

BROADCASTING OVER LTE WITH EMBMS

A ROUTE TO MORE SPECTRUM EFFICIENT MASS MEDIA DELIVERY

Jörg Huschke Broadband for all Seminar 2012 – Technology Briefing Ericsson Studio, 26 June 2012

OUTLINE

- > LTE-MBMS overview:
- > Service continuity
- > Service probability example using DVB-T service quality requirements

evolved Multimedia Broadcast/Multicast Service

- > Transition to SFN, spectrum savings
- > Possible future enhancements
- → Summary

REGULATORY & MARKET CONTEXT

- > Some dedicated mobile broadcasting technologies have not gained market support (DVB-H, MediaFlo)
- > FCC national broadband plan had decided to make 120MHz of broadcast spectrum available for mobile broadband.
- > WRC2012 has taken decision to allocate the 700MHz band also to the mobile service on a co-primary basis by 2015.
- > Broadcasters start to realize they need to work on an evolution path for terrestrial media distribution urgently, also looking into LTE.
- > EBU has started a strategic programme Cooperative Terrestrial Networks (CTN) with participation from companies like Qualcomm, ALu, Ericsson.
- > eMBMS has been demonstrated at MWC 2012. Products announced for 2014. Increasing interest from mobile operators.

Ericsson Internal | 2012-06-14 | Page 3

LTE-MBMS OVERVIEW

USE CASES

Linear TV & Instant delivery

Deliver premium content to many users with secured QoS, over defined areas

Ericsson Internal | 2012-06-14 | Page 5

UE caching – pushed content

Broadcast (Podcast) most popular Video, Appz and Webpages to device cache. Broadcast SW devices upgrades.

Enable M2M services that would benefit from broadcast.

Efficient use of LTE spectrum & network investments

Broadcast most popular content in the geographical areas it makes sense.

Offer specialised services over dense areas as arenas etc.

Enable efficient mobile advertising

MBMS CODECS/SERVICE LAYER TOOLS

- > CODECs: H.264, E-AAC+ or AMR-WB+
- > Streaming delivery method for continuous reception
 - Re-use of existing Streaming Protocols (i.e. RTP)
- > Download delivery method for file distribution
 - IETF file distribution protocols FLUTE and ALC
 - Also used for stream delivery based on DASH
- > Auxiliary functions for content transmission methods
 - Post transmission File Repair function
 - Reception Reporting for files and streams
- > Service access protection
 - Terminal/user authentication
 - Key Management via MIKEY
- > Additional Forward Error Correction (FEC) on application layer (IP layer) supported
 - enables further reduced IP packet error rates
 - Raptor code, IETF RFC 5053

MBMS RADIO INTERFACE **CHARACTERISTICS**

- > LTE-MBMS time multiplexed with unicast traffic
- Supported for FDD and TDD LTE
- > Uses OFDM, like DVB-T, ISDB-T
 - OFDM parameters differ, LTE optimized for very high user mobility at 2.6GHz and above, based on rather low cellular transmitter separation
 - Longer guard interval than for LTE unicast, to avoid inter symbol interference from neighbor cells
- > MBMS uses Single Frequency Network (MBSFN) transmission

Ericsson Internal | 2012-06-14 | Page 8

MBMS SERVICE AREA / MBSFN AREA

- MBMS Service Area allows service distribution in target regions
- > eNBs transmitting MBSFN are required to be synchronized in time
- > Overlap between MBSFN areas is supported
 - Enables local, regional, and national services
 - One cell can belong to several MBSFN areas

RELEASE 11 ADD-ON: SERVICE CONTINUITY WITH MULTIPLE FREQUENCY LAYERS

- User Service Description has information in which MBMS Service Area IDs (SAIs) and on which frequencies the service is provided
- Each cell in the network announces MBMS SAIs of cells for its own frequency and for its neighboring frequencies.
- › UE can identify whether it is in coverage area of frequency layer providing MBMS service of interest without having to search the layers.

2 Frequency Layers (Example)

Ericsson Internat | 2012-06-14 | Page 10

SERVICE PROBABILITY EXAMPLE USING DVB-T SERVICE QUALITY REQUIREMENTS

ASSUMPTIONS

- > Quality requirement
 - Quasi error free (QEF) reception: less than one uncorrected error-event per transmission hour
 - Requires use of application layer FEC (AL-FEC)
 - AL-FEC block covers 1s
 - tolerable AL-FEC block error rate: 1s/3600s = 2.78e-4
- > DVB-T portable indoor reception scenario:

Receiver is placed at optimum position in a disk of 0.5m radius.

- Mimicked by choosing optimal position within a 1m straight line of the random initial user position.
- once optimal position selected, channel is assumed to be static
- > Propagation: 3GPP case 1, but 700MHz and only 8dB indoor loss, taken from DVB-T assumptions
- > Inter-symbol-interference ("MBSFN-self-interference") not considered, expected to be low in present scenario.
- > Results provided indicate technology potential. No implementation margins.

Ericsson Internal | 2012-06-14 | Page 12

ESTIMATED SERVICE PROBABILITY IN 20KM AROUND COLOGNE/GERMANY

- > Least robust MCS; 2% AL-FEC
- > 3.1b/s/Hz

Ericsson Internal | 2012-06-14 | Page 13

"mean ISD" method

More robust MCS. Spectral efficiency reduced to 1.6b/s/Hz

COMPARISON TO DVB-T

> eMBMS; 1.6b/s/Hz sites with service >95%:

- 100% in 10km: 93% in 20km

> DVB-T; 1.66b/s/Hz (13.27Mb/s)

Versorgung indoor 95% Versorgung portable outdoor 70%

source: LfM NRW

EMBMS CAN FREE UP TV SPECTRUM 🗾

- > nation-wide SFN not used for DVB-T
 - to prevent inter-symbol-interference due to very large transmitters distances
- > MFN used instead
 - requires many frequencies for one nation-wide coverage
- > eMBMS with the small cellular transmitter distances enables nation-wide SFN

Ericsson Internal | 2012-06-14 | Page 15

EMBMS CAN FREE UP TV SPECTRUM

- > Cellular SFNs enable nation-wide SFNs for nation-wide content
- > Germany: In main cities there are 6 DVB-T channels in use.
- > 5 channels carry content for nation-wide distribution, but different frequencies used geographically
- > eMBMS needs just 1 frequency per channel: nation-wide SFN.
- > Low-tower low-power transmission used for eMBMS confines interference to neighbor countries to a few kilometers.
- > To avoid cross-border interference entirely, could use a frequency reuse factor of 4 across Europe.
- > 5 x 4 frequencies sufficient for nation wide content in Europe.
- > Regional/local content: 1 TV program in Germany using 25% of a channel. With reuse-4, 1 channel needed to cover Europe.
- > Total: (5*4+1)*8MHz=168MHz,
 - ⇒ 48% saving of the 320MHz currently allocated to TV.

Ericsson Internal | 2012-06-14 | Page 16

EXAMPLE: EU COUNTRY 4-COLORING

Ericsson Internal | 2012-

POSSIBLE FUTURE ENHANCEMENTS

- > Dedicated MBMS carrier to support dedicating 100% resources to MBMS
- > MBMS spectral efficiency improvements e.g. MIMO for MBMS
- > Enhanced Application Layer FEC
- > Statistical multiplexing for variable bitrate streams from independent source coders.
- > Enhanced user counting

Ericsson Internal | 2012-06-14 | Page 18

CONCLUSIONS

> LTE-MBMS integrated into cellular infrastructure

- IP based broadcast of TV, textual and audio streams
- Enables Hybrid / Interactive TV / Video on Demand
- Receivers types: LTE broadband terminals or LTE modem integrated into TV set-top boxes

> LTE-MBMS enables spectrum savings for broadcasting

- MBMS based on Single Frequency Network principle
- Reusing the dense LTE cellular infrastructure for broadcasting enables higher practical transmission rates

