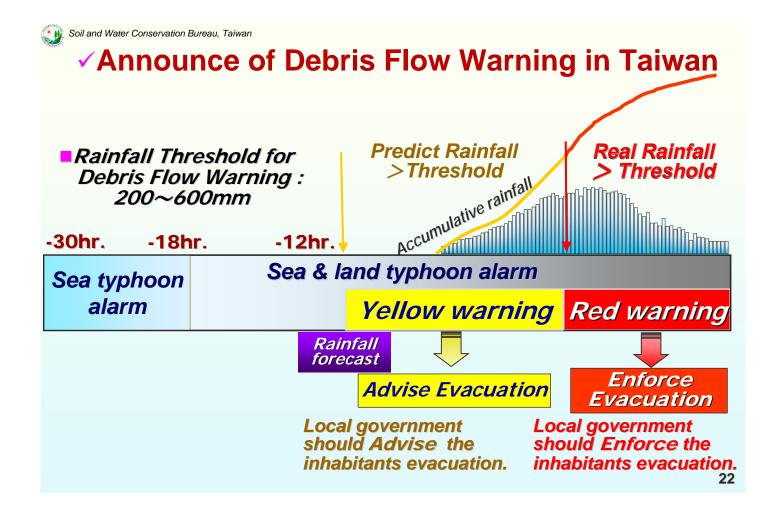
- 1. Newly added debris flow or rainfall events
- 2. After severe rainfall that caused severe landslides
- 3. Earthquake magnitude larger than 5.0
- 4. Others (Land-use activity changed)



Soil and Water Conservation Bureau, Taiwan

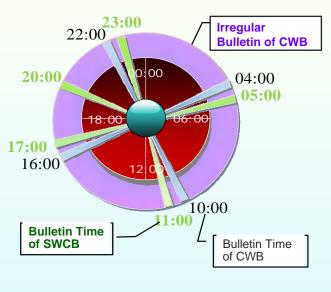
Affected by the earthquake


- 1. When magnitude of earthquake was larger than 5.0 in the township, the criteria value would be decreased from RTI_{70} to RTI_{50} , i.e. from R_{70} to $R_{50} \circ$
- Two years after earthquake, the criteria value would be reviewed. If the environment did not get worse, criteria value would be increased.



Affected by severe landslides

If somewhere had a severe landslide, the geo-conditions would be changed. Using the relationship of RTI and GI, the criteria value after landslide would be determined.

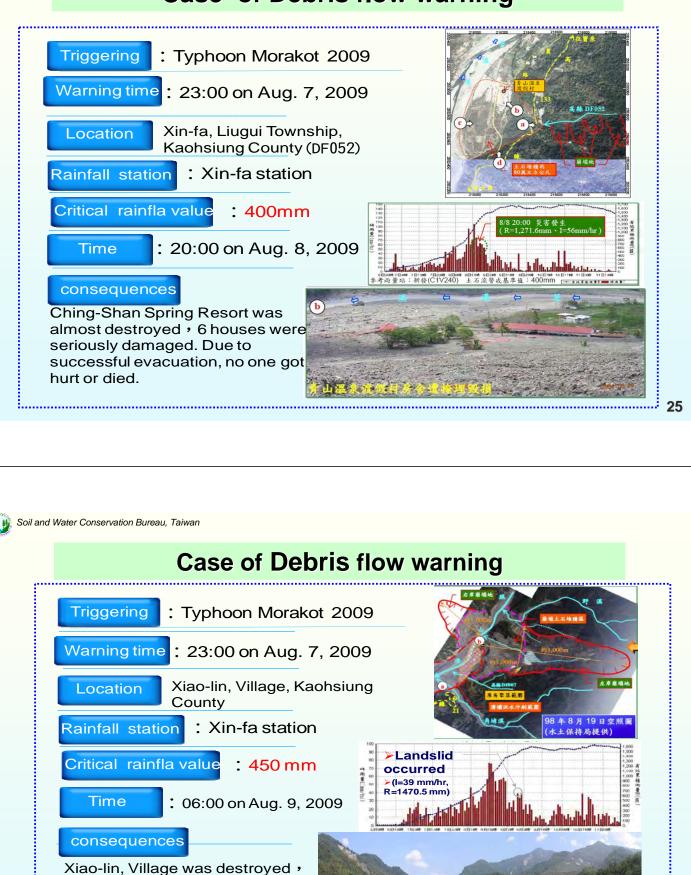


Bulletin Time

Regular Time:

- After the forecasting of CWB, i.e. 5:00, 11:00, 17:00, 20:00, 23:00, 5 times a day.
- ➢ Irregular Time:

Depend on rainfall situation



Soil and Water Conservation Bureau, Taiwan

Some examples of landslide and debris-flow events caused by Typhoon Morakot

Site (village)	Hazard type	Occurrence time	Debris-flow warning time by SWCB
Xi-an 西安村	Debris flow	20: 00, August 8	23:00 , August 7 (21 hrs earlier)
Dong-an 東安村	Debris flow	20: 00, August 8	23:00 , August 7 (21 hrs earlier)
Xin-fa 新發村	Debris flow Landslide	21: 00, August 8	23:00 , August 7 (22 hrs earlier)
Chi-lai 集來村	Debris flow	05: 00, August 9	08:00 , August 8 (21 hrs earlier)
Xiao-lin 小林村	Landslide	06: 00, August 9	23:00 , August 7 (27 hrs earlier)

Case of Debris flow warning

350 houses were submerged and

453 people died.

26

Evaluation of warning quality

Index	Function	Estimated method	2005~2010
Warning accuracy rate	Assess the efficiencies of the	C ₁ =A1/D A1 : The number of debris flow events after warning	Index Rainfall Events
(C ₁)	warning system	D : Total number of debris flow events	2005
		C ₂ =A2/D	2006
Critical rainfall	Assess the	A2 : The number of debris flow events while the	2007
values accuracy	adequacy of the critical	accumulated rainfall exceed the critical rainfall values	2008
rate (C ₂)	rainfall values	(A2) D: Total number of debris	2009
• 2/		flow events	2010

The average index value was 70%, which was close to Japan.

Index Rainfall Events	C ₁	C ₂
2005	12/18 = 67%	12/18 = 67%
2006	2/3 = 66%	3/3 = 100%
2007	2/6 = 33%	4/6 = 67%
2008	9/21 = 43%	14/21 = 67%
2009	25/29 = 86%	25/29 = 86%
2010	5/7=71%	5/7=71%

27

👥 Soil and Water Conservation Bureau, Taiwan

4. Debris Flow Monitoring

Watershed-oriented Monitoring Network

- Point Line Plane: extended to upper stream and the source of debris, considering a whole watershed.
- Combining on-site, mobile, and grid stations.
- Integrating data from different agencies.

Optical fiber

36

ADSL S

GPR

Satellite

5G

internet

```
Emergency Operation Center<sub>29</sub>
```

Framework of monitoring stations
 The monitoring station is equipped with the automatic monitoring system, and with

the data transmission techniques of satellite and Internet, the real-time data can be sent back to the Emergency Operation Center of SWCB.

💽 🙀 Soil and Water Conservation Bureau, Taiwan

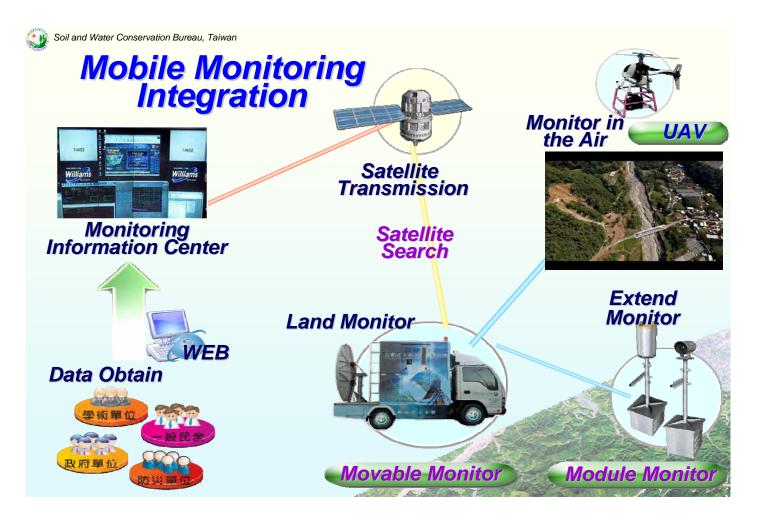
Soil moisture Meteorological sensor

電池組 Electricity backup system

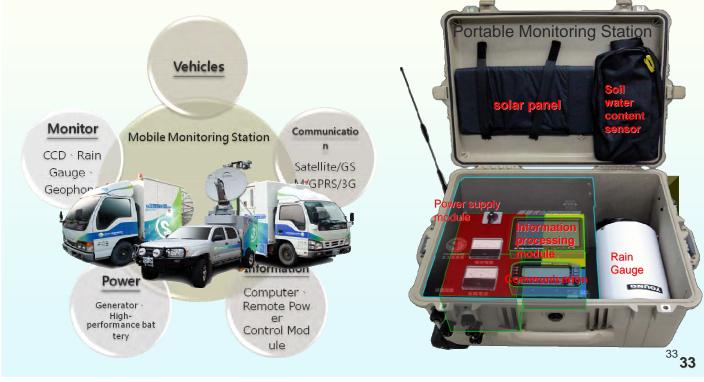
雷淮

Ionitoring Information

Center


Display platform

Cell Phone

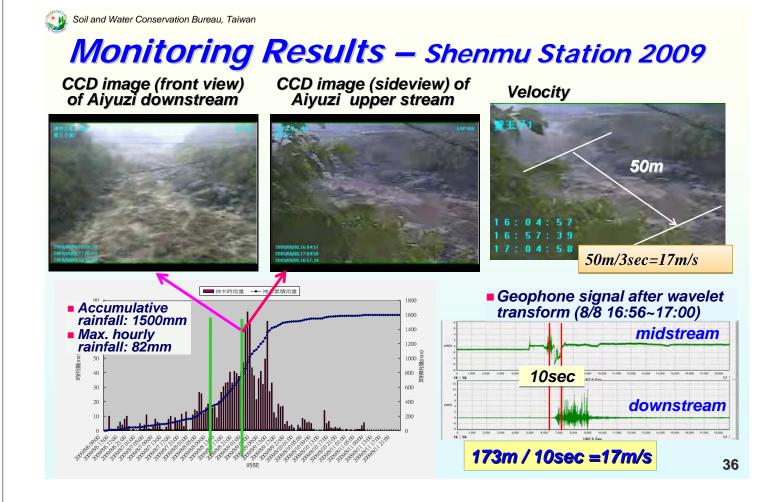

Reports

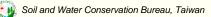
Debris Flow Monitoring Station

The main structure of Mobile and Portable Monitoring Station

💓 Soil and Water Conservation Bureau, Taiwan

Assessment and on-site investigation


Mobile and portable station function upgrade


A long-term type of portable unit

Zhu-Shan Heliport

Jiufen-Ershan bursting Point

Debris Flow

✓Data collection and analysis

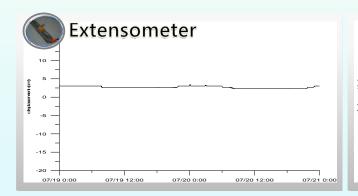
At Aiyuzi Stream, Shenmu Sta.

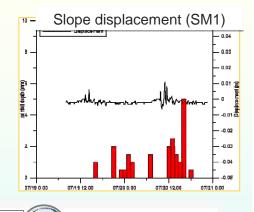
Event	Wire broken	Max. Hourly Rainfall (mm)	Accumulated Rainfall (mm)	Upstream Accumulated Rainfall (mm)	Flow Rate (m/s)	Sediment (m³)
0713	07/13 14:33	10.5	11	21	4.3	4,984
0719 Heavy Rain	07/19 03:19	28	126	314.5	-	-
				1.77	5,891	
1110	11/10 13:29	17	66	100	1.07	8,513

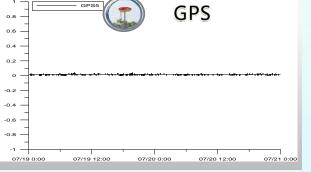
2011/0713

2011/1110 First Wave

2011/1110 Second Wave




Soil and Water Conservation Bureau, Taiwan


Landslide Monitoring

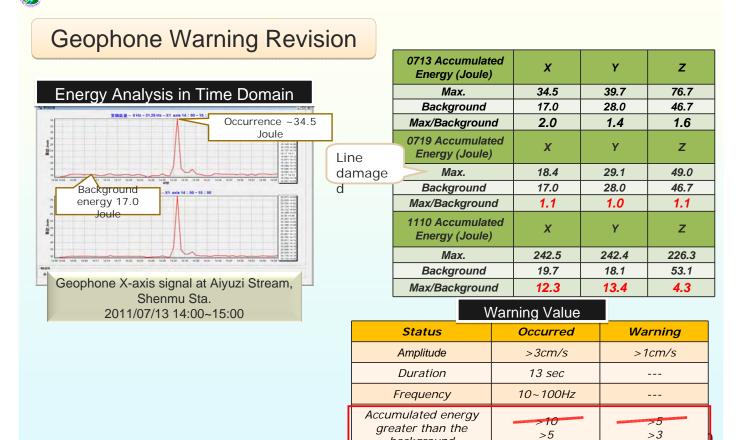
0719 Heavy Rain

Sta.	Instrument	Function
Pingting	GPS, extensometer, tiltmeter	Normal
JiuFen- ErShan	Extensometer, water level meter, groundwater level meter	Normal

Rainfall Warning Revision

Debuie	A	Rainfali=66
Debris Flow Event	Accumulated Rainfall by occurrence (mm)	Occurrence 11/10 13:29
0719	78.5	
1110	66	
		A A A A A A A A A A A A A

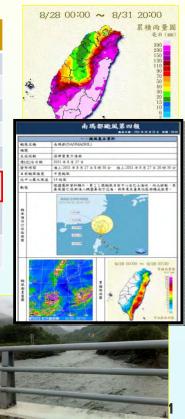
Based on the data of this year, the rainfall warning of Shenmu Sta. was suggested to lower from 250 mm to 200 mm.


- The construction of slope protection had been completed. The rainfall warning for landslide was suggested to modified to a higher value.
- The rainfall warning value can use the criteria of Highway Bureau.

Rainfal Bureau	l Criteria of Highway	
Warning	 Hourly rainfall >50mm or 24hr accumulated rainfall 200mm 	
Action	Hourly rainfall >60mm 24hr accumulated rainfall >290mm	39

1110

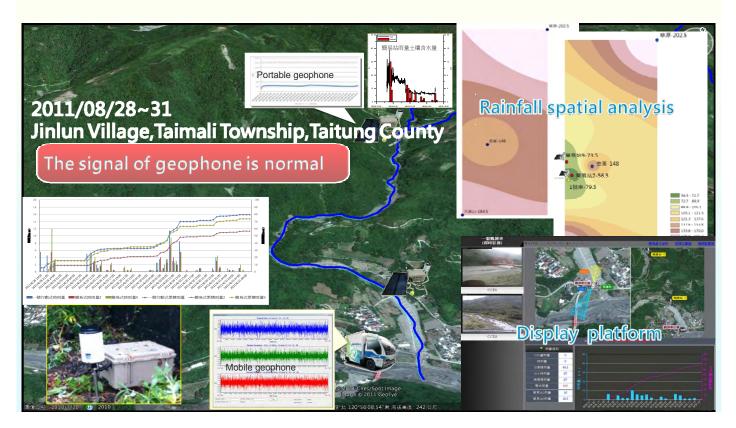
「「「「「」


Soil and Water Conservation Bureau, Taiwan

background

2011 debris flow warning list

Name1	Starting time	Closure time	days	Red warning	Yellow warning	deployment
AERE	100/05/09 08:00	100/05/10 17:54	2	0	0	no
SONGDA	100/05/27 08:00	100/05/28 14:39	2	0	0	no
MEARI	100/06/24 08:00	100/06/25 14:48	2	0	0	no
0719 rainfall	100/07/19 08:30	100/07/20 22:15	2	45	146	no
MUIFA	100/08/04 17:30	100/08/06 11:53	3	0	0	no
NANMAD- OL	100/08/27 09:00	100/08/31 20:25	5	46	421	yes
1001 rainfall	100/10/02 08:00	100/10/04 14:51	3	33	227	no
1117 rainfall	2011/11/17 12:40	100/11/18 13:38	2	0	96	no



50 Soil and Water Conservation Bureau, Taiwan

NANMADOL typhoon monitoring --mobile station NO.1

Maintenance of mobile and portable station

Schedule and Tasks

Regular

- 1. May to Nov. (rainy season): Every announced half month 2. After typhod
- 2. Dec. to April (non-rainy season) :Every month
- Mobile station

- 1. After typhoon warning
- 2. After typhoon warning cleared

43

43

📺 Soil and Water Conservation Bureau, Taiwan

Deployment of mobile and portable station

Toink You for Your Attention

Soil and Water Conservation Bureau Always Working with You